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2

Discrete Signals and Systems

Let us start the study of digital signal processing methods by the summary of basic signals

and systems properties and mathematical tools enabling their description and analysis.

Such a background is substantial for the development of classical and adaptive methods

described further.

2.1 Fundamental Concepts

Most of observed signals are continuous functions xa(t) of one or more variables. Before

their digital processing it is necessary to realize their sampling with a given sampling

period Ts (or sampling frequency fs = 1/Ts). In case of one independent variable (usually

standing for time) resulting discrete-time signal is represented (Fig. 2.1) by a sequence of

numbers

x = {x(n)} = {xa(nTs)} (2.1)

for n ∈ (−∞, +∞). As real analog/digital converters are able to approximate discrete-

time values by a limited number of digits only such a sequence is digital in fact [30, 23].

Time domain signal description enables definition of deterministic signals includ-

ing periodic and nonperiodic signals by their mathematical definition. The most important

deterministic signals represent

- unit sample sequence: d(n) =

{
1 for n = 0
0 for n �= 0

- unit step sequence: u(n) =

{
1 for n ≥ n0

0 for n < n0

- real exponential sequence: x(n) = an

- sinusoidal sequence: x(n) = A sin(2πfn)

The sketch of these signals is given in Fig. 2.2.

Further signals may be described by their own mathematical definition and they may be

also combined using the basic operations summarized in Tab. 2.1 (including also MATLAB

notation which in real programs does have no formal difference between scalars, vectors

or matrixes considering a scalar as a special matrix with one element only).
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FIGURE 2.1. Sampling process of an analog signal
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FIGURE 2.2. Basic deterministic signals

In many practical cases observed signals are random including unpredictable noise as

well. Description of such signals is based upon a random signal theory presented in many

books including [31, 2, 12]. The analysis of these signals may be in many cases restricted

to stationary random signals with their basic probabilistic characteristics (average and

autocovariance function) independent of the starting index of observation. An example of

a random signal with its histogram approximating its probabilistic distribution is given

in Fig. 2.3.

For various signal analysis techniques it is useful to refer to the energy of a sequence

defined ([23, p.24] or [30, p.10]) as

E =
∞∑

n=−∞
|x(n)|2 (2.2)

Frequency domain signal description is another method of the given sequence

approximation which is substantial in many digital signal processing methods. Fourier

series applied for continuous signals studied for example in [24, p.10] or [23, p.258] are

originally restricted to the approximation of a periodic function f(t) with period T by

the weighted sum of complex exponentials or trigonometric functions in the form

faprox(t) =
∞∑

k=−∞
Fke

jk 2π
T

t = a0 +
∞∑

k=1

(
akcos(k

2π

T
t) + bksin(k

2π

T
t)

)
(2.3)

Operation Definition MATLAB notation

multiplication {x(n)} · {y(n)} ≡ {x(n) · y(n)} x .� y
linear combination a · {x(n)} + b · {y(n)} ≡ {a · x(n) + b · y(n)} a�x+b�y

convolution {x(n)} � {y(n)} ≡ {
∞∑

k=−∞
x(k)y(n − k)} conv(x,y)

translation {x(n − n0)}
TABLE 2.1. Basic sequence operations
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FIGURE 2.3. Stationary random signal with normal probabilistic distribution and its histogram

Using the mean square error method it is possible to derive that

Fk =
1

T

∫ T

0

e−jk 2π
T

t dt (2.4)

for k = 0,±1,±2, · · · and after the application of Euler relations for complex exponentials

it is possible to express

a0 =
1

T

∫ T

0

f(t) dt

ak =
1

T

∫ T

0

f(t) cos(k
2π

T
t) dt (2.5)

bk =
1

T

∫ T

0

f(t) sin(k
2π

T
t) dt

for k = 1, 2, · · · .Example of such an approximation of a rectangular function with its

period T = 2π by a limited number of terms in the form

faprox(t) =
4

π
(sin(t) +

1

3
sin(3t) +

1

5
sin(5t) +

1

7
sin(7t)) (2.6)

is presented in Fig. 2.4 together with weights denoting the significance of separate fre-

quency components. Generalization of this method to non-periodic signals is studied fur-

ther in connection with the discrete Fourier transform analysed for instance in [40, p.59]

as well. It enables signal description in the form of a finite number of its frequency com-

ponents giving possibility of the sampling rate estimation as well.

Theorem 2.1 Let fm is the highest frequency component of a signal. Then the sampling

frequency fs must be greater or equal then 2fm to enable its perfect reconstruction.

Proof of this theorem is closely connected with the theory of the discrete Fourier transform

presented further and studied in many books including [30, p.28], [40, p.45] or [23, p.57].
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FIGURE 2.4. Rectangular function approximation with the separate frequency components

2.2 Discrete System Description

A discrete system is mathematically defined as a transform of the input sequence {x(n)}
into the output sequence {y(n)} by means of an operator T (Fig. 2.5). In case of the unit

sample input sequence {d(n)} the system output is called the impulse response {h(n)}
having substantial role in signal analysis presented further. Process of such a transforma-

tion is often called digital filtering which in the broader sense includes both extraction of

information from a given signal and system identification or control as well.

Definition 2.1 Linear shift invariant system is a discrete system having the following

properties

T[a x1(n) + b x2(n)] = a T[x1(n)] + b T[x2(n)] (2.7)

T[x(n)] = y(n) ⇒ T[x(n − k)] = y(n − k) (2.8)

Theorem 2.2 Let {h(k) : h(k) = T[d(k)]} stands for the impulse response of a discrete

linear shift invariant system. Then the response of this system to the signal {x(n)} is

determined by the convolution sum

y(n) = h(n) ∗ x(n) =
∞∑

k=−∞
h(k) x(n − k) (2.9)
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FIGURE 2.5. General discrete system and its application for impulse processing
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Proof: It is obvious that it is possible to define signal {x(n)} by means of the impulse

function {d(n)} in the form

x(n) =
∞∑

k=−∞
x(k) d(n − k)

Using system operator T it is possible to calculate the system output

y(n) = T[
∞∑

k=−∞
x(k) d(n − k)]

After application of properties (2.7) and (2.8) of a shift invariant system it is possible to

write

y(n) =
∞∑

k=−∞
x(k) T[d(n − k)] =

=
∞∑

k=−∞
x(k) h(n − k)

By further substitution to change indices we shall receive expression (2.9). 	
Results presented above implies that any linear shift invariant system is completely

defined by its unit sample response {h(n)}. This result can be further used to determine

system stability [23, p.34].

Definition 2.2 A discrete system is said to be stable if every bounded input sequence

{x(n)} implies bounded output sequence {y(n)}.

Theorem 2.3 A linear shift invariant system is stable if and only if the sum

S =
∞∑

k=−∞
|h(k)| (2.10)

has a finite value.

Proof: Assume that the input sequence is bounded by a finite M such that |x(n)| < M

for all n. Then it is possible to use Eq. (2.9) and the triangular inequality to write

|y(n)| = |
∞∑

k=−∞
h(k) x(n − k)| ≤

∞∑
k=−∞

|h(k)| |x(n − k)| < M

∞∑
k=−∞

|h(k)| = M S

Therefore if S is finite the output sequence is bounded as well. 	
Further considerations are in most cases restricted to causal systems [23, p.38] having

their output for each n dependent on input values for k ≤ n only. Impuls response {h(n)}
of such systems is nonzero for n ≥ 0 only and Eq. (2.9) has therefore the following form

y(n) =
∞∑

k=0

h(k) x(n − k) (2.11)
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FIGURE 2.6. Block diagram and signal flow graf representation of the IIR filter (with symbol
z−1 standing for the unit sample delay)

Time domain discrete system description may be in many cases restricted to the

linear constant coefficient difference equation ([40, p.180], [30, p.16]) defining relationship

between the input and output sequence in the form

y(n) +
N∑

k=1

a(k) y(n − k) =
N∑

k=0

b(k) x(n − k) (2.12)

This general equation denoted as autoregressive-moving average (ARMA) model can take

the following specific simplifications

(i) moving average (MA) model in the form

y(n) =
N∑

k=0

b(k) x(n − k) (2.13)

(ii) autoregressive (AR) model in the form

y(n) +
N∑

k=1

a(k) y(n − k) = x(n) (2.14)

Comparing Eqs. (2.13) and (2.11) it is possible to see that coefficients {b0, · · · , bN}
stand for the finite duration impulse response {h0, · · · , hN} and corresponding digital

system is therefore also called finite impulse response (FIR) filter. Owing to Theorem 2.2

it is always stable which explains one of reasons of its popularity.

General autoregressive and autoregressive-moving average model represent infinite im-

pulse response (IIR) filter as explained in the following example. Graphical description of

such a general system in the block diagram form and signal flow graf representation [30,

p.136] is presented in Fig. 2.6.

Example 2.1 Calculate the unit sample response of a digital system described by the

difference equation (2.12).
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Solution: Assume the input sequence {x(n)} = {d(n)}. Denoting the impulse response

{y(n)} = {h(n)} it is possible to use Eq. (2.12) to evaluate sequence {h(n)} in the form

h(n) = 0, n < 0

h(0) = b0

h(1) = b1 − a1 h(0)

h(2) = b2 − a1 h(1) − a2 h(0)

· · ·
h(N) = bN −

N∑
k=1

ak h(N − k)

h(n) = −
N∑

k=1

ak h(n − k), n > N

This generally infinite sequence stands for the infinite impulse response of studied digital

system.

General shift invariant model of the linear shift invariant system described by the

difference Eq. (2.12) can be expressed in the following vector form

y(n) + a

⎡
⎢⎣

y(n − 1)
...

y(n − N)

⎤
⎥⎦ = b

⎡
⎢⎣

x(n − 1)
...

x(n − N)

⎤
⎥⎦ (2.15)

where a=[a1, · · · , aN ]

b=[b1, · · · , bN ]

This system representation involves calculations with past values of the signal output

variables.

State space representation of a digital filter described for instance in [18, p.84] or [23,

231] enables evaluation of the output value y(n) as a linear combination of the input value

x(n) and state variables v (n) = [v1(n), · · · , vN(n)]′ in the form

y(n) = c v(n) + d x(n) (2.16)

where c = [c1, · · · , cN ], d are the state space model coefficients. The state space vector of

the system represents the minimal information required to determine the output and it

must be updated for each n for a linear discrete system by state equation

v(n + 1) = A v(n) + bx(n) (2.17)

where

A =

⎡
⎣ a11 · · · a1N

· · ·
aN1 · · · aNN

⎤
⎦ , b =

⎡
⎢⎣

b1
...

bN

⎤
⎥⎦ (2.18)

stand for so called state transition matrix and excitation vector respectively.

State space method can be simply applied for multiple inputs and outputs as well (using

vectors and matrices instead of scalars and vectors) and can be also used for time varying

systems. Graphical description of a general state space representation of a discrete system

in signal flow graf notation is presented in Fig. 2.7.
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FIGURE 2.7. Signal flow graf representation of the state space system description

Example 2.2 Derive space equations for the FIR system described by the difference equa-

tion in the form

y(n) = h0 x(n) + h1 x(n − 1) + · · · + hN x(n − N)

Solution: Let us define the first state variable

vN(n) = h1 x(n − 1) + h2 x(n − 2) + · · · + hN x(n − N)

allowing to express the output equation in the form

y(n) = [0 0 · · · 1] v(n) + h0 x(n) (2.19)

To derive further state equations let us express

vN(n + 1) = h1 x(n) + h2 x(n − 1) + · · · + hN x(n + 1 − N) =

= h1 x(n) + vN−1(n)

with the next state variable in the form

vN−1(n) = h2 x(n − 1) + h3 x(n − 2) + · · · + hN x(n + 1 − N)

In the same way it is possible to derive

vN−1(n + 1) = h2 x(n) + vN−2(n)

vN−2(n + 1) = h3 x(n) + vN−3(n)

· · ·
v2(n + 1) = hN−1 x(n) + v1(n)

v1(n + 1) = hN x(n)

and to write the state equation in the form
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v(n + 1) =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

· · ·
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎦v(n) +

⎡
⎢⎢⎢⎢⎢⎣

hN

hN−1
...

h2

h1

⎤
⎥⎥⎥⎥⎥⎦

x(n) (2.20)

Frequency domain representation of a linear shift invariant system ([30, p.19]

or [23, p.84]) is very useful in the linear system theory as it provides information about

signal processing with respect to its frequency components. In particular the steady state

response of such a system to the sinusoidal function is a sinusoid of the same frequency

but different amplitude and phase determined by the system.

Since a sinusoid can be defined by the sum of two complex exponentials we can apply

a discrete input sequence in the form

x(n) = ejωn

Using Theorem 2.2 it is possible to determine system output in the form

y(n) =
∞∑

k=−∞
h(k) ejω(n−k) = ejωn

∞∑
k=−∞

h(k) e−jωk

Defining the frequency response

H(ejω) =
∞∑

k=−∞
h(k) e−jωk

we can evaluate the system output

y(n) = H(ejω) ejωn (2.21)

Using magnitude and phase of the frequency response it is further given by expression

y(n) = |H(ejω)| earg(H(ejω)) ejωn

Result presented by Eq. (2.21) is valid under assumption that the input sequence has

been applied for k → −∞. In real applications the discrete time system provides transient

period before the steady state response.

Example 2.3 Evaluate amplitude frequency response of a moving average system de-

scribed by equation

y(n) =
1

N

N−1∑
k=0

x(n − k)

Solution: Applying x(n) = ejωn we shall receive

y(n) =
1

N

N−1∑
k=0

ejω(n−k) = ejωn 1

N

N−1∑
k=0

e−jωk
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FIGURE 2.8. Amplitude frequency response of the moving average discrete system

Evaluating the sum of the geometrical sequence we shall obtain

y(n) = ejωn 1

N

1 − e−jωN

1 − e−jω

As

H(ejω) =
1

N

1 − e−jωN

1 − e−jω
=

1

N

e−jωN/2

e−jω/2

ejωN/2 − e−jωN/2

ejω/2 − e−jω/2

we can evaluate its amplitude using Euler relations in the form

∣∣H(ejω)
∣∣ =

1

N

∣∣∣∣cos(ωN/2) + jsin(ωN/2) − (cos(ωN/2) − jsin(ωN/2))

cos(ω/2) + jsin(ω/2) − (cos(ω/2) − jsin(ω/2))

∣∣∣∣ =

=
1

N

∣∣∣∣sin(ωN/2)

sin(ω/2)

∣∣∣∣
Amplitude frequency response given in Fig. 2.8 for ω ∈ 〈0, π〉 provides information about

the system behaviour with respect to the signal frequency components.

Difference equations or state space representation provide possibilities for the time do-

main digital system application while the frequency response provides information about

its behaviour with respect to its frequency components. Methods of parameter estima-

tion enabling signal analysis or its processing to achieve prescribed system behaviour are

studied in next sections.


