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ABSTRACT

The paper presents selected mathematical methods of digital
image enhancement applied to magnetic resonance images of
the human brain. This topic forms a general interdisciplinary
area of Digital Signal Processing (DSP). The work is motivated
by a need to process digital images after their acquisition. This is
caused by two reasons. Firstly, the digital images can be taken in
low quality and secondly the quality of images is getting lower
during their transmission. The goal of this work comes out from
a need to enhance biomedical images. The methods described in
the paper have been designed generally, i.e. it is possible to use
them according to declared limitations and recommendations for
both all digital images (understood as two-dimensional signals)
and one-dimensional signals. The main part of the paper presents
methods of the recovery of degraded parts and resolution en-
hancement of digital images. The wavelet transform approach
has been adopted here and used for the recovery of the corrupted
image regions. Proposed wavelet transform method for image
resolution enhancement forms an alternative to the linear and the
Fourier transform interpolation. Results of the proposed meth-
ods are presented for simulated signals and biomedical magnetic
resonance images. Resulting algorithms are closely related to
signal segmentation, change points detection and prediction with
the use in process control, computer vision, signal or image pro-
cessing and computer intelligence.

Keywords: Discrete wavelet transform, wavelet decomposition
and reconstruction, biomedical image analysis, image regions re-
covery, image enhancement, resolution enhancement, computer
intelligence

1 INTRODUCTION

The paper is devoted to digital image enhancement, which falls
within the generic multidisciplinary area of information engi-
neering, known as digital signal processing [9].

There are many applications in which signals are converted into
a digital form and then digital signal processing methods are ap-
plied. In the case of digital image processing, the digital signal
is two-dimensional. This work presents some of tools for digital

image enhancement: recovery of missing or corrupted parts of
images and image resolution enhancement.

The recovery of degraded parts (blocks, regions) of the digital
image forms the main part of digital image enhancement. There
are deterministic and probabilistic methods described in litera-
ture [4, 12] to solve this problem. The deterministic algorithms
are usually based on autoregressive modelling, matrix moving
average, or bilinear interpolation. Probabilistic methods include
usually Bayesian modelling. Signals containing more random
components can be more completely described by their proba-
bility distributions. Therefore Bayesian probabilistic methods
are important in the analysis of two-dimensional signals. Ite-
rated Wavelet Interpolation Method (IWIM) forms a new de-
signed method to achieve this goal. This method is based on
the interpolation using wavelet functions, i.e. the input signal
is decomposed by the selected wavelet function, treated in the
wavelet domain, and then reconstructed back into the image with
recovered corrupted or missing regions.

The selection of the signal resolution [5, 11] is the next fun-
damental problem encountered in the digital processing of both
one-dimensional and two-dimensional signals. This defines
the sampling period in the case of time series or the pixel size
in the case of images. Changing the resolution of a signal or
image allows both global and detailed views of specific one-
dimensional or two-dimensional signal components. Signal and
image resolution enhancement is therefore also a fundamental
problem in signal analysis. There are numerous existing models
and algorithms for digital image enhancement and this field of
study is currently very active. The Image Resolution Enhance-
ment using the Wavelet Transform (IREWT) is presented here as
a new designed method to solve efficiently this problem.

The methods described further have been developed and verified
for simulated one-dimensional and two-dimensional signals and
then applied to processing of real biomedical images of the hu-
man brain obtained by the magnetic resonance method. All re-
sulting algorithms are verified in the computational and visu-
alization Matlab environment providing tools for remote signal
processing using Matlab web server and computer network.

The paper presents selected methods and algorithms related
to signal and image decomposition and reconstruction using



the wavelet transform at first. Methods of the wavelet decom-
position are then used for signal and image recovery of their cor-
rupted parts using selected threshold limits and image resolution
enhancement.

2 PRINCIPLES OF DISCRETE WAVELET
TRANSFORM

Wavelet transforms (WT) provide an alternative to the short-
time Fourier transform (STFT) for non-stationary signal analysis
[3]. Both the STFT and the WT result in signal decomposition
into two-dimensional function of time and frequency respectively
scale. The basic difference between these two transforms is in
the construction of the window function which has a constant
length in the case of the STFT (including rectangular, Black-
man and other window functions) while in the case of the WT
wide windows are applied to low frequencies and short windows
for high frequencies to ensure constant time-frequency resolu-
tion. Local and global signal analysis can be combined in this
way. Wavelet functions used for signal analysis are derived from
the initial basic (mother) function forming the set of functions

Wm,k(t)=
1√
a

W (
1

a
(t − b)) =

1√
2m

W (2−mt − k) (1)

for discrete parameters of dilation a = 2m and translation b =
k2m. Wavelet dilation corresponds to the spectrum compression.
The most common choice includes Daubechies wavelets even
though their frequency characteristics stand for approximation
of band-pass filters only. On the other hand harmonic wavelets
introduced in [8] can have broader application in many engineer-
ing problems owing to their very attractive spectral properties.

3 WAVELET DECOMPOSITION AND
RECONSTRUCTION

The principle of image wavelet decomposition [13] is pre-
sented in Fig. 1 for an image matrix [G(n, m)]N,M . Any one-
dimensional signal can be considered as a special case of an im-
age having one column only.
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Figure 1: Principle of the 2-D wavelet decomposition followed
by downsampling

The decomposition stage includes the processing of the image
matrix by columns at first using wavelet (high-pass) and scaling
(low-pass) function followed by row downsampling by factor D
in stage D.1.

Let us denote a selected column of the image matrix
[G(n, m)]N,M as signal {x(n)}N−1

n=0 =[x(0), x(1), ..., x(N−1)]T.
This signal can be analyzed by a half-band low-pass filter repre-
sented by the scaling function with its impulse response

{l(n)}L−1
n=0 = [l(0), l(1), · · · , l(L − 1)]T (2)

and corresponding high-pass filter represented by the wavelet
function based upon impulse response

{h(n)}L−1
n=0 = [h(0), h(1), · · · , h(L − 1)]T (3)

The first stage presented in Fig. 1 assumes the convolution of
a given signal and the appropriate filter for decomposition at first
by relations

d0(n) =

L−1∑
k=0

l(k)x(n − k) (4)

d1(n) =

L−1∑
k=0

h(k)x(n − k) (5)

for all values of n followed by subsampling by factor D. In
the following decomposition stage D.2 the same process is ap-
plied to rows of the image matrix followed by row downsam-
pling. The decomposition stage results in this way in four images
representing all combinations of low-pass and high-pass initial
image matrix processing.

The reconstruction stage shown in Fig. 2 includes row upsam-
pling by factor U at first and row convolution in stage R.1.
The corresponding images are then summed. The final step R.2
assumes column upsampling and convolution with reconstruc-
tion filters followed by summation of the results again.
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Figure 2: Principle of the backward 2-D wavelet reconstruction

In the case of one-dimensional signal processing, steps D.2 and
R.1 are omitted. The whole process is called signal/image de-
composition and perfect reconstruction using D=2 and U=2.

4 DIGITAL IMAGES REGIONS RECOVERY

Image regions recovery represents basic problems in image pro-
cessing with many different applications including engineering,
reconstruction of missing data during their transmission and en-
hancement of biomedical structures as well [1, 7, 16]. This
problem occurs also in filling-in blocks of missing or corrupted
data. The following method is based on the two-dimensional
discrete wavelet transform approach. Iterated interpolation [6]



based upon the wavelet transform forms the new method de-
signed here. This method is verified for simulated data and then
applied to processing of real magnetic resonance images. Sum
of Squared Errors (SSE), Peak Signal-to-Noise Ratio (PSNR),
and subjective aesthetic notion are the criteria of the consistency
between the original image and image after the recovery.

We can view a sequence of lost samples as the result of a particu-
lar noise process acting on the original signal. However, unlike
the traditional case, this noise process is not uncorrelated with
the original signal. The designed method comes out from the sig-
nal wavelet denoising, which tries to keep transform coefficients
of high PSNR while zeroing out coefficients having lower PSNR.
Our primary assumption in this algorithm is that the transforma-
tion used to generate the wavelet transform coefficients mostly
ensures that if vector c is hard-thresholded to zero with δ ∼ σe,
then with high probability |ĉ| << |e|, i.e., hard-thresholding of
c removes more noise than signal by the following relation

c(k)=

{
c(k) if |c(k) |> δ
0 if |c(k) |≤ δ

(6)

where δ is a threshold limit, c is a vector of thresholded coeffi-
cients, c is a vector of wavelet coefficients of the signal contain-
ing an additive noise e, ĉ is a vector of wavelet coefficients of
the signal without noise, and σe is a variance of noise.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

samples

 (a) GIVEN SIGNAL

 (c) SIGNAL SCALOGRAM

L
e
ve

l

5 10 15 20 25 30

2

1

−1

0

1

W
A

V
E

L
E

T
: 
d
b
4

 (d) SIGNAL SCALING AND WAVELET COEFFICIENTS: LEVELS 1−2
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Figure 3: The first iteration of the simulated 1-D signal (sinwave)
recovery process presenting (a) given corrupted signal, (b) cor-
rupted signal decomposition into two levels, (c) recovered signal
(after the 1st iteration), and (d) thresholding of wavelet coeffi-
cients

This algorithm makes changes just to the lost sequence of sam-
ples by the wavelet transform coefficients hard-thresholded to
zero. When the value of the lost samples is changed, we can con-
tinue to evaluate these samples again. Input signal for the wavelet
decomposition, hard-thresholding, and backward wavelet recon-
struction, is a result of the previous iteration. The algorithm
is repeated until the SSE value between the recovered and
the original signal is acceptably low or required PSNR value
is achieved.

Fig. 3 presents the 1st iteration of the described signal recovery
algorithm. Result is shown in Fig. 4 presenting that 20 iterations
were sufficient for acceptable SSE plotted in Fig. 5. The best
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Figure 4: The 1-D simulated signal recovery process presenting
(a) corrupted signal, an ideal shape of sine wave, (b) its FFT,
(c) recovered signal after the first iteration of the recovery algo-
rithm, (d) its FFT, (e) recovered signal (after 20 iterations), and
(f) its FFT
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Figure 5: Results of the iterative process presenting (a) the PSNR
values and (b) the SSE for the whole iteration process of the 1-D
signal recovery

result has been obtained by the Daubechies wavelet function of
the 4th order used for the decomposition into two levels and re-
construction stage by the wavelet decomposition and reconstruc-
tion schemas shown in Figs. 1, 2.

Now it is possible to apply the proposed algorithm to the real
MR image of a human brain. Fig. 6 presents the wavelet de-
composition of the original corrupted MR image (see Fig. 6(a))
into one decomposition level (Fig. 6(b)) using the Daubechies
wavelet function of the 8th order. Fig. 6(d) shows the wavelet
coefficients and modified, i.e. thresholded wavelet coefficients.
Recovered MR image (after the first iteration) can be seen in
Fig. 6(c).

The final recovered MR image with low acceptable SSE and
high PSNR has been obtained after 350 iterations of the itera-
tive wavelet interpolation algorithm. Fig. 7(a) presents the origi-
nal corrupted image and Fig. 7(b) recovered image. Evolution of
the PSNR and SSE values during the whole recovery process
is shown in Fig. 7(c),(d).

The best result of the MR image recovery has been obtained us-
ing the Daubechies wavelet function of the 8th order (see Table 1)
for the wavelet decomposition into one level. Coefficients in
the wavelet domain have been modified by the hard-thresholding
method and reconstructed back to the real image.
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Figure 6: The first iteration of the real MR image recovery pro-
cess presenting (a) given corrupted image, (b) image decompo-
sition into one level, (c) backward wavelet reconstruction, and
(d) wavelet, scaling coefficients
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Figure 7: Recovery of the real MR image using the iterated
wavelet interpolation method presenting (a) given corrupted ima-
ge, (b) recovered image (after 350 iterations), (c) evolution of
the Peak Signal-to-Noise Ratio (PSNR) value, and (d) evolution
of the Sum of Squared Errors (SSE) value during the iteration
process

This method is sufficient in the case of a limited number of inter-
polated pixels. If the corrupted block is large (it usually means
more than 100 pixels), it is necessary to divide this region into
more layers and to recover them step by step. Then the reco-
very algorithm starts by grouping the interpolated pixels (pixels
in the lost block) into layers as shown in Fig. 8.

Layers are recovered in stages with each layer recovered by
mainly using the information from the proceeding layers, that

Decomposition method PSNR1 PSNR2
(wavelet function) [dB] [dB]

1 Haar 30.143
2 Daubechies of the 2nd order 33.118
3 Daubechies of the 4th order 34.715
4 Daubechies of the 8th order 29.078 36.200
5 Symmlet of the 2nd order 33.118
6 Symmlet of the 4th order 35.657
7 Symmlet of the 8th order 35.978

Table 1: Peak Signal-to-Noise Ratio (PSNR) of the real MR im-
age containing corrupted regions (PSNR1) and the same MR
image after the recovery process (PSNR2) reconstructed by
the selected wavelet functions after 350 iterations

is, layer 0 = image is used to recover layer 1, layers 0 and 1
are used to recover layer 2 etc. The layer grouping in Fig. 8
is of course one possibility, and many different groupings can
be chosen depending on the size and shape of the lost blocks.
Beyond the grouping into layers and associated recovery of lay-
ers in stages, the main steps of the algorithm amount to eval-
uating several complete transforms over the target layer, selec-
tive hard-thresholding of wavelet transform coefficients, inverse
transforming to generate intermediate results, and finally clip-
ping to obtain the recovered layer. Starting with an initial thresh-
old δ0, these steps are carried out iteratively where at each itera-
tion the threshold is evaluated again and the layers are recove-
red to finer detail using the new threshold. Prior to the first it-
eration, pixels in the lost block are assigned initial values, usu-
ally, the mean value computed from the surroundings of the outer
boundary of layer 1.

Figure 8: Layers of pixels in the recovery algorithm

5 RESOLUTION ENHANCEMENT OF DIGITAL
IMAGES

The principle of signal and image wavelet decomposition and
reconstruction for signal resolution enhancement [2, 15] is pre-
sented in Fig. 9 for an image matrix [G(n, m)]N,M . The general
principle of the image wavelet decomposition and reconstruction
has been already described in Chapter 3.

The whole process can be used for:

• Signal or image wavelet decomposition and perfect recon-
struction using D=2 and U=2

• Signal or image resolution enhancement in the case of D=1
and U=2
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Figure 9: The principle of signal and image resolution enhance-
ment by the DWT

The process of signal resolution enhancement is presented in
Fig. 10 for a real biomedical image of the human brain. The ini-
tial image matrix shown in Fig. 10(a) as a 3-D plot is decomposed
into wavelet coefficients shown in Fig. 10(c) providing enhanced
image matrix shown in Fig. 10(b).

Table 2 presents results of the DWT use for image resolu-
tion enhancement with different wavelet functions chosen from
the given set available in the wavelet transform library in compa-
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Figure 10: Application of the DWT for MR image resolution
enhancement with results presented as a 3-D plot
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Figure 11: Application of the DWT for MR image resolution
enhancement

rison with the result of the DFT algorithm. It is obvious from
Table 2 that the DFT method provides good results from the ob-
jective criteria point of view (MSE value), but subjective view to
the resulting images gives the important conclusion about smooth
texture and non-sharp edges in the image. The DWT methods
solve the problems of the resolution enhancement better from
the MSE value point of view (most of the selected wavelet func-
tions), furthermore the observer or MR images specialist can see
the preservation of the image texture and sharp edges.

The best results have been obtained by the DWT algorithm using
the Symmlet wavelet function of the 4th order applied to the de-
composition into one level. This result is presented in Fig. 11.

Resolution Enhancement Method MSE

1 DFT Algorithm 0.16452
2 Haar Wavelet 0.31350
3 Daubechies Wavelet of the 2nd order 0.21126
4 Daubechies Wavelet of the 4th order 0.13509
5 Daubechies Wavelet of the 8th order 0.14900
6 Symmlet Wavelet of the 2nd order 0.21126
7 Symmlet Wavelet of the 4th order 0.03406
8 Symmlet Wavelet of the 8th order 0.04882

Table 2: Mean square errors (MSE) between the reference MR
image of the brain and the same image downsampled by two and
then enhanced to double size using the designed algorithms

The whole algorithm of the image resolution enhancement can
be written step by step as follows:

1. Selection of a sufficient wavelet function
2. Selection of the number of decomposition levels
3. Image wavelet decomposition by the schema in Fig. 9 us-

ing Eqs. (4), (5) where the downsampling factor D=1

4. Backward wavelet reconstruction using the upsampling
factor U=2

6 RESULTS AND CONCLUSIONS

The result of the whole process of the MR image enhancement
consisting of

(i) image denoising

(ii) image regions recovery

(iii) image resolution enhancement

is presented in Fig. 12.

Problem of the digital images denoising has been already solved
and published in [10].

The usage of the wavelet decomposition and reconstruction for
images regions recovery includes methods with many optional
parameters and variances. It is possible to use the discrete
wavelet transform in combination with whatever known method
chosen by the properties of the processed image. This sort of
algorithms has a wide range of its usage. Iterated wavelet inter-
polation method forms the most successful method to solve this
problem. The best result of the MR image recovery using this
method has been obtained using the Daubechies wavelet function
of the 8th order for the wavelet decomposition into one level. Co-
efficients in the wavelet domain have been modified by the hard-
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Figure 12: Real MR image after the enhancement process (i) con-
taining a reduced noise component, (ii) containing recovered cor-
rupted or missing regions, (iii) having an enhanced resolution

thresholding method and reconstructed back to the real image.
The utilization of the iterated wavelet interpolation method is
quite wide giving very good results especially in combination
with layer grouping of the corrupted image block.

The last problem of digital images enhancement is in the reso-
lution enhancement. The DFT method was applied at first.
This method is known from literature [8, 14] as the zero-padding
method for 1-D signals. Here the algorithm has been extended
into two dimensions. As a new method the image resolution en-
hancement based upon the DWT has been adopted here. This
method has been very successful from the objective point od view
(measured by the MSE value) as well as from the subjective
point of view (aesthetical notion) of the sharp edges preserva-
tion. The best result of the resolution enhancement by the DWT
algorithm has been obtained by the Symmlet wavelet function of
the 4th order applied to the decomposition into one level. There
is no limitation of this method for any sort of digital images.

The new approach in DSP adopted in this paper is in the wide
application of the wavelet transform in digital image processing.
Wavelet transform becomes a potential very efficient mathema-
tical tool in the whole field of digital signal processing. It is just
necessary to find its right application, it can not substitute tradi-
tional or other new tools of digital signal processing. Although
the utilization of the wavelet transform is not very easy, methods
based on this tool give very useful and interesting results in many
engineering areas.

Further research will be devoted to the appropriate estimation
of threshold limits and to the precise choice of wavelet functions
according to analysed signal/image. Special attention will be also
paid to the 3-D interpolation of the MR scans of the human brain
and processing of the resulting 3-D model of the brain.

Selected results and algorithms can be obtained from the web
page of the Prague DSP research group (http://dsp.vscht.cz) pro-
viding also access to the Matlab web server allowing remote data
analysis and processing.
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