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Abstract—The paper is devoted to time series prediction using
linear, perceptron and Elman neural networks of the proposed
pattern structure. Signal wavelet de-noising in the initial stage
is discussed as well. The main part of the paper is devoted to
the comparison of different models of time series prediction. The
proposed algorithm is applied to the real signal representing gas
consumption.

Index Terms—AR modelling, neural networks, Elman net-
works, signal prediction, distributed computing

I. INTRODUCTION

Signal analysis and prediction [1], [2] are very important
tools used in a wide range of engineering applications [3].
The paper presents selected linear and non-linear methods of
signal prediction [4], [5], [6], [7] including both linear models,
feed-forward neural networks and recurrent structures used for
energy consumption forecasting [8], [9], [10], [11].

The general mathematical description is followed by the
processing of the given signal of gas consumption in the Czech
Republic presented in Fig. 1. Signal modelling is verified

Proposed algorithms have been verified in the Matlab math-
ematical environment using distributed computing owing to
the large amount of computations needed to optimize neural
network coefficients.

II. SIGNAL WAVELET DE-NOISING

Wavelet functions use in signal prediction allow signal de-
noising, multi-resolution forecasting and signal reconstruction.
The initial (mother) wavelet w(t) modified by dilation a = 2™
and translation b = k 2" forms the set of functions
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for integer values m, k used for signal decomposition [12].

Signal de-nosing can then be done by appropriate thresh-
olding of wavelet coefficients according to Fig. 2. In the case
of soft-thresholding it is possible to evaluate new coefficients
¢(k) using original coefficients c(k) for a chosen threshold
value § by relation

W o (t) = w2 ™ t—k) (1)

Fig. 1. Gas consumption in the Czech Republic (a) during the period 2001-
05 observed with the sampling period of one day, (b) the period of two years
used for prediction and one year for verification, and (c) observed values after
wavelet rejection of signal noise parts

using both original and de-noised values obtained by wavelet
signal decomposition and thresholding. The corresponding
spectrum estimation points to periodic components of the
observed signal and provides basic information about the
model structure selection.
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Fig. 2. Wavelet de-noising of the signal segment presenting (a) original
signal, (b) de-noised signal, (¢) signal scalogram, and (d) wavelet coefficients
resulting from the decomposition into the third level and their local thresh-
olding



ITII. PREDICTION MODELS

Basic model structures for signal prediction are presented
in Fig. 3. All these models assume block-oriented processing
evaluating model coefficients in the learning part for the given
pattern matrix and using this model in the verification part.

In all these cases both the original signal {z(n)} and its
wavelet de-noised version is used to study the effect of signal
preprocessing to the quality of signal prediction.
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Fig. 3. Fundamental models for signal prediction including (a) a linear
model, (b) feed-forward, and (¢) Elmann neural network

A. Autoregressive model

The autoregressive (AR) model used for prediction of a
given signal {z(n)} can be defined by the linear neural
network according to Fig. 3(a) for vector of coefficients

W = (wl,l wy,2 wl,R) 3)
the pattern matrix
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and target values
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Defining vector of evaluated values as
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with its £ — th element defined by relation
N
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it is possible to use the criteriufiT function
Q Q

S(W) = Z(al,k —tip)? = Z(wl,]’ pik—tir)?  (®)
to find valués:l{wl_j} by the ledst ‘square method. Owing to
the linearity this problem results in the system of R linear
algebraic equations to find model coefficients {w; ;}.

The first step in signal modelling includes the selection
of structure of the pattern matrix and the estimation the
model order. Having the initial matrix P we can find its
subset containing its selected rows only [1] having the most
significant contribution to signal prediction.

The selection procedure is based upon the singular value
decomposition [13] of the pattern matrix into the product of
three matrices and observation of the distribution of singular
values to choose the reduced model order. The QRp factor-
ization is then applied to select the most significant model
coefficients i.e. those which have the most important influence
to the accuracy of the model.

B. Perceptron model

The classical perceptron model of the tructure R —S1— .52
illustrated in Fig. 3(b) includes two matrices of coefficients
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Using the pattern matrix (4) it is possible to evaluate network
output (6) by relations

Al =
A =
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where B1, B2 stand for biases and F'1, F'2 represent transfer
functions. In the case of one signal values prediction (S2=1)
the same criterium as that described by Eq. (8) can be used.

C. Elman model

Elman network standing for the recurrent neural with the
structure presented in Fig. 3(c) is based on the optimization
of two matrices of coefficients summarized in Eq. (9) and (10)
using Eq. (11) and the pattern matrix

D1k aly 1
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for zero initial conditions and target values
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Results of Elman learning applied to the de-noised signal
of gas consumption are presented in Fig. 4.
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Fig. 4. Results of Elman learning for the data of gas consumption using
wavelet de-noising presenting given and predicted signals and their difference



IV. RESULTS

Models described above have been applied for processing
od gas consumption in the Czech Republic using both original
and de-noised signals. Measured values of data consumption
and temperature evolution were observed with the sampling
period of one day.

Owing to the large amount of computations all numerical
tests were performed using distributed computing with 8
computers (workers) in a cluster and typical computational
time of 2-3 hours for 16 numerical experiments (tasks) spec-
ifying 2-3 years for the learning process and one year for
model verification. Fig. 5 presents a typical job report for all
computers contributing to the job processing. Results achieved
present the mean percentage error for linear, feed-forward and
Elman neural network for each task and their average. It is
possible to find the positive effect of the network recurrence.

Figs 6 and 7 compare results achieved in the learning and
verification parts. The structure of pattern values includes the
use of several values from signal history in each pattern vector
selected according to results of spectral analysis.

Experimental values obtained are summarized in Table I and
II. Errors achieved in both these parts are of the same order and
it is possible to see how Elmann networks are able to decrease
this error. Wavelet transform de-noising (WTdenoising) can
further decrease the prediction error.

V. CONCLUSION

The paper presents an analysis of basic algorithms used
for linear and non-linear signal prediction with numerical
experiments of gas consumption prediction. Results include
comparison of data prediction applied to original and de-
noised values using wavelet coefficient thresholding as well.

All experiments were done using distributed computing
owing to the large amount of computations. This approach
allows an efficient data prediction. The pattern vectors struc-
ture has been selected according to signal spectrum analysis.
It is assumed that this selection process will be improved by
application of SVD decomposition and QR factorization.
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Fig. 5. Job report of distributed computing and percentage mean errors
achieved in the learning signal part for each task
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Fig. 6. Results the learning process for basic model structures of signal
prediction including a linear model, feed-forward network, and Elman with
corresponding errors
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Fig. 7. Data verification using structures proposed in the learning part system
optimization with corresponding errors

Further mathematical research will be devoted to analysis of
block oriented signal prediction including the study of optimal
block size selection and its comparison with real time neural
network prediction allowing adaptive signal modelling with
time-varying coefficients.

TABLE I
THE MEAN PERCENTAGE ERROR OF ONE STEP AHEAD PREDICTION BY
LINEAR, PERCEPTRON AND RECURRENT NEURAL NETWORKS FOR THE
PATTERN MATRIX HAVING 3 VALUES OF CONSUMPTION AND TWO
OPTIONAL VALUES OF TEMPERATURE USING DAILY VALUES FROM THE
TWO YEAR PERIOD FOR ONE YEAR AHEAD PREDICTION

Mean Error [%]
Linear | NN Elman
3-1 3-2-1 3-2-1
[ Patterns: Consumption only |
1 (99 min) Learning Part 9.68 9.23 8.65
Verification Part | 8.42 8.48 7.84
2 (114 min) Learning Part 5.55 5.15 4.23
WTdenoising | Verification Part | 6.00 5.37 4.93
Patterns: Consumption - temperature (2 additional nodes)
3 (113 min) Learning Part 9.16 7.98 7.29
Verification Part | 8.27 7.38 7.17
4 (114 min) Learning Part 6.31 4.89 4.09
WTdenoising | Verification Part | 7.04 5.55 547




TABLE I
THE MEAN PERCENTAGE ERROR OF ONE STEP AHEAD PREDICTION BY
LINEAR, PERCEPTRON AND RECURRENT NEURAL NETWORKS FOR THE
PATTERN MATRIX HAVING 3 VALUES OF CONSUMPTION AND TWO
OPTIONAL VALUES OF TEMPERATURE USING DAILY VALUES FROM THE

THREE YEAR PERIOD FOR ONE YEAR AHEAD PREDICTION

Mean Error [%]

Test Linear | NN Elman
3-1 3-2-1 3-2-1
| Patterns: Consumption only |
5 (216 min) Learning Part 9.21 8.91 8.21
Verification Part | 8.16 8.14 7.76

Patterns: Consumption - temperature (2 additional nodes)

6 (217 min) 8.75 7.72 6.97
7.24 6.82 6.10

Learning Part
Verification Part

In order to study the relevance of an individual model to
a given system it is necessary to find suitable signal pre-
processing methods as well. In this connection further research
will be devoted to the influence of de-noising [14] of input data
using appropriate methods including the application of wavelet
transforms for signal decomposition, subsequent thresholding
and reconstruction.

It is assumed that further research will be also devoted to
the appropriate selection and neural networks structure [15],
[16] for signal prediction.
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(3]
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