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Oldřich Vyšata
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ABSTRACT

In this paper, a novel method for detecting the back-loop reg-
ulation of coupling and decoupling between cortical neurones
from electroencephalogram (EEG) signals is proposed. In this
method, a linear time-scale quantifier of the multivariate re-
lationship between simultaneously observed time series takes
advantage of unique properties of complex wavelets such as
shift invariance, substantially reduced aliasing and non-oscil-
lating magnitude. The quantifier provides correlation between
amplitude of complex wavelet coefficients for different fre-
quencies (controlled by the scale factor) at different times
(controlled by the time shift). Biological interpretation of this
measure is derived from a priori information about presence
of inhibitory back-loop connections between cortical neurones
in short distance while the long range excitatory connections
do not appear to target or effectively excite inhibitory interneu-
rons and analysis of sample pairs of EEG signals.

Index Terms— Dual tree complex wavelet transform, dis-
crete wavelet transform, coherence, EEG

1. INTRODUCTION

The paper is devoted to specific topics of EEG signal process-
ing including its de-noising [1] and analysis [2, 3] including
the use of wavelet transform [4, 5, 6, 7].

Approximately 1/5 of the neurons in the cerebral cortex
are inhibitory GABAergic interneurons. These cells play a
critical role in a number of important functions, including
the gating and processing of sensory information, the estab-
lishment and plasticity of sensory receptive fields, the syn-
chronization of cortical circuits, the generation of rhythms,
and the limiting of seizure activity. A localized excitatory
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stimulus applied directly to the cerebral cortex can produce
a surrounding peri-stimulus inhibitory zone (“Mexican Hat
Pattern”). As the network is activated initially, excitation is
generated forming the onset-response. Inhibition is then gen-
erated, which equilibrates the network. Lateral inhibition be-
tween cortical cells is known to play an important role in de-
termining the receptive field properties of those cells. The
vast majority of inhibitory synapses targeting neocortical pyra-
midal cells terminate on the dendrites. While somatic inhibi-
tion non-selectively inhibits responses to all stimuli, dendritic
inhibition selectively inhibits specific patterns of excitatory
inputs. The only method clinically available for evaluating
disinhibition in cerebral cortex is transcranial magnetic stim-
ulation. Impaired intracortical inhibition, as found in Amy-
otrofic Lateral Sclerosis, is also a well-established finding
in Parkinson’s disease. Transcranial magnetic stimulation is
time consuming expensive method limited to examination of
motor cortex. For the frequency domain description of the
linear relationship between pairs of time series the coherence
function is usually used. The main motivation is its poten-
tial in disclosing crucial aspects of functional connectivity in
neuroscience. Fluctuation of coherence between pair of elec-
trodes may reflect processes of coupling and decoupling in
the neuronal population during information processing. The
EEG is a highly composite and substantially nonlinear pro-
cess. The estimation of coherence based on the Fourier trans-
form assumes that the signal is stationary, for non-stationary
signals gives ambiguous results. Correlation of the real wavelet
coefficients may reflect similar processes. The main disad-
vantage of this access is in oscillations of the real wavelet
coefficients around singularities, shift variance and aliasing.
The solution to these shortcomings is correlation of the com-
plex wavelet amplitude coefficients. Cholinergic activity in-
creases spiking activity in inhibitory GABA interneurons while



decreasing strength of synaptic transmission from those cels.
Those inhibitory interneurons are necessary for brain rhythms
and information processing. Cholinergic deficit in Alzheimer’s
disease (AD) may contribute to cognitivede ficit by modula-
tion of GABA interneurons activity. While information is in
the brain transmitted in a rhytmic fashion (rhytm is biologi-
cal solution for synchrony),flucutations of CoWT coefficients
may reflect information processing between neurones.

2. METHOD

2.1. Algorithm

The method proposed in this paper works on two simultane-
ously recorded signals Xm,k, m = 1, 2, k ∈ Z which are
obtained from two different recording sites. Sampling fre-
quency was 128 Hz. Using a suitable FIR filters, each signal
is filtered in the frequency range 0.5 - 60 Hz. A sliding win-
dow w of the length of 128 samples (1 s) was moved along
the EEG by small shifts of the length equal to one sample
with selected results presented in Fig. 1. For each time point
k, denoting the beginning of w, the EEG signals inside w
was decomposed by CWT into l = 1, 2...5 levels. Let cl,k

be value of CWT (complex wavelet transform) of the l− th
level with shift k for the first channel. Let c+

l,k be the adequate
value of CWT for the second channel. Due to complex nature
of cl,k, c+

l,k we perform the correlation analysis of absolute
values of complex numbers. Standard Pearson’s correlation
coefficient was used for the independence testing of cl,k and
c+

l,k over all levels and shifts in given time interval. Thus any
pair of channels is characterized via correlation coefficients
rl,k. Correlation fluctuations of the complex wavelet coeffi-
cients amplitude �rl,k = rl,k+1 − rl,k for k = 1, 2..., n − 1.

Magnitude-squared coherence values CoX1,X2(f, k) were
computed for frequency bands f = 1, 2...5 roughly corre-
sponding to the CWT levels l (33-64 Hz for l = 1, 17-32 Hz
for l = 2, 9-16 Hz for l = 3, 5-8 Hz for l = 4, 3-4 Hz for
l = 5), in sliding window of 1 s with the shift k.

CoX1,X2(f, k) =
|PX1,X2(f, k)|2

PX1,X1(f, k) PX2,X2(f, k)
(1)

Coherence fluctuations �CoX1,X2(f, k) = CoX1,X2(f, k +
1) − CoX1,X2(f, k) for k = 1, 2..., n − 1.

2.2. Data

1. Two pairs of electrodes were compared. The first O1-
O2 is known as anatomically connected while the sec-
ond localization Fp1-O2 are not directly connected. The
20 minutes samples were obtained from 42 healthy vol-
unteers. The noisy and filtered data were compared.

2. Fluctuation of absolute value CoWT coefficients of 63
AD patients has been compared to 63 age matched healthy
control subjects. EEG signals from 40 electrode pairs

were evaluated in wavelet scales corresponding roughly
to frequencies 33-64 Hz,17-32 Hz, 9-16 Hz, 4-8 Hz and
1-3 Hz. The method was applied to a artifact - free data
set after denoising, segmentation and automatic artifact
recognition.

3. RESULTS

Results achieved are summarized in Tables 1-8 presenting co-
herence and correlation of original noisy data and the same
results achieved after their de-nosing.

Table 1. Coherence - noisy data

Freq.(Hz) 33-64 17-32 9-16 5-8 3-4

O1-O2 0.9190 0.7684 0.8498 0.8781 0.8844
Fp1-O2 0.6935 0.6682 0.6639 0.6804 0.6863

Table 2. Coherence fluctuation - noisy data

Freq.(Hz) 33-64 17-32 9-16 5-8 3-4

O1-O2 0.0074 0.0188 0.0041 0.0032 0.0032
Fp1-O2 0.0105 0.0156 0.0068 0.0066 0.0069

Table 3. Correlation - noisy data

Level 1 2 3 4 5

O1-O2 0.4970 0.5520 0.7991 0.8713 0.9183
Fp1-O2 0.5476 0.5668 0.6329 0.7569 0.7481

Table 4. Fluctuation correlation - noisy data

Level 1 2 3 4 5

O1-O2 0.4353 0.0892 0.2263 0.1623 0.1016
Fp1-O2 0.3467 0.0776 0.1908 0.1558 0.1762

Table 5. Coherence - filtered data

Freq.(Hz) 33-64 17-32 9-16 5-8 3-4

O1-O2 0.8229 0.8286 0.8390 0.8363 0.8056
Fp1-O2 0.3309 0.3250 0.2904 0.1778 0.1412

Fig 1 shows 1 sec. of filtered EEG curve.
Coherence fluctuation for distant non-connected electrodes

has higher amplitude, but less average value. Fig 2.
Correlation of CoWT coefficients shows another useful

characteristics of non regulated signals - irregularity and fre-
quency instability. Fig 3.



Table 6. Fluctuation coherence - filtered data

Freq.(Hz) 33-64 17-32 9-16 5-8 3-4

O1-O2 0.0108 0.0093 0.0070 0.0066 0.0072
Fp1-O2 0.0199 0.0184 0.0163 0.0132 0.0121

Table 7. Correlation - filtered data

Level 1 2 3 4 5

O1-O2 0.6017 0.7147 0.7751 0.7614 0.7255
Fp1-O2 0.0330 0.0211 0.0179 0.0129 0.0754

Table 8. Fluctuation correlation - filtered data

Level 1 2 3 4 5

O1-O2 0.0416 0.0340 0.0313 0.0392 0.0712
Fp1-O2 0.0989 0.0712 0.0737 0.0873 0.1039
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Fig. 1. A sample of data segment one second long

0 20 40 60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Coherence fluctuations Fp1−O2 and O1−O2, 9−16 Hz

No. of samples

 

 
Fp1−O2
O1−O2

Fig. 2. Coherence fluctuation between selected EEG signals.

Low values of average coherence and CoWT correlations
between distant electrodes reflects low information process-
ing comparing close and anatomically connected electrodes.
Fig 4 and fig 6.
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Fig. 3. Differences in CoWT coefficients correlation fluctua-
tion between close and distant electrodes in control group of
healthy drivers, 4-th scale.

Fig. 4. Average coherence between close and distant elec-
trodes in control group of healthy drivers, 5 scales.

Higher amplitude of CoWT and coherence fluctuations
in distant electrodes may be related to the absence of an in-
hibitory back-loops. Fig 5 and fig 7.

Fig. 5. Coherence fluctuation between selected EEG signals.



Fig. 6. Average CoWT coefficients correlation between close
and distant electrodes in control group of healthy drivers, 5
scales. For distant electrodes is close to zero

Fig. 7. Average amplitude fluctuation CoWT of coefficients
between close and distant electrodes in control group of
healthy drivers, 5 scales.

Fig. 8. Average CoWT coefficients in AD patients and
healthy controls in all scales (significant differencies for scale
1 and 2)

Differences between fluctuations of CoWTcoefficients in

healthy persons and AD patients resemble those betweenclose
and distant electrodes in healthy persons. Fig 9, fig 10 and
fig 11.

Fig. 9. Average fluctuation CoWT coefficients in AD patients
and healthy controls in all scales (significant for scales 2-5).

Fig. 10. Fluctuation of correlation CoWT coefficients for
electrode pair Fp1-F3 in healthy control and AD patient.

Fig. 11. Coherence fluctuation between selected EEG signals



4. DISCUSSION

In this study we proposed a novel algorithm for the detecting
of the communication between EEG channels. Our results
demonstrate that comparing coherence correlation of complex
wavelet coefficients amplitude is more sensitive to the com-
munication between neurones. Coherence is more robust in
the presence of the noise. Higher fluctuation of both coher-
ence and correlation in more distant electrodes may be the fi-
nal result of the missing back loop connection between them.
Again, fluctuation of correlation of complex wavelet coeffi-
cients is more significant comparing coherence in filtered sig-
nals. This new approach can significantly improve the de-
tection of communication between different cortical areas. It
may probably quantify quality intracortical inhibition, which
is impaired in some neurodegenerative diseases. Changed
activity of inhibitory GABA interneurons due to cholinergic
deficit may influence regulation of cortical oscillations. Re-
cent findings indicate that neural network oscillations sup-
port temporal representation and long-term consolidation of
information in the human brain. Thus changes in fluctuation
of CoWT coefficients may reflect cholinergic and cognitive
deficit in Alzheimer’s disease. A further study will verify its
diagnostic usefulness in the clinical practise.

5. CONCLUSION

In this paper we proposed a novel method for the measuring a
new quality of communication between different parts of the
brain cortex. It may reflect back loop inhibitory regulation
of the brain activity. The results confirm that our method is
more sensitive then coherence fluctuation in filtered signals.
The results further indicate that mean value of correlation of
complex wavelet coefficients outperforms mean value of co-
herence as a measure of brain neurone network communica-
tion. In practice it may contribute to the diagnosis of some
neurodegenerative diseases.
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