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ABSTRACT
Object detection and recognition is a common problem
related to fault diagnosis in engineering or analysis of
changes in biomedical data observations. As such data
are often contaminated by noise it is necessary to reduce
its effect during this process as well. The paper presents
the application of wavelet transform to perform these task
using the three dimensional wavelet decomposition, coef-
ficients thresholding and object reconstruction. The pro-
posed method is verified for simulated data at first and then
applied for processing of backbone parts to emphasize its
selected components. The goal of the paper is in (i) the pre-
sentation of the three-dimensional wavelet transform, (ii)
discussion of its use for volume data de-nosing, and (iii)
proposal of the following data extraction to allow their clas-
sification. The paper compares numerical results achieved
by the use of different wavelet functions and thresholding
methods with the experience of an expert to propose the
best algorithmic approach to this problem.
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1 Introduction

Multi-dimensional data analysis [29, 28] and multi-
resolution modelling form a specific area of digital signal
processing with many interdisciplinary applications having
the common mathematical background. The interest in this
area is closely connected with the three-dimensional mod-
elling and visualization.

The main goal of the paper is to show the de-
noising algorithms based upon the discrete wavelet trans-
form (DWT) that can be applied successfully to enhance
noisy multidimensional magnetic resonance (MR) data
sets including the two-dimensional (2-D) image slices and
three-dimensional (3-D) image volumes. Noise removal or
de-noising is an important task in image processing used to
recover a volume data that has been corrupted by noise.

Main topics discussed include the visualization of 2-D
MR slices and 3-D image volumes. The application of the

proposed algorithms is mainly in the area of magnetic reso-
nance imaging (MRI) as an imaging technique used primar-
ily in medical field [14, 12] to produce high quality images
of the soft tissues of the human body. An insight to the vi-
sualization of MRI data sets i.e. 2-D image slices or 3-D
image volumes is of paramount importance to the medical
doctors.

Fig. 1 presents an example of such data allowing to
study selected vertebrae slices and to separate its anatomic
components [3, 5, 32, 15] together with the analysis of their
structure, sizes and positions. Mathematical methods dis-
cussed further are used (i) to enhance such data and (ii) to
find information important for the appropriate treatment.

The discrete wavelet transform [6, 27, 20, 23] plays
an increasingly important role in the de-noising of MR im-
ages. The three-dimensional (3-D) digital image process-
ing, and in particular 3-D DWT, is a rapidly developing re-
search area with applications in many scientific fields such
as biomedicine, seismology, remote sensing, material sci-
ence, etc [19]. The 3-D DWT algorithms are implemented
as an extension of the existing 2-D algorithms. The per-
formance of the de-noising algorithms are quantitatively
assessed using different criteria namely the mean square
error (MSE), peak signal-to-noise ratio (PSNR) and the vi-
sual appearance. The results are discussed in accordance to
the type of noise and wavelets implemented.

Figure 1. Selected vertebrae slices and the three-
dimensional visualization of the backbone region



2 Three-Dimensional Wavelet Decomposi-
tion

Wavelet transform [6, 24, 27, 20] provides mathematical
tools for time-scale signal analysis in the similar way as the
short time Fourier transform (STFT) in the time-frequency
domain. The main difference is in the use of time limited
analysing wavelet functions allowing different scale resolu-
tion for dilated initial wavelet. Wavelet series constructed
with two parameters, scale and translation, provide in this
way the ability to zoom in on the transient behavior of the
signal. The continuous wavelet transform [16] is defined
as the convolution of x(t) with a wavelet function, W (t),
shifted in time by a translation parameter b and a dilation
parameter a (Eq. (1))
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The discrete form of the wavelet transform is based
upon the discretization of parameters (a, b) on the time-
scale plane corresponding to a discrete set of continuous
basis functions. This can be achieved defining
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for aj = aj
0 and bk = kb0a

j
0 where j, k ∈ Z, a0 >

1, b0 �= 0 where j controls the dilation and k controls the
translation. Two popular choices for the discrete wavelet
parameters a0 and b0 are 2 and 1 respectively, a configura-
tion that is known as the dyadic grid arrangement resulting
in

Wj,k(t) = a
−j/2
0 W (a−j

0 t − kb0)
= 2−j/2 W (2−j t − k)

Wavelet analysis is simply the process of decomposing a
signal into shifted and scaled versions of a mother (initial)
wavelet. An important property of wavelet analysis is per-
fect reconstruction, which is the process of reassembling
a decomposed signal or image into its original form with-
out loss of information. For decomposition and reconstruc-
tion the scaling function Φjk(t) and the wavelet Wjk(t) are
used in the form

Φjk(t) = 2−
j
2 Φ0(2−j t − k) (3)

Wjk(t) = 2−
j
2 Ψ0(2−j t − k) (4)

where m stands for dilation or compression and k is the
translation index. Every basis function W is orthogonal to
every basis function Φ.

The one-dimensional wavelet transform of a discrete-
time signal x(n) (n = 0, 1, . . . , N ) is performed by con-
volving signal x(n) with both a half-band low-pass filter L
and high-pass filter H and downsampling by two.

c(n) =
L−1∑
n=0

h0(k) x(n−k) d(n) =
L−1∑
n=0

h1(k) x(n−k)

(5)
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Figure 2. The decomposition tree of the three-dimensional
volume decomposition using discrete wavelet transform for
columns rows and slices producing 8 subvolumes in the
first decomposition stage

where c(n) represent the approximation coefficients for
n = 0, 1, 2 . . . , N − 1 and d(n) are the detail coefficients,
h0 and h1 , are coefficients of the discrete-time filters L and
H respectively

{h0(n)}L−1
n=0 = (h0(0), h0(1), . . . , h0(L − 1)) (6)

{h1(n)}L−1
n=0 = (h1(0), h1(1), . . . , h1(L − 1)) (7)

resulting in the separable, sub-band process.
Similar decomposition process can be applied for

multi-dimensional signals. The three-dimensional wavelets
[28, 26, 14, 18] can be constructed as separable products
of 1-D wavelets by successively applying a 1-D analyzing
wavelet in three spatial directions (x, y, z). Fig. 2 shows
a one-level separable 3-D discrete wavelet decomposition
[27] of an image volume. The volume F (x, y, z) is firstly
filtered along the x-dimension, resulting in a low-pass im-
age L(x, y, z) and a high-pass image H(x, y, z). Both L
and H are then filtered along the y-dimension, resulting in
four decomposed sub-volumes: LL, LH , HL and HH .
Then each of these four subvolumes are filtered along the
z-dimension, resulting in eight sub-volumes: LLL, LLH,
LHL, LHH, HLL, HLH, HHL and HHH .

The reduction of noise present in images is an im-
portant aspect of image processing. De-noising is a proce-
dure to recover a signal that has been corrupted by noise.
After discrete wavelet decomposition the resulting coeffi-
cients can be modified to eliminate undesirable signal com-
ponents. To implement wavelet thresholding a wavelet
shrinkage method for de-noising the image has been ver-
ified. The proposed algorithm to be used consists of the
following steps:



Algorithm A: Wavelet image de-noising

• Choice of a wavelet (e.g. Haar,
symmlet, etc) and number of levels
or scales for the decomposition.
Computation of the forward wavelet
transform of the noisy image

• Estimation of a threshold

• Choice of a shrinkage rule and
application of the threshold to
the detail coefficients. This can
be accomplished by hard or soft
thresholding

• Application of the inverse transform
(wavelet reconstruction) using the
modified (thresholded) coefficients

Thresholding is a technique used for signal and image
de-noising. The shrinkage rule define how we apply the
threshold. There are two main approaches which are:

• Hard thresholding deletes all coefficients that are
smaller than the threshold λ and keeps the others un-
changed. The hard thresholding is defined by relation

cs(k)=
{

sign c(k) (|c(k) |) if |c(k) |> λ
0 if |c(k) |≤ λ

(8)

where λ is the threshold and the coefficients that are
above the threshold are the only ones to be considered.
The coefficients whose absolute values are lower than
the threshold are set to zero.

• Soft thresholding deletes the coefficients under the
threshold, but scales the ones that are left. The gen-
eral soft shrinkage rule is defined relation

cs(k)=
{

sign c(k) (|c(k) | −λ) if |c(k) |> λ
0 if |c(k) |≤ λ

(9)

Figure 3. The noisy volume processing including (a) simu-
lated noisy data, (b) volume decomposition into the first
stage, (d) ordered wavelet coefficients and their local
thresholding values, and (c ) the reconstructed body

Figure 4. Data processing presenting from the bottom to
the top (1) simulated slice, (2) noisy slice, (3) decomposed
slice, and (4) the reconstructed slice after noise rejection

Results of this process applied for a simulated noisy
volume processing is presented in Fig. 3. Threshold lim-
its are estimated separately for each subvolume coeffi-
cients [30] using a specific algorithm based upon values
of wavelet coefficients.

Fig. 4 presents the whole process for a selected vol-
ume slice starting with the simulated volume and resulting
in its reconstruction after the decomposition into the first
level. Fig. 5 presents selected first volume slice contours.
The compressed LLL subvolume can be used in the next
stage to evaluate its 8 subvolumes again.
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Figure 5. Contour values of the first slice presenting
(a) simulated data formed by harmonic functions, (b) noisy
slice, (c) decomposed slice for the first decomposition
stage, and (d) the reconstructed slice

3 Backbone Volume De-Noising

Biomedical image processing and volumetric data registra-
tion forms an extensive research area with many applica-
tions [8, 4, 25, 10, 7, 11, 9, 22]. Fig. 6(a) presents an exam-
ple of vertebrae volume data used for diagnostical purposes
and detection of medical problems.



Figure 6. Volume data processing presenting (a) real part of
the backbone area for a vertebrae study, (b) noisy volume,
(c) decomposed subvolumes, and (d) the reconstructed data
after noise rejection

The initial stage of such data processing includes im-
age de-nosing [31, 2, 17] for artifacts rejection. Fig. 7
presents the typical noise analysis using MRI data sub-
volume selected from area outside the observed body. To
study the effect of real data de-nosing the similar noise has
been added to real data and the three dimensional wavelet
transform with different wavelet functions for volume de-
noising has been applied using median estimates of thresh-
old values. Further possibilities include their adaptive mod-
ification [33].

Fig. 6 compares the vertebrae volume before and af-
ter de-noising using db4 wavelet function with contours of
the first slice in Fig. 8 allowing numerical comparison of
original and processed data.

Table 1 presents analysis of the use of different
wavelet functions and both local and global thresholding
approach. Resulting sum of squared differences between
evaluated and original values provides the comparison be-
tween selected wavelet functions and presents the effi-
ciency of Haar wavelet function in this case.

4 Volume Components Detection

Volume components extraction of the vertebrae data form
the main processing goal to enable precise diagnosis and
treatment. The study is based on fundamental data segmen-

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

100

200

300

400

500

600

700
HISTOGRAM

Figure 7. Histogram of the real noise in the volumetric
vertebrae data
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Figure 8. Contour values of the first vertebrae slice pre-
senting (a) real data, (b) noisy slice, (c) decomposed slice
for the first decomposition stage, and (d) the reconstructed
vertebrae slice

Table 1. WAVELET FUNCTION USE FOR MRI DATA DE-
NOISING COMPARING ORIGINAL AND RECONSTRUCTED

VOLUMES FOR DIFFERENT KINDS OF THRESHOLDING

Method Error Value
Thresholding Wavelet Set 1 Set 2 Set 3
method function

haar 0.071 0.079 0.040
db2 0.105 0.105 0.070

Local db4 0.089 0.080 0.052
sym2 0.105 0.105 0.070
sym4 0.071 0.107 0.057
haar 0.063 0.102 0.042
db2 0.120 0.113 0.068

Global db4 0.084 0.090 0.064
sym2 0.120 0.113 0.068
sym4 0.084 0.090 0.060

tation [13, 1] including classical image processing methods
[21] using thresholding and watershed transform to distin-
guish the bone, soft tissue, fat and further elements. Fig. 9

Figure 9. A selected vertebra slice (on the left) and extrac-
tion of selected objects (on the right)



Figure 10. A selected vertebra slice part (on the left) and
its three-dimensional volume visualization (on the right)

presents the selected vertebrae slice with an extracted im-
age component and its detail in Fig. 10.

For classification of volumetric segments it is neces-
sary to find their characteristic features. The preliminary
studies proved the possibility to use wavelet decomposition
again to detect texture complexity and its energy distribu-
tion. The following algorithm specify such an approach for
each volumetric segment found.

Algorithm B: Feature extraction

• Application of the wavelet
transform for a selected wavelet and
decomposition level

• Calculation of the energy inside the
image detail subband

• Selection of energy components to
form the feature vector

Feature vectors can then be classified into the given
number of classes using selected clustering methods in-
cluding neural networks as well.

5 Conclusion

The paper forms a contribution to the three-dimensional
wavelet transform use for the analysis of the vertebrae vol-
ume. The general method of the multi-resolution volume
decomposition and reconstruction combined with wavelet
coefficients thresholding has been applied for volumetric
data de-nosing at first.

Volume elements segmentation and classification is
mentioned further in connection with wavelet transform
use for feature extraction. Resulting algorithms have been
used to compare different wavelet functions for rejection of
additional noise and proposed methods were then applied
for real volumetric data processing to extract their compo-
nents necessary for a proper analysis, diagnosis and medi-
cal treatment.

The following work will be devoted to the three-
dimensional separation of biomedical volume structures to
contribute to the more precise detection of anatomic dis-
orders and proposal of their correction using appropriate
visualisation methods including the medical virtual reality
tools.

Further mathematical analysis will be devoted to
complex wavelet transform use, statistical models, 3D
registration, segmentation and visualization in connection
with the detail physiological interpretation of results.
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per has been supported by the Research grant No. MSM
6046137306.

References

[1] M. S. Aslan, A. Ali, B. Arnold H. Rara and, R. Fahmi,
A. A. Farag, and P. Xiang. A Novel, Fast, and Com-
plete 3D Segmentation of Vertebral Bones. In The
35th Int. Conference on Acoustics, Speech and Signal
Processing(ICASSP 2010), pages 654–657, 2010.

[2] S. P. Awate and R. T. Whitaker. Feature-Preserving
MRI Denoising: A Nonparametric Empirical-Bayes
Approach. IEEE Trans. Med. Imaging, 29(9):1242–
1255, 2007.

[3] S. Benameura, M. Mignottea, S. Parentd, H. Labelled,
W. Skallie, and J. Guisea. 3D/2D registration and seg-
mentation of scoliotic vertebrae using statistical mod-
els. Computerized Medical Imaging and Graphics,
27:321–337, 2003.

[4] W. Birkfellner, M. Figl, and H. Bergmann. Rigid
2D/3D Slice-to-Volume Registration and its Applica-
tion on Fluoroscopic CT Images. Medical Physics,
34(1):246–255, 2007.

[5] S. Cukovic, G. Devedzic, L. Ivanovic, T. Z. Lukovic,
and K. Subburaj. Segmental Assessment and Visual-
ization of Trabecular Bone Mineral Density in Ver-
tebrae. Computer Aided Design and Applications,
7(1):153–161, 2010.

[6] I. Daubechies. The Wavelet Transform, Time-
Frequency Localization and Signal Analysis. IEEE
Trans. Inform. Theory, 36:961–1005, Sept. 1990.

[7] B. Fei, J. L. Duerk, D. T. Boll, J. S. Lewin, and
D. L.Wilson. Slice-to-Volume Registration and its
Potential Application to Interventional MRI-Guided
Radio-Frequency Thermal Ablation of Prostate Can-
cer. IEEE Transactions on Medical Imaging,
22(4):515–525, April 2003.

[8] L. Fruhwald, J. Kettenbach, M. Figl, J. Hummel,
H. Bergmann, and W. Birkfellner. A Compara-
tive Study on Manual and Automatic Slice-to-volume
Registration of CT Images. European Radiology,
19(11):2647–2653, 2007.



[9] S. Gefen, L. Bertrand, N. Kiryati, and J. Nissanov.
Localization of sections within the brain via 2D to 3D
image registration. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing (ICASSP 05), volume 2, pages 733–736.
IEEE, 2005.

[10] M. Hemmendorff, M. Andersson, T. Kronander, and
H. Knutsson. Phase-based Multidimensional Volume
Registration. IEEE Transactions on Medical Imaging,
21(12):1536–43, December 2002.

[11] M. Holden, D. L. G. Hill, and E. R. E. Denton. Voxel
similarity measures for 3-D serial MR brain image
registration. IEEE Transactions on Medical Imaging,
19(2):94–102, 2000.

[12] Image Processing Toolbox. The Mathworks,
Inc., 3 Apple Hill Drive, Natick, Massachusetts,
U.S.A., 2010. http://www.mathworks.com/help/
pdf doc/allpdf.html.

[13] Y. Kim and D. Kim. A fully Automatic Ver-
tebra Segmentation Method Using 3D Deformable
Fences. Computerized Medical Imaging and Graph-
ics, 33(5):343–352, July 2009.

[14] D. Kleut, M. Jovanovic, and B. Reljin. 3D Visual-
isation of MRI images using MATLAB. Journal of
Automatic Control, University of Belgrade, 16:1–3,
2006.

[15] D. Létourneau, A. Vloet R. Wong, D. A. Fitzpatrick,
and M. Gospodarowicz. Semiautomatic Vertebrae
Visualization, Detection, and Identification for On-
line Palliative Radiotherapy of Bone Metastases of the
Spine. Medical Physics, 35:367–376, 2008.

[16] Sheng-Tun Li, Shih-Wei Chou, and Jeng-Jong Pan.
Multi-Resolution Spatio-Temporal Data Mining for
the Study of Air Pollutant Regionalization. In 33rd
Annual Hawaii International Conference on System
Sciences(HICSS), pages 1–7, 2000.

[17] J. V. Manjona, J. Carbonell-Caballeroa, J. J. Lulla,
G. Garcia-Martia, Luis Marti-Bonmatib, and M. Rob-
les. MRI Denoising Using Non-Local Means. Medi-
cal Image Analysis, 12(4):514–523, August 2008.

[18] M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi.
Wavelet Toolbox. The Mathworks, Inc., 3 Apple
Hill Drive, Natick, Massachusetts, U.S.A., 2010.
http://www.mathworks.com/help/pdf doc/allpdf.html.

[19] V. Musoko. Biomedical Signal and Image Process-
ing. PhD thesis, Institute of Chemical Technology in
Prague, Czech Republic, 2005.

[20] D.E. Newland. An Introduction to Random Vibra-
tions, Spectral and Wavelet Analysis. Longman Sci-
entific & Technical, Essex, U.K., third edition, 1994.

[21] M. Nixon and A. Aguado. Feature Extraction & Im-
age Processing. Elsevier, Amsterdam, 2004.

[22] S. Osechinskiy and F. Kruggel. Slice-to-Volume Non-
rigid Registration of Histological Sections to MR Im-
ages of the Human Brain. Anatomy Research Inter-
national, pages 1–17, 2011. ID: 287860.

[23] A. Procházka, J. Jech, and J. Smith. Wavelet
Transform Use in Signal Processing. In 31st In-
ternational Conference in Acoustics, pages 209–213.
Czech Technical University, 1994.

[24] A. Procházka and V. Sýs. Application of Genetic
Algorithms for Wavelet Networks Signal Modelling.
In VIIth European Signal Processing Conference
EUSIPCO-94, pages II/1078–II/1081. European As-
sociation for Signal Processing, 1994.

[25] C. G. Ravichandran and G. Ravindran. Inter-slice Re-
construction of MRI Image Using One Dimensional
Signal Interpolation. International Journal of Com-
puter Science and Network Security, 8(10):351–356,
October 2008.

[26] E. Schiavi, C. Hernandez, and J. A. Hernandez. Fully
3D Wavelets MRI Compression. In J. M. Barreiro,
F. M. Sanchez, V. Maojo, and F. Sanz, editors, Biolog-
ical and Medical Data Analysis, volume 3337 of Lec-
ture Notes in Computer Science, pages 9–20. Springer
Berlin / Heidelberg, 2004.

[27] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury.
The Dual-Tree Complex Wavelet Transform. IEEE
Signal Processing Magazine, 22(6):123–151, 2005.

[28] N. Sriraam and R. Shyamsunder. 3-D Medical Im-
age Compression Using 3-D Wavelet Coders . Digital
Signal Processing, 21(1):100–109, January 2011.

[29] B. Starly, Z. Fang, W. Sun, A. Shokoufandeh, and
W. Regli. Three-Dimensional Reconstruction for
Medical-CAD Modeling. Computer-Aided Design &
Applications, 3(1–4):431–438, 2005.

[30] G. Strang. Wavelet transforms versus fourier trans-
forms. American Mathematical Society, 28(2):228–
305, April 1993.

[31] S. V. Vaseghi. Advanced Digital Signal Processing
and Noise Reduction. John Wiley & Sons Ltd, 2006.

[32] S. Wesarg, A. G. Hosseini, M. Erdt, K. Kafchitsas,
and M. Khan. Segmental Assessment and Visualiza-
tion of Trabecular Bone Mineral Density in Vertebrae.
In Eurographics Workshop on Visual Computing for
Biology and Medicine, pages 1–3. IEEE, 2010.

[33] X. P. Zhang. Thresholding Neural Network for Adap-
tive Noise Reduction. IEEE Transastions on Neural
Networks, 12(3):567–584, 2001.


