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Abstract

My doctoral thesis is oriented to digital 2D image de-noising as part of digital 2D im-
age processing. A good mathematical model for image processing background represents
Lukasiewicz algebra with square root. After its definition, terms of fuzzy logic function
and its sensitivity were introduced. The sensitivity propositions and their proofs follow.

Basic terms of digital image processing and description of several image processing tech-
niques are subjects of second part of my doctoral thesis. A quality of image processing
can be measured using Minkowski distance of processed and ideal images. A multicriterial
approach can be applied if several quality measures are used.

A sample of traditional image filters, which are not realizable in Lukasiewicz algebra with
square root, is included in the third part first. Then a set of filters, which are realizable
in Lukasiewicz algebra with square root, is discussed. Finally, a list of fuzzy logic function
filters is introduced.

The image de-noising can be performed by hierarchical structures for data processing. This
structure is called fuzzy logic network if it contains fuzzy logic functions only in hidden
nodes. Five fuzzy logic networks including their sensitivity are introduced. Their outputs
can be better than results of individual fuzzy filters.

Both individual and hierarchical fuzzy filter properties are subject of experimental part.
The set of seven artificial images is used in tests. Four quality measures are used for
fuzzy filter comparing. Then the multicriterial approach is applied and the set of eight
prime filters is selected. This set is used as first hidden layer of fuzzy logic networks.
Their structures are optimized in the second step. The results of three types of fuzzy logic
networks are better than result of the best individual fuzzy filter. Finally, real biomedical
images are processed via selected individual fuzzy filters and all fuzzy logic networks.

All algorithms were realized in MATLAB environment.



Abstrakt

M4 disertacni prace je zaméiena na potlacovani Sumu ve 2D obrazech v kontextu digi-
talniho zpracovani 2D obrazu. Vhodnym matematickym modelem pro zpracovani obrazu
je Lukasiewiczova algebra s odmocninou. Po jeji definici jsou uvedeny pojmy fuzzy logicka
funkce a jeji citlivost. Nasleduji tvrzeni o citlivosti a jejich dukazy.

Zakladni pojmy z oblasti digitalniho zpracovani obrazu a popis nékolika technik pro zpra-
covani obrazu jsou predmétem druhé casti mé disertacni prace. Kvalitu zpracovani ob-
razu lze mérit pomoci Minkowského vzdalenosti mezi zpracovanym a idealnim obrazem.
V pripadé pouziti vice ruznych méritek kvality soucasné je mozno aplikovat vicekriteridlni
pristup.

Ve tteti ¢asti je nejprve uvedeno nékolik tradic¢nich obrazovych filtru, které nejsou realizo-
vatelné v Lukasiewiczové algebie s odmocninou. Poté je diskutovdna mnozina filtru, jez
v Lukasiewiczové algebie s odmocninou realizovat lze. Nakonec je uveden seznam fuzzy
filtru.

Potlacovani sumu v obrazech je mozno provadét pomoci hierarchickych struktur pro zpra-
covani dat. Jestlize ve skrytych uzlech jsou obsazeny pouze fuzzy logické funkce, nazveme
tuto strukturu fuzzy logickou siti. Je uvedeno pét typu fuzzy logickych siti vCetné jejich
citlivosti. Jejich vystupy mohou byt lepsimi nez vysledky jednotlivych fuzzy filtru.

Predmétem experimentalni ¢asti jsou vlastnosti individualnich i hierarchickych filtru. Pti
testovani je pouzita mnozina sedmi umeélych obrazu. Pro porovnani fuzzy filtru je uzito ¢tyr
meéritek kvality. Pomoci vicekriteridlniho ptistupu je vybrano osm nejlepsich filtra, které
jsou pouzity v prvni skryté vrstvé fuzzy logickych siti. Ve druhém kroku je optimalizovana
jejich struktura. Vysledky tii typu fuzzy logickych siti jsou lepsi nez vysledek nejlepsiho
individualniho fuzzy filtru. Nakonec jsou individudlni i hierarchické fuzzy filtry pouzity
pro odstranéni Sumu v redlnych biomedicinskych obrazech.

Vsechny algoritmy byly realizovany v prosttedi MATLABu.
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List of symbols

set of natural numbers
set of natural numbers including zero
set of integer numbers
set, of real numbers
[0,1] interval
pixel
pixel value/vector
row number
column number
1..r 1lMage

(=)

M VO TR REINZZ
I

= (;,)i=1..» image represented as matrix of pixel values/vectors

List of abbreviations

AIA absolute value of distance from ideal alternative
BES best easy systematic estimation
BL-algebra basic logic algebra

CRNN constrained referential neural network
cT computed tomography

DFT discrete Fourier transform

DWNN dyadic weights neural network

FIR finite impulse response

FLE fuzzy logic expression

FLF fuzzy logic function

IDFT inverse discrete Fourier transform

I[IR infinite impulse response

LAgqre Lukasiewicz algebra with square root
MAE mean of absolute error

MAX maximum of absolute error

MED median of absolute error

MFLFN modular FLF network

MMFN min-max fuzzy network

MPFEN modus ponens fuzzy network

MRI magnetic resonance imaging

MSE mean square of error

MV-algebra many-valued logic algebra

PET positron emission tomography

SNR signal /noise ratio

SPECT single-photon emission computed tomography
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Introduction

A 2D image processing is an important instrument for many fields of human activities.
Biomedical, environmental, meteorological and technological structures are typical data
sources. Their analysis has a wide application. The 2D image processing includes various
operations, for example image reconstruction, filtering, sharpening and edge detection.
Several techniques can be chosen for this purpose. One of them is a fuzzy logic.

The first aim of my doctoral thesis is to demonstrate that basic logic algebra—Lukasiewicz
algebra with square root is useful mathematical background for image processing. The
second aim is to develop hierarchical structures as fuzzy logic networks and then compare
them with individual fuzzy filters for noise suppressing.

A first part is oriented to the algebraic model for data processing. Lukasiewicz algebra
with square root was chosen from basic logic algebras as a tool for realization of fuzzy logic
expressions and fuzzy logic functions. Their properties were studied in the metric space on
[0,1]". The main result of this section is a sensitivity definition and computing of upper
bounds of basic function sensitivities.

A second part describes basic terms of 2D image processing. Beginning with pixel, 2D
image, neighborhood and mask, the role of list and weighted lists in image processing is
defined. After the definition of noise, ideal, real and artificial images, the image de-noising
is defined and the role of fuzzy logic functions in local image processing is discussed. The
quality of image processing is also a subject of this part. The Pareto optimality and ATA
technique are introduced in case of optimum de-noising of a set of images.

In a third part, traditional image filters are divided into two groups—filters, which are
not realizable in LAy, and filters, which are fuzzy logic functions. Last theoretical part
introduces five approaches to hierarchical fuzzy logic function for image processing.

The experimental part is specialized to biomedical image de-noising. The MRI, PET,
CT and SPECT techniques are described first. Then the artificial and ideal MRI and
SPECT images are prepared for a testing of fuzzy logic function filters. Various fuzzy logic
functions, quality measures and masks are used individually first. Finally, the five types
of new hierarchical networks from previous part are used and optimized on artificial and
ideal images. The resulting filters are used for de-noising of real MRI images.

The principles of data processing are realized in MATLAB environment and the source
code examples are also included.



1 LA, as Algebraic Model

Lukasiewicz algebra is an MV-algebra operating on [0, 1] interval using conjunction, dis-
junction, multiplication and residuum as basic logic operators. Having no more than these
operators, it is impossible to construct low sensitivity systems and compromise data pro-
cessing. That is why the Lukasiewicz algebra was enriched by a square root function. This
function is defined as extended inversion of Lukasiewicz square function.

DEFINITION: Let L =10,1]. Let a,b € L. Let

aAb = min(a,b),

aVb = max(a,b),

a®b = max(a+b—1,0),

a—b = min(l—a+0,1),
sqrt(a) = (14 a)/2.

Then the Lukasiewicz algebra with square root (LAgy) is defined as

LA = (L, A, V,®, —,sqrt, 0,1).

It is useful to define some derived operators for the simplification of expression and function
description. Some of them have a linguistic meaning, for example negation, equivalence,
'very’ (the square) and 'roughly’ (the square root).

DEFINITION: Let n € Ny. Let a,b € L. Then derived operators are defined as

—a = a—0,
ac>b = (a—=b)A(b—a),
aob = —(a+b),

adb = —|(—|(L®—|b)7
aSb = a® b,

n®a = @azg@a@---@q, 0®a=0,

All the operators in LAgq can be represented by functions of one or two variables.

DEFINITION: Let z,y € L, n € Ny. Then

biz) = o fr(z,y) = x4y
f2(x) = sart(z) fy(z,y) = woy
o) v fule,y) = zoy
5(1‘7y) o .73®y fn([L‘,TL) = n@eOx
fﬁ(xay) = 7 _>y f12($ n) — xn

are defined as bastc functions in LAy;.



DEFINITION: Fuzzy logic expression (FLE) is defined by the rules:

(i) Any free variable 2 € L is FLE.

(ii) Any constant a € L is FLE.

(iii) f;(FLE) is FLE for i = 1,2,

(iv) f;(FLE, FLE) is FLE for j = 3, ..., 10,
)

(v) fx(FLE,n) is FLE for £k = 11,12 and n € N

where f,, (m =1,...,12) are the basic functions in LAgqy.

DEFINITION: Let n € N, ¢ € L" and ¢ : L™ — L. If ¢(x) is FLE then ¢ is called
a fuzzy logic function (FLF) in LAy.

Thus, fuzzy logic function in LAy is composed from constants and free variables from L
and finite number of basic LAy operators and functions.

2 Properties of FLFs in Metric Space

Minkowski Metric Space

DEFINITION: Let n € N. Let ¢,y € R". Let p € [1,00) U {oo} be an exponent. Then
a function

n 1/p
(£ toe-w) for p € [1,.00),
dy(z,y) = k=1
lim d,(z,y) = max |zp —yx|, forp=oc.
p—00 k=1,...,

is called Minkowsk: metric.

The pair (R",d,) is called Minkowski metric space.

Unit Vector and Normalization

DEFINITION: Let n € N, p € [1;00) U {oo} be parameters of Minkowski metric space
(R",d,). Let 0 € R" be zero vector. Then u € R" is called unit vector just when
dy(u,0) = 1.

DEFINITION: Let (R",d,) be the Minkowski metric space. Let
U, = {@ € R"| dy(w,0) = 1)

be a set of all unit vectors. The application of any function t* : R" — U, to vector € € R"
is called a normalization in Minkowski metric space just when

dp(z, t*(z)) = d,

D
where

.
d, _Eél(}}]dp(m’u)'

3



Applying Minkowski metrics to L™ space, we obtain the pair (L",d,). This space will be
used for the analysis of properties of any FLF.

THEOREM: Let n € N. Then d, distance function is FLF on L".

THEOREM: Let @ € L™. Then a function u : L” — L such as u = u(x) = £ +1—d(, 0)
is a FLF normalization in (L™, d).

Lipschitz continuity

DEFINITION: Let n € N and ¢ : L™ — L. The ¢ is called Lipschitz continuous
function on L if

(3N € Rg)(Ve, y € L") d(p(z), ¢(y)) < A~ d(z, y) (1)

where d is any metric.

It is possible to use the city-block distance d; as the metric and then write the formula (1)
as

B eR()(Va,y € L") p(z) o p(y) < A- Z |2k — Y-
k=1

The Lipschitz continuity implies a continuity of function.

THEOREM: Any FLF is the Lipschitz continuous function.

Sensitivity

DEFINITION: Let ¢ : L™ — L be FLF. Let ¢,y € L". Then

A= max son(w) ° p(y)
! > |zk — il
k=1

is called a sensitivity.

THEOREM: Let a € L be a constant, £ € L" and ¢ is FLF. Then the sensitivity of
o(x) = ais A\, = 0 while sensitivity of p;(z) = z; is \;; < 1.

THEOREM: Let p,q: L™ — L be a Lipschitz continuous functions with sensitivities A,
and \q. Then

Aw = Aperg S Ap+Aq
)\sqrt(P) = )‘P/Q )\poq < )\p + )\q
Apng < max(Ap, Ag) Msa < A+ Aq
Apvg < max(Ap, Aq) Mog < A+ g
)‘p®q S )‘p + )‘q )\n® < n-\
Mg < A+ Aq v ’
- )\p" S n- )\p



3 Processing of 2D Gray Image

Pixel

DEFINITION: The smallest discrete rectangular element of picture is called a pixel.

The pixel has two properties: a size (this property is dependent on resolution of the
apparatus which was used for picture digitizing) and a color (a property visible on a screen).
The size is common property of all pixels in given picture, while the color is typically
different for each pixel.

DEFINITION: Let X be a given pixel, n € N and M C R. Then a vector x € M™, which
describes the color property of given pixel, is called a pizel vector (related to X).

In case of n = 1, the pixel vector is called a pixel value or pixel intensity.

Each pixel is represented by its pixel vector in digital 2D image processing.

2D Image

DEFINITION: Let r,¢ € N. Then the matrix of size (r,¢), which consists of r-¢ pixels,
is called a 2D digital ¢mage.

An image is a discrete 2D signal. From a mathematical point of view, the image is described
as matrix with r rows and ¢ columns where each element z;;, € M" (n € N, M C R,
1 <i<r,1<j<c)isthe pixel vector. Therefore, the image can be stored in a computer
memory, and manipulated by a processor.

There are several kinds of images (depending on length of pixel vector n and range of its
values M), for example:

e RGB color image: n =3 and M = [0, 1],
e gray image (graylevel or grayscale image): n =1 and M = [0, 1],

e binary image: n =1, M = {0,1}.

Grayscale images are very known as a subject of image processing. In following text, the
all terms and definitions will be concerned with gray images.

Pixel Neighborhood

DEFINITION: Let R € Ny, P be any 2D gray image of size (r,¢), i,7 € N, 1 <i <r
and 1 < j <ec. Let A;; be a given pixel from P. Then a subset
is called a pizel neighborhood and & ; is called a central pizel.

From a graphical point of view, the pixel neighborhood is a small square matrix of odd
size (2R + 1)? where the original pixel is just in the matrix center (Fig. 1).

The pixel neighborhood is also called a window. The R is called a radius of pizel neighbor-
hood. There is R < 3 in many applications.



In the case of R > 0, there is necessary to extend the original image by left and right
columns and top and bottom rows to prevent the degeneration of the neighborhood. The
extension should be realized by zero padding, constant replication, periodic replication or
mirror replication (Fig. 2).

The pixel neighborhood plays an important role in the pixel-by-pixel enhancement of the
whole image.

Xic1j-1 Xic1 Xi-1,j+1

Xij—1 Xij Xij+1

Xi+1,j—1 Xz’+1,j Xi+1,j+1

Figure 1: Pixel neighborhood for R = 1 with a central pixel &j ;

8,6 8)
s (C),/" o

Figure 2: Image extension for R = 5: (a) zero padding, (b) constant replication, (c) periodic
replication, (d) mirror replication

[l
.

Mask

DEFINITION: Let R € Ny and r = 2R + 1. Then the square matrix M = (m, ;) of size
(r,7), which consists of non-negative integer numbers, is called a mask.

Let k € Ng, k=Y_ > m;;. Then k is called a mask capacity.

i=1j=1
The mask M = (m; ;) of type (r,7) can be represented as vector of weights w of size n = r?
using formula wy = m;; where k= (i —1)-r+j (4,7 =1,...,7).

The R is called a mask radius. In case of local processing of gray image, the R determines
a radius of pixel neighborhood. Then a weighted list of k pixel values where k is mask
capacity can be formed from a pixel neighborhood using each mask element as frequency
of appropriate pixel in the list.

DEFINITION: Let R € Ny, r = 2R+ 1 and M = (m; ;) be a mask of size (r,r).

(a) The M is called a box mask, iff m;; =1fori,j=1,2,...,r.

(b) The M is called a binomzial mask, iff m; ; = (::11) . (;j) fori,j=1,2,...,r.



List and Weighted Lists

DEFINITION: Let n € N and © € L". Then n-tuple L = (x1,...,z,) is called a list.

The list can be also denoted as L = 8 T
k=1

The pixel vectors in given pixel neighborhood can be denoted as the list of pixel vectors.

DEFINITION: Let n € N, € L" and w € Nj. Then a weighted list is defined as

L = { wyx, where wixy = (zg, Tk, . .., x). The w is called a vector of weights.
k=1
Wi,

The weighted list can be formed from given pixel neighborhood using any mask with the
same radius.

Local Processing

DEFINITION: Let P be any 2D gray image of size (r,c), X;; be a given pixel from P,
R € Ny be a radius of &; ; neighborhood, M = (m; ;) be any mask with radius R and mask
capacity k¥ > 1. Then a local processing is equivalent to a mapping f : L* — L where
z;; = f(w) is new intensity (value) of central pixel &;; and w = (wy, ..., wy) is weighted
list, which was formed from the X;; neighborhood using the mask M.

Function f is called a local processing function.

In case of any gray image enhancement, the data from each pixel neighborhood are typically
proceed to obtain a new pixel intensities x7;. A pixel-by-pixel processing leads to the
resulting enhanced gray image.

2D Image Processing

The image processing is a discipline of computer vision dealing with transformations of
image data into image data. The design of an image transformation follows special aims,
e.g. image segmentation, image enhancement, or image restoration.

The image enhancement is the processing of images to improve their appearance to human
viewers or to enhance other image processing modules’ performance. The objective of image
enhancement is dependent on the application context and criteria for enhancement is often
subjective or too complex to be easily converted to useful objective measures. Enhancement
tasks are typical for the analysis of microscope images in medicine or biology, for material
inspection, or for remote sensing.

Image enhancement is used in all image processing applications, it includes contrast manip-
ulation, tmage de-noising, image smoothing, edge sharpening, pseudocoloring and so on.

Image De-Noising

DEFINITION: Image notise is defined as any unwanted disturbance in image data.

The noise is produced from the signal digitization, data recording and data transmission.
Image noise may also result in "holes” in the image data.



DEFINITION: The model of 2D signal is called an tdeal tmage.

Any image obtained by measurement is called a real tmage.

Any ideal image modified by any noise signal is called an artificial image.

The ideal image can be approximated by any real image with minimum noise level.

DEFINITION: The special case of image enhancement, aim of which is the noise reduction
and image structure saving, is called the @mage de-noising.

The noise reduction and image structure saving are contradictory aims.

DEFINITION:  Any neighborhood operator (image transformation), which decrease the
noise level, is called a filter.

Many filters can be described as local processing with given mask and given local processing
function, which can be FLF in several cases.

Local FLF Processing for Image De-Noising

Individual FLF Processing

DEFINITION:  Any local processing, where local processing function is FLF, is called
a FLF processing.

Thus, FLF processing is any FLF application to the weighted list formed on given image
using given mask. A scheme of FLF processing is depicted in Fig. 3.

world of pixels world of values
A ' A
- T - T
central R pixel mask ohted list FLF en;zgcizclzed
pixel X, neighborhood ' weighted is value x,

Figure 3: Local FLF processing scheme

Hierarchical FLF Processing

We can perform the local FLF processing as a hierarchical structure of data processing.
Resulting structures are called FLF networks. They consist of independent layers with
interconnections. The signals from pixel neighborhood come into the first input layer.
The enhanced pixel is produced by output node in output layer. It is necessary to use one
hidden layer at least for advanced pixel processing.

Realizing FLF networks, LAy, can be used for node processing.



4 Quality of Image Processing

Image Similarity

DEFINITION: Let X and Y are 2D images of the same type where X is the ideal image
and Y is noised one (it is identified as subject of image processing). Then D =Y — X is
called an #mage difference.

The aim of image processing is to construct a new image Y such that Y* — X is approxi-
mately equal to zero.

DEFINITION: Let r,c € N. Let X,Y be the images of size (r,¢) and p € [1,00) C R.

Then N
dp(X,Y) = (ZZ |yij — xij|p)

i=1 j=1

is called a Minkowsk: distance of images X,Y.

The standard measures of image processing quality are derived from Minkowski distance
of images: mean of absolute error (MAE; p = 1), mean square of error (MSE; p = 2) and
maximum of absolute error (MAX; p — 00).

The signal to noise ratio (SNR) criterion corresponds with digital filtering standard. It is
defined by a formula

Var(X)
NR = 10 -log ——— 2/
SRR =10-log 74
or by an alternative formula
Var(X)
NR* = 10 - log ———2__
SNR®=10-log g

where Var(A) = E{(A — EA)?}, where E is a symbol of average value.

Fifth criterion is a median of absolute error (MED).

Multicriterial Approach

Supposing an existence of single image in both noised and ideal form, the noised form of
image can be passed through any filter and the quality of de-noising can be measured by
various criteria. Then the quality of given filter is a vector of selected criteria values. The
results of various filters can be collected to quality matrix. There is a possibility to find
optimum filter using multicriteria decision making technique. Pareto optimality and ATA
technique are introduced in my doctoral thesis.



5 Traditional Non-FLF Filters for Image De-Noising

The image processing is a traditional application of various mathematical methods. Several
filters that are not realizable in LAy in general:

e mean filter (box filter),

e alpha trimmed mean filter,

e integer weighted average filter,
e Gaussian filter,

e Wiener filter,

o [IR filter.

6 Traditional FLF Filters for Image De-Noising

Statistics Functions as FLF's

The intensities of pixels from neighborhood are collected in various lists—basic terms (list,
weighted list, sorted list) are introduced in my thesis.

THEOREM: Let k,n € N, k <n and & € L". Let ¢, : L” — L such that ¢y (x) = 2,
where x(;) is the k-th value from sorted list SORT (L) = (x(1), ..., 2()). Then ¢y is FLF.

This theorem is useful for extended data processing (construction of the filters based on
sorted value lists). The alternative data processing techniques prefer large lists of compro-
mise values. The Walsh list is one of them.

DEFINITION: Let n € N and « € L™. Then the Walsh lzst is defined as
)

n

DEFINITION: Let L = { xj be a list, z; € L. Then the median of list L is defined as
k=1

Tty + T(nfly)

2

M) = neliapn ==

where |a| = max{n € N;n < a}, [a] = min{n € N;n > a} and z( is the k-th value
of L.

The local processing, which use any mask M with radius R and median as local processing
function, is called a median filter.

DEFINITION: Let L = 8 wixr be a weighted list, x, € L and w, € Ny. Then the
k=1

wetghted median is defined as median of weighted list.

10



Let L = 8 xp be a list, x;, € L. Then the quast median of list L is defined as
k=1

T(ntt) ) + T ntlypp)

Qk(-’b‘) = 9 )

where k € N and k < |2 ].

The median of Walsh list is called Hodges-Lehmann median:

in—f—l’j

HL(w):median{ ,1§i§j<n}.

DEFINITION: Let L = 8 x, be a list, x, € L. Then the best easy systematic
k=1
estimation (BES) is defined as

1
BES(2) = ; - (e(31) + Tiogty + 2(apy + o mp)

The BES estimation of Walsh list is called Walsh-BES estimation.

THEOREM: The medians, quasi medians, Hodges-Lehmann median, BES and Walsh-BES
estimation are FLFs.

Morphological Operators as FLFs

The field of mathematical morphology contributes a wide range of operators to image
processing, all based around a few simple mathematical concepts from set theory. The
operators are particularly useful for the analysis of binary or gray images and common
usages include edge detection, noise removal, image enhancement and image segmentation.

Erosion is one of the two basic operators in the area of mathematical morphology, the other
being dilation. It is typically applied to binary images, but there are versions that work
on grayscale images:

DEFINITION: Let P be an image, M be a mask with radius R and £ € N be a capacity
of M. Let ERO : LF — L,

k
ERO(x) = /\ ;.
=1

Then a local processing using the mask M and local processing function ERO is called an
erosion.

The mask is called a structuring element in a field of mathematical morphology. A typical
value of radius is R = 1. A larger mask produces a more extreme erosion effect. The weights
in mask greater than one have no effect in any morphological operators.

DEFINITION: Let P be an image, M be a mask with radius R and k be a capacity of
M. Let DIL : L* — L,

k
DIL(z) = \/ ;.
=1

Then a local processing using the mask M and local processing function DIL is called
a dilation.

11



Opening is defined as an erosion followed by a dilation using the same structuring element
(mask) for both operations. Opening results in removal of narrow peaks. The initial
erosion removes the small details and darkens the image. The following dilation increases
the brightness but does not reintroduce the details removed by erosion.

Closing is defined simply as a dilation followed by an erosion using the same structuring
element (mask) for both operations. Closing is used to remove dark details from an image.
The initial dilation removes dark details and makes the image brighter. The erosion that
follows darkens the image but does not reintroduce the details removed by dilation.

Dyadic FIR Filter

LEMMA: The division into any power of two is FLF.

THEOREM: Let n € N. Let © € L. Let N,my € Ny for k = 1,...,n. Let wy = my/2"
be dyadic weights for k =1,...,n and )_,_, w, < 1. Then any function

k=1

is a FLF.

DEFINITION: Letn € N, N € Ny, z € L", m € NI, w = m/2" and > wy < 1. Then
k=1
the FLF

f(a) =) my/2" -z

is called dyadic FIR filter.
THEOREM: Any dyadic FIR filter satisfies the Lipschitz condition with the sensitivity

A < max wy.
k=1,...,n

Applying dyadic FIR filter to ordered Walsh list is an inspirational way how to construct
new generation of FLF filters.
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7 FLF Networks for Image De-Noising

The image processing using the local FLF one can be perceived as a hierarchical process
without loops. Its representation by oriented acyclic graphs is recommended. A resulting
FLF structure is called fuzzy logic function network. It consists of independent layers with
interconnections. The signals from pixel neighborhood come into the first input layer. The
enhanced pixel signal is produced by output node in output layer. It is necessary to use
one hidden layer at least for advanced signal processing.

Modus Ponens Fuzzy Network

The modus ponens rule as the basic principle of logic motivates a four-layered fuzzy network
architecture. A resulting structure is called a Modus Ponens Fuzzy Network (MPFN).
The first MPFN layer contains n input nodes. The second layer consist of H hidden FLF
nodes which make the FLF preprocessing with constrained sensitivity. The third layer
realizes the modus ponens law using 2m hidden nodes and learnable weights. The fourth
layer with m output nodes produces the compromise solution of given task. The MPFN
structure is described in the Fig. 4.

Figure 4: Modus ponens fuzzy network for m =1

The MPFN is able to learn from the pattern set but more sophisticated approach is based
on weight optimization.

MPFEN Processing Rule

h; = FLF;(x) forj=1,...,H,

Ei(x) = \B} w;; ® h;(x) fori=1,...,m,
"

& (w) = V wyi; ® —h(x) fori=1,...,m,

i() = sart(€: () ® sart (=E5 () fori=1,...,m.

THEOREM: Let H € N be number of hidden FLFs in given MPEFN. Let \; be their
sensitivities for j = 1,..., H. Then any MPFN output is FLF of input variables with the
sensitivity

A< max Aj.
j=1,..H
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Min-Max Fuzzy Network

The min-maz fuzzy network (MMFN) is a four-layered network which is based on
fuzzy logic functions and operators of LAgy:. The first layer consists of n € N inputs
x1,...,%, € L. The second and third layers are hidden, the first of them contains F' € N
selected fuzzy logic functions ¢y, ..., r and the second one consists of H € N neurons
P1,---,pu. Bach neuron p; is a subset of {¢1,...,pr} and it produces the conjunction of
its inputs. The fourth layer of MMFEN produces one output y using disjunction of the third
layer.

From the mathematical point of view, the output of MMFEN is described as

Yy = \/ (/\ <pj(w)> where pr C {¢1,...,0r}.

JEPk

The number H is called a complezity of MMFN. It is clearly, the maximal H is 27. The
selection of H subsets can be a subject of discrete optimization.

The MMFN structure for n = 9, F = 4, H = 5 where p; = {¢1, 02}, p2 = {¥1, 93},
ps = {02, 3}, pa = {1, 04} and ps = {3, p4} is depicted in the Fig. 5.

Figure 5: Example of MMFEN structure (n =9, F =4, H =5)

If we know the ideal output, we can optimize the MMFN structure—a learning of MMFN
is converted to finding the optimum vector of parameters

popt = arg mpin f(p) :

The MMFN output is a compromise function of individual inputs x4, ..., x,, i.e. it satisfies
min zp < y(xy,...,T,) < max .
k=1,....,n k= y( L ’ n) T k=l,...n k
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Modular FLF Network

Modular networks consist of N independent networks (subnetworks) and a gating network,
which determines how much of each network’s output is applied to the final output. The
single network is also called an expert network. The output of modular network is computed
as weighted compromise (frequently as weighted sum of subnetworks outputs).

DEFINITION: Let x,y € L be values of given property and its ideal. Let £ € N. Then
a stmilarity of x,y values is defined as FLF function s : L x L — L where

s(z,y) = (z < y)F = max(0,1 — k- |z — y|).

Thus, the similarity s(x,y) is only a power of the biresiduum. The recommended values
are 1 < k < 1000. In the case of image processing, there are some useful similarities, for
example similarity between filter value and recommended value.

DEFINITION: Let n, N € N are number of inputs and number of subnetworks. Let each
subnetwork is FLF and y; be output of k-th subnetwork for £k = 1,..., N. Let a gating
network produces a normalized vector g € L using similarities of subnetwork outputs
with given value z*. Let yrpr = r(y) where r is a FLF. Then a modular network, whose
output

y=1(y) ® (\/ (9% ® (yx © r(:u)))) S (\/ (9x ® (r(y) © yk))> :

is called a modular FLF network (MFLEN). The r is called a referential function.
An example of MFLFN structure is depicted in the Fig. 6.

Figure 6: Architecture of MFLFN

THEOREM: MFLFN output is FLF of input variables.
The sensitivity of MFLFN output is also derived.
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Constrained Referential Neural Network

It is not prohibited to have a favorite procedure and use it as referential one. The other
procedures can represents a traditional approaches to given task and then typically make
a frame or acceptable range for the favoured procedure which should not offer the results
out of the range.

DEFINITION: Let n, H € N be number of inputs and number of standard nodes. Let
x=(ry,...,2,) €L f=(f1,...,fu) € L. Let f; = f;(x) be a FLF for i = 1,..., H.
Let fr = frer(®), fu = frow(F), fu = fupp(f) be FLFs. Let y = (fr V fu) A fu. Then
the structure producing y from x via f, fr, fL, fu is called constrained referential

neural network (CRNN).
The structure of CRNN is depicted in the Fig. 7.

Figure 7: Structure of CRNN

THEOREM: The output y of CRNN is FLF of its input «.

The sensitivity of CRNN output is also derived.

CRNN is a special case of fixed MIN-MAX structure applied to fr, fi and fy signals.
A trivial but useful range can be obtained by using f;, = 7\1 fe, fu = 5;1 fr. More

k= =
sophisticated range can be obtained from ordered list (f(l), cen f(H)) using fi = fikey),
fu = fu—xpy1) for KEY < |H/2].

Dyadic Weight Neural Network

The last hierarchical approach to image processing is based on a compromise in LAgqy
using weighted average with fixed dyadic weights.

DEFINITION: Let n, H € N be numbers of input and hidden nodes, © = (z1,...,z,)€L"
and f = (fi,...,fu) € L. Let f; = f;(x) where f; be FLF for i = 1,...,H. Let
mg, N € Ny, wy, = my, /2N and ZkHzl wp = 1. Let y = 25:1 wyfx(x) be an output signal.
Then the structure producing y from x by f is called dyadic weight neural network
(DWNN).
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The structure of DWNN is depicted in the Fig. 8.

The weights can be subject of discrete optimization for fixed exponent V.

Figure 8: Structure of DWNN

THEOREM: The output of DWNN is FLF of its input .

THEOREM: Let H € N and )\, be a sensitivity of fy for kK = 1,..., H. Then the sensitivity
of DWNN is A\ < 1I<r}€a<>%()\k).

8 Biomedical Image De-Noising

The last part of my doctoral thesis is oriented to biomedical image de-noising. The MRI,
PET, CT and SPECT techniques are described first. Then the artificial and ideal tech-
nical, MRI and SPECT images are prepared for a testing of fuzzy logic function filters.
The artificial technical images were obtained from ideal one applying uniform, gaussian,
laplacean and cauchian noise. The artificial biomedical image was obtained using addition
of noise from top left corner of real MRI image, while SPECT artificial images were ob-
tained using gaussian noise. Properties of 58 fuzzy logic functions were studied using four
quality measures (SNR, MSE, MED, MAE). The best individual filters for MRI image are
quasi median (k = 1) with binomial mask (R = 1) or quasi median (k = 1) applied to box
mask (R = 1) according to SNR or MSE criterion.

The multicriterial approach was applied to the results of individual filtering in the second
step. The set of Pareto optimum filters for artificial biomedical images consists of eight
filters (Tab. 1). Finally, this set was used in five types of hierarchical networks from previous
part. The weights of MPFN and DWNN, the structure of MMFN and the parameters of
MFLFN and CRNN were subject of optimization using artificial MRI image with SNR
criterion. The results of network optimization are:

e MPFN: w = (0,0,0.5416,1,0,0,1,1), w* = (1,1,1,1,1,1,1, 1),
e MMFN: 120 subsets in first hidden layer,

e MFLFN: k£ = 2, r is Hodges—Lehmann median of individual filters, g represents
similarity between individual filters and their median,

e CRNN: fREF = Flg, KEY = 2,
e DWNN: w = (0,17/32,15/32,0,0,0,0,0), i.e. the output is affected by Fi3 and Fiy
only.
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The quality measures of MPFN, CRNN and DWNN outputs are better than quality of
the best individual filter F}4 on artificial MRI image (Tab. 2). Thus, this three types of
networks are recommended for MRI 2D image de-noising.

| Filter | Mask | 1% level | 2°¢ level |
F M, M
Fi3 M; |Q
Fiy M, |Q
Foy M, | Q
F27 M1 Walsh list Q2
Fog M, | Walsh list | Qo
Fyq M, BES
F3; M; | Walsh list | BES

Table 1: Selected Pareto optimum filters (M;: box mask, My: binomial mask)

The optimized FLF networks were used for de-noising of real MRI images (human brain
and human genu). Selected results are depicted in Figs. 9-20.

Filter SNR [dB] | MSE | MED | MAE
NOISED 10.8381 | 0.0671 | 0.0225 | 0.0416

F 14.6766 | 0.0414 | 0.0075 | 0.0238
Fis 15.2065 | 0.0394 | 0.0138 | 0.0248
Fyy 15.2262 | 0.0395 | 0.0138 | 0.0252
Fyy 14.9529 | 0.0416 | 0.0187 | 0.0278
Fyy 14.5299 | 0.0438 | 0.0206 | 0.0299
Fog 14.8966 | 0.0426 | 0.0212 | 0.0297
F3s 14.7934 | 0.0416 | 0.0169 | 0.0271
Fs; 14.4287 | 0.0452 | 0.0249 | 0.0325

MPEN 15.3123 | 0.0395 | 0.0181 | 0.0270
MMFN 15.0042 | 0.0429 | 0.0200 | 0.0293
MFLFN 15.1654 | 0.0401 | 0.0175 | 0.0265
CRNN 15.3301 | 0.0394 | 0.0169 | 0.0258
DWNN 15.5375 | 0.0381 | 0.0140 | 0.0245

Table 2: Quality of filtering of artificial MRI image

18



Figure 13: RI; filtered by Fj3 Figure 14: RI, filtered by Fj;
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Figure 19: RI; filtered by CRNN Figure 20: RI; filtered by DWNN
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Conclusions

Noisy 2D images are typical results of technical monitoring, meteorological observations
or biomedical measurements. Noise reduction and structure saving are contradictory but
useful aims. Lukasiewicz algebra with square root was used as mathematical model for
image processing background. Lukasiewicz algebra with square root as algebraic structure
was defined first. This is a simple algebraic model but it has some useful properties:

e the number of operators and functions is minimum possible,
e there is possible to construct infinite number of different expressions and functions,

e the Lipschitz continuity and constrained sensitivity of functions are guaranteed.

Fuzzy logic function and its sensitivity were defined next. Upper bounds of sensitivity of
operators and basic functions were inferred. Then the basic terms of 2D image processing
were defined and a sample of traditional filters, which are not realizable in Lukasiewicz
algebra with square root, was described. The set of fuzzy logic function filters and proofs
of their realization in Lukasiewicz algebra with square root were introduced.

The second aim of my work was to define the image enhancement networks as a hierarchical
structures of data processing and compare their outputs with results of individual fuzzy
logic functions. Lukasiewicz algebra with square root was used for node processing in fuzzy
logic function networks. More complex activities can be performed for advanced processing
and five network were introduced:

e modus ponens fuzzy network (MPFN),

e min-max fuzzy network (MMFN),

e modular fuzzy logic function network (MFLFN),

e constrained referential neural network (CRNN) and

e dyadic weights neural network (DWNN).

Their sensitivities were also inferred. Finally, the previous hierarchical and individual
fuzzy logic function filters were tested and compared on artificial images. The set of
them also includes 2D biomedical images with natural and artificial noises. The filtering
principles were compared on the basis of traditional quality measures (SNR, MSE, MAE,
MED). The multicriterial approach were also used. The best individual and optimized
hierarchical fuzzy logic function filters are recommended for the de-noising of biomedical
2D MRI images.

The algorithms of data processing were realized in MATLAB environment and the source
code examples are included.
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