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Abstract: The interdisciplinary area of digital signal and image processing forms a basis for 
de-noising, enhancement, recovery and classification of biomedical images. The paper is 
devoted to the wavelet transform as a general mathematical tool and its use for image 
decomposition and reconstruction to recover its corrupted regions. The main part of the paper 
is devoted to image decomposition, thresholding and reconstruction to reject specific image 
components.  A special attention is paid to recovery of image regions using iterated wavelet 
decomposition and reconstruction. All algorithms are verified for simulated images and then 
applied to biomedical images obtained by magnetic resonance. The Matlab programming 
environment has been used to realize the algorithms and to obtain the presented results.  
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1. Introduction 

Signal and image processing became an integral part of many engineering disciplines in 
the last century allowing to find similar mathematical description of diverse applications 
including biomedical image analysis, environmental signal processing, control system 
modelling, speech analysis and data forecasting. In this way it forms an interdisciplinary 
basis for physics and mathematics using information engineering and modern information 
technologies [2,4,6,7,8]. 

 Mathematical methods of signal and image analysis are based in many cases on the 
one-dimensional or two-dimensional discrete Fourier transform or on the wavelet transform 
[1,3] allowing either time-frequency or time-scale signal analysis. The following signal and 
image processing use both linear methods including FIR filters and non-linear methods based 
upon artificial neural networks [1,9,10] using various optimization methods.



2. Fundamentals of Wavelet Transform 

Wavelet transforms (WT) provide the alternative to the short-time Fourier transform 
(STFT) for non-stationary signal analysis [4,9]. Both STFT and WT result in signal 
decomposition into two-dimensional function of time and frequency respectively scale. The 
basic difference between these two transforms is in the construction of the window function 
which has a constant length in the case of the STFT (including rectangular, Blackman and 
other window functions) while in the case of the WT wide windows are applied for low 
frequencies and short windows for high frequencies to ensure constant time-frequency 
resolution. Local and global signal analysis can be combined in this way.  

Wavelet functions used for signal analysis are derived from the initial basic (mother) 
function )(th  forming the set of functions   
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for discrete parameters of dilation ma 2=  and translation mkb 2= . Wavelet dilation 
corresponds to spectrum compression according to Fig. 1. The most common choice includes 
Daubechies wavelets even though their frequency characteristics stand for approximation of 
band-pass filters only. On the other hand harmonic wavelets introduced in [5] can have 
broader application in many engineering problems owing to their very attractive spectral 
properties. 
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Fig. 1. Spectral analysis of selected wavelet function presenting relation between 
time dilation and the corresponding spectrum compression 

3. Signal and Image De-Noising 

Information about signals resulting from a selected process can be based upon signal 
decomposition by a given set of wavelet functions into separate levels or scales resulting in 
the set of wavelet transform coefficients. These values can be used for signal compression, 
signal analysis, segmentation and in the case that these coefficients are not modified they 
allow the following perfect signal reconstruction. In the case that only selected levels of 
signal decomposition are used or wavelet transform coefficients are processed it is possible 
to extract signal components or to reject its undesirable parts.  



Using the threshold method introduced by [1,9] it is further possible to reject noise and 
to enlarge signal to noise ratio. The de-noising algorithm assumes that the signal contains 
low frequency components and it is corrupted by the additive Gaussian white noise with its 
power much lower than power of the analyzed signal. The whole method consists of 
the following steps:   

• Signal decomposition using a chosen wavelet function up to the selected level and  
evaluation of wavelet transform coefficients   

• The choice of threshold limits for each decomposition level and modification of its 
coefficients   

• Signal reconstruction from modified wavelet transform coefficients   

Results of this process depend upon the proper choice of wavelet functions, selection of 
threshold limits and their use.  

The application of threshold limits for a modification of the wavelet coefficients 
1
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kkc   includes two basic approaches. The use of the soft thresholding formula for 

a chosen thresholding value δ results in the evaluation of new coefficients by the following 
relation 
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The hard thresholding method results in the following values of coefficients   
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These two methods can be applied both for one-dimensional and two-dimensional signals. 
An example of a simulated image decomposition and de-noising is presented in Fig. 2. 

 (a) GIVEN IMAGE  (b) IMAGE DECOMPOSITION
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Fig. 2. Simulated image denoising presenting (a) given image, (b) image 
decomposition into two levels, (c) image reconstruction and (d) wavelet coefficients 
soft-thresholding  



4. Wavelet Image Restoration 

There are many possibilities of filling-in missing or corrupted image blocks (regions). 
The goal of this task sufficiently solves the iterative wavelet interpolation method designed  
for restoration of corrupted or missing image regions. 

We can view a sequence of lost samples as the result of a particular noise process acting 
on the original signal. However, unlike the traditional case, this noise process is not 
uncorrelated with the original signal. The basic intuition behind denoising tries to keep 
transform coefficients of high PSNR (Peak Signal-to-Noise Ratio) while zeroing out 
coefficients having lower PSNR. Our primary assumption in this algorithm is that the 
transformation used to generate the wavelet transform coefficients mostly ensures that if 
vector c is hard-thresholded by Eq. (3) to zero with the threshold limit δ equal to the variance 
of signal noise σe, then this procedure  removes more noise than signal.  

 This algorithm makes changes just to the lost sequence of samples by the transform 
coefficients hard-thresholded to zero. When the value of the lost samples is changed, we can 
continue to evaluate these samples again. Input signal for the wavelet decomposition, hard-
thresholding, and backward wavelet reconstruction, is a result of the previous iteration. The 
algorithm is repeated until the SSE (Sum of Squared Errors) value between the recovered 
and the original signal is acceptably low or required PSNR value is achieved. 

This technique has been applied to 2-D signals represented by real magnetic resonance 
images of the human brain. The only difference is that the wavelet decomposition is 
implemented to rows at first followed by the same algorithm applied to columns. 

The proposed algorithm has been applied to the MR image of the human brain. Fig. 3 
presents the wavelet decomposition of the original corrupted MR image (see Fig. 3(a)) into 
one decomposition level Fig. 3(b) using the Daubechies wavelet function of the 8th order. 
Fig. 3(d) shows the wavelet coefficients and modified, i.e. hard-thresholded wavelet 
coefficients. Recovered MR image (after the first iteration) can be seen in Fig. 3(c). 

The final recovered MR image with low acceptable SSE and high PSNR has been 
obtained after 350 iterations of the iterative wavelet interpolation algorithm. Fig. 4(a)   
presents the original corrupted image and Fig. 4(b) recovered image. Evolution of the PSNR 
and SSE values during the whole recovery process is shown in Fig. 4(c),(d). 

The proposed method based upon the fundamental principle introduced in [2] consists of 
the following iteration steps:  
• Image wavelet decomposition into selected level and hard-thresholding of resulting 

coefficients 
• Image reconstruction and transformation of the resulting image to preserve image values 

outside its corrupted regions creating the new image for the further iteration step 
 

5. Results 

As the most efficient method of the MR image denoising the wavelet Symmlet of the 4th 
order has been used here for the decomposition into two levels. The best result of the MR 
image recovery has been obtained using the Daubechies wavelet function of the 8th order 
(see Table 1) for the wavelet decomposition into one level and 350 steps. Coefficients in the 
wavelet domain have been modified by hard-thresholding before image reconstruction. 



 
Fig. 3. Recovery of the real MR image presenting (a) given image, (b) image 
decomposition into the first levels, (c) image reconstruction and (d) wavelet 
coefficients hard-thresholding 

 
Fig. 4. Recovery of the real MR image using the iterated wavelet interpolation 
method presenting (a) given corrupted image, (b) recovered image (after 350 
iterations), (c) evolution of the Peak Signal-to-Noise Ratio (PSNR) value, and      
(d) evolution of the Sum of Squared Errors (SSE) during the iteration process 



Table 1. Peak Signal-to-Noise Ratio (PSNR) and Sum of Squared Errors (SSE) of the 
real MR image with corrupted regions (PSNR1, SSE1) and the same image after 
the recovery process (PSNR2, SSE2) reconstructed by the selected wavelet functions  

Wavelet function PSNR1 [dB] PSNR2 [dB] SSE1 SSE2 
Haar Wavelet 30.143 12.9957 
Daubechies of the 2nd order 33.118 6.5512 
Daubechies of the 4th order 34.715 4.5353 
Daubechies of the 8th order 36.200 3.2219 
Symmlet of the 2nd order 33.118 6.5512 
Symmlet of the 4th order 35.657 3.6511 
Symmlet of the 8th order 

 
 
 

29.078 

35.978 

 
 
 

16.6075 

3.3912 

6. Conclusion 

There are many possibilities of restoration of corrupted image regions and image 
denoising. The paper presents selected algorithms using wavelet transform to achieve this 
goal. The advantage of the wavelet transform is in its ability to distinguish more frequency 
bands (number of decomposition levels) and setting of different threshold limits for each 
level. Therefore WT provides a very efficient tool for an image components reconstruction. 
The next improvement of the method can be in distribution of the lost sequence of samples 
into a few layers and hard-thresholding applied layer by layer. This should increase the edge 
sensitivity of the reconstruction. 
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