
e.com
33
00

22
04

.0
7

www.telemecaniqu

Concept 2.6
User Manual

840 USE 503 00
10/2006

2

Table of Contents
Safety Information .23

About the Book . 25

Chapter 1 General description of Concept .27
At a Glance . 27

1.1 General description of Concept. 29
At a Glance . 29
Introduction . 30
PLC hardware configuration . 31
PLC Hardware Package Contents in Concept S, M and XL 32

1.2 Programming. 33
At a Glance . 33
General information. 34
Libraries. 35
Editors . 37
Online functions. 41
Communication . 41
Secure Application . 42
Utility program . 44

Chapter 2 New Performance Attributes of Concept 2.6 in
Comparison with Concept 2.5 .47
Introduction . 47
New Performance Attributes of Concept 2.6 Compared with Concept 2.5 48
New performance attributes of Concept 2.6 SR2 in comparison with
Concept 2.6 SR1. 53
New performance attributes of Concept 2.6 SR3 in comparison with
Concept 2.6 SR2. 55

Chapter 3 Project structure .57
At a Glance . 57
Project Structure and Processing . 58
Programs. 64
Sections. 68
3

Configuration data . 74

Chapter 4 Creating a Project . 75
At a Glance . 75
Overview . 76
Step 1: Launching Concept . 77
Step 2: Configuring the PLC . 78
Step 2.1: Required Configuration. 79
Step 2.2: Optional Configuration . 81
Step 3: Creating the User Program . 85
Step 4: Save . 87
Step 5: Perform Memory Prediction . 88
Step 6: Loading and Testing . 89
Step 7: Optimize and Separate . 94
Step 8: Documentation . 95

Chapter 5 PLC configuration . 97
At a Glance . 97

5.1 General information about hardware configuration . 99
At a Glance . 99
General information . 100
Proceed in the following way with the configuration . 101

5.2 Configuration in OFFLINE and ONLINE mode . 102
At a Glance . 102
General information . 103
Available Functions in OFFLINE and ONLINE Modes. 104

5.3 Unconditional Configuration. 106
At a Glance . 106
Precondition . 107
PLC selection. 108
CPU Selection for the PLC Type . 109
PLC memory mapping . 113
Loadables . 114
Segment manager . 117
I/O Map . 119

5.4 Optional configuration . 122
At a Glance . 122
Settings for ASCII Messages . 123
Making Additional Functions Available in the Configurator 124
Data Exchange between Nodes on the Modbus Plus Network 125
How many words are really used when data is received (Peer Cop) 126
Protecting Data in the State RAM before Access . 128
Parameterize interfaces . 129
Special Options . 131

5.5 Backplane Expander Config . 133
At a glance . 133
4

Generals to Backplane Expander . 134
Edit I/O Map . 135
Error handling . 136

5.6 Configuration of various network systems. 137
At a Glance . 137
Configure INTERBUS system . 138
Configure Profibus DP System . 139
Configure Ethernet . 141
RTU extension. 143
Ethernet I/O Scanner. 144
How to use the Ethernet / I/O Scanner . 148

5.7 Quantum Security Settings in the Configurator . 150
Quantum Security Parameters . 150

Chapter 6 Main structure of PLC Memory and optimization of
memory .153
At a Glance . 153

6.1 Main structure of the PLC Memory . 155
General structure of the PLC Memory. 155

6.2 General Information on Memory Optimization. 156
Introduction . 156
Possibilities for Memory Optimization . 157
PLC-Independent . 157

6.3 Memory Optimization for Quantum CPU X13 0X and 424 02 160
Introduction . 160
General Information on Memory Optimization for Quantum
CPU X13 0X and 424 02 . 161
Selecting Optimal EXEC File. 163
Using the Extended Memory (State RAM for 6x references) 167
Harmonizing the IEC Zone and LL984 Zone. 169
Harmonizing the Zones for Global Data and IEC Program Memory 171

6.4 Memory Optimization for Quantum CPU 434 12(A) and 534 14(A/B). 174
Introduction . 174
General Information on Memory Optimization for Quantum
CPU 434 12(A) and 534 14(A/B). 175
Harmonizing IEC Zone and LL984 Zone. 177
Harmonizing the Zones for Global Data and IEC Program Memory
(CPU 434 12(A) / 534 14 (A/B)) . 182

6.5 Memory optimization for Compact CPUs . 185
At a Glance . 185
General Information on Memory Optimization for Compact CPUs 186
Harmonizing IEC Zone and LL984 Zone. 188
Harmonizing the Zones for Global Data and IEC Program Memory
(Compact) . 193

6.6 Memory optimization for Momentum CPUs. 195
5

Introduction . 195
General Information on Memory Optimization for Momentum CPUs. 196
Selecting Optimal IEC Zone. 198
Harmonizing the Zones for Global Data and IEC Program Memory
(Momentum). 199

6.7 Memory optimization for Atrium CPUs. 201
At a Glance . 201
General Information on Memory Optimization for Atrium CPUs 202
Use of IEC . 204
Harmonizing the Zones for Global Data and IEC Program Memory
(Atrium) . 206

Chapter 7 Function Block language FBD . 209
At a Glance . 209

7.1 General information about FBD Function Block. 211
General information on Function Block language FBD 211

7.2 FBD Function Block objects. 212
At a Glance . 212
Functions and Function Blocks (FFBs) . 213
Link . 216
Actual parameters . 217
Text Object. 218

7.3 Working with the FBD Function Block langauge . 219
At a Glance . 219
Positioning Functions and Function Blocks . 220
FFB Execution Order . 222
Configuring Loops . 225

7.4 Code generation with the FBD Function Block language 227
Code Generation Options . 227

7.5 Online functions of the FBD Function Block language. 228
Online Functions . 228

7.6 Creating a program with the FBD Function Block language 230
Creating a Program in the FBD Function Block Language 230

Chapter 8 Ladder Diagram LD . 233
At a Glance . 233

8.1 General information about Ladder Diagram LD . 235
General Information about the LD Ladder Diagram Language 235

8.2 Objects in Ladder Diagram LD. 237
At a Glance . 237
Contacts. 238
Coils . 240
Functions and Function Blocks (FFBs) . 243
Link . 250
Actual Parameters . 251
Text object . 253
6

8.3 Working with the LD Ladder Diagram . 254
At a Glance . 254
Positioning Coils, Contacts, Functions and Function Blocks. 255
Execution sequence . 257
Configuring Loops . 257

8.4 Code generation with LD Ladder Diagram . 259
Code Generation Options . 259

8.5 Online functions with the LD Ladder Diagram. 260
Online Functions . 260

8.6 Creating a program withLD Ladder Diagram. 262
Creating a Program in LD . 262

Chapter 9 Sequence language SFC .267
At a Glance . 267

9.1 General information about SFC sequence language . 269
General information about SFC language. 269

9.2 SFC sequence language elements . 270
At a Glance . 270
Step. 271
Action . 274
Transition. 276
Transition section . 278
Link . 280
Jump . 281
Alternative Branch. 283
Alternative connection . 285
Parallel branch . 286
Parallel connection . 287
Text object. 287

9.3 Working with the SFC Sequence Language . 288
Introduction . 288
General information on editing objects . 289
Declaring step properties . 292
Declaring actions. 294
Identifier. 297
Declaring a Transition . 300
Alias Designations for Steps and Transitions . 302

9.4 Online functions of the SFC sequence language . 305
At a Glance . 305
Animation . 306
Controlling a Step String . 308
Learn monitoring times . 311
Transition diagnosis . 314
7

Chapter 10 Instruction list IL . 315
At a Glance . 315

10.1 General information about the IL instruction list. 317
General Information about the IL Instruction List . 317

10.2 Instructions. 318
At a Glance . 318
General information about instructions . 319
Operands . 321
Modifier . 323
Operators . 325
Tag. 328
Declaration (VAR...END_VAR) . 330
Comment . 331

10.3 IL instruction list operators . 332
At a Glance . 332
Load (LD and LDN) . 333
Store (ST and STN) . 334
Set (S) . 335
Reset (R) . 336
Boolean AND (AND, AND (), ANDN, ANDN ()) . 337
Boolean OR (OR, OR (), ORN, ORN ()) . 339
Boolean exclusive OR (XOR, XOR (), XORN, XORN ()) 341
Invert (NOT) . 343
Addition (ADD and ADD ()) . 344
Subtraction (SUB and SUB ()) . 345
Multiplication (MUL and MUL()) . 346
Division (DIV and DIV ()) . 348
Compare on "Greater Than" (GT and GT ()) . 350
Compare to "Greater than/Equal to" (GE and GE ()) . 351
Compare to "EQual to"(EQ and EQ ()) . 352
Compare to "Not Equal to" (NE and NE ()) . 353
Compare to "Less than/Equal to" (LE and LE ()) . 354
Compare to "Less Than"(LT and LT ()) . 355
Jump to label (JMP, JMPC and JMPCN). 356
Call Function Block/DFB (CAL, CALC and CALCN) . 359
FUNCNAME. 359
Right parenthesis ")" . 359

10.4 Call up of functions, Function Blocks (EFBs) and Derived Function
Blocks (DFBs) . 360
At a Glance . 360
Use of Function Blocks and DFBs . 361
Invoking a Function Block/DFB . 363
Function call . 369
8

10.5 Syntax check and Code generation . 371
At a Glance . 371
Syntax Check . 372
Code generation . 374

10.6 Online functions of the IL instruction list . 375
At a Glance . 375
Animation . 376
Monitoring field . 379

10.7 Creating a program with the IL instruction list . 380
Creating a program in the IL instruction list. 380

Chapter 11 Structured text ST. .383
At a Glance . 383

11.1 General information about structured Text ST . 385
General Information about the ST Structured Text . 385

11.2 Expressions. 386
At a Glance . 386
Operands. 387
Operators . 388

11.3 Operators of the programming language of structured ST text 391
At a Glance . 391
Use of parentheses "()" . 392
FUNCNAME . 392
Exponentiation (**) . 392
Negation (-) . 392
Complement formation (NOT) . 393
Multiplication (*). 393
Division (/) . 394
Modulo (MOD). 394
Addition (+) . 394
Subtraction (-) . 395
Comparison on "Greater Than" (>) . 395
Comparison on "Greater than/Equal to" (>=) . 395
Comparison with "EQual to" (=) . 395
Comparison with "Not Equal to" (<>). 396
Comparison with "Less Than"(<). 396
Comparison with "Less than or Equal to" (<=) . 396
Boolean AND (AND or &) . 397
Boolean OR (OR) . 397
Boolean Exclusive OR (XOR) . 398

11.4 Assign instructions . 399
At a Glance . 399
Instructions . 400
Assignment . 401
Declaration (VAR...END_VAR) . 403
9

IF...THEN...END_IF . 405
ELSE . 406
ELSIF...THEN . 407
CASE...OF...END_CASE. 408
FOR...TO...BY...DO...END_FOR . 409
WHILE...DO...END_WHILE . 412
REPEAT...UNTIL...END_REPEAT . 413
EXIT . 414
Empty instruction . 414
Comment . 414

11.5 Call up of functions, Function Blocks (EFBs) and Derived Function
Blocks (DFBs) . 415
At a Glance . 415
Function Block/DFB Invocation . 416
Function Invocation . 420

11.6 Syntax check and code generation . 422
At a Glance . 422
Syntax Check. 423
Code generation . 424

11.7 Online functions of the ST programming language . 425
Online functions . 425

11.8 Creating a program with the structured ST text . 426
Creating a program in structured ST text . 426

Chapter 12 Ladder Logic 984 . 429
At a Glance . 429

12.1 General about Ladder Logic 984 . 431
General about Ladder Logic 984 . 431

12.2 Working with Ladder Logic 984 . 433
At a Glance . 433
Entering and Editing Logic Objects . 434
Entering and Editing Variables. 436
Ladder and Network Editing. 439
Reference Zoom and DX Zoom . 441
Search and Replace . 443

12.3 Subroutines . 444
Subroutines . 444

12.4 Equation Network Editor . 446
At a Glance . 446
Introduction . 447
Equation Editing. 449
Syntax and Semantics . 451

12.5 LL984 Programming Modes. 455
LL984 Programming Modes. 455
10

Chapter 13 DFBs (Derived Function Blocks) .457
At a Glance . 457

13.1 DFBs (Derived Function Blocks) . 459
At a Glance . 459
General information about DFBs (Derived Function Blocks). 460
Global / Local DFBs . 462
Use of variables in DFBs. 464
Combined Input/Output Variables (VARINOUT Variables) 466
Global Variables . 474
Creating Context Sensitive Help (Online Help) for DFBs 478

13.2 Programming and calling up a DFB . 480
At a Glance . 480
At a Glance . 481
Creating the DFB. 482
Creating the Logic in FBD Function Block Language . 483
Creating the Logic in LD Ladder Diagram . 486
Creating the Logic in IL Instruction List . 490
Creating the Logic in ST Structured Text . 492
Calling up a DFB in the FBD Function Block dialog . 494
Calling up a DFB in Ladder Diagram LD. 496
Calling up a DFB in the IL instruction list. 498
Calling up a DFB in structured text ST . 499

Chapter 14 Macros .501
At a Glance . 501

14.1 Macro . 503
At a Glance . 503
Macros: general. 504
Global / Local Macros . 506
Exchange marking. 508
Creating Context Sensitive Help (Online Help) for Macros 511

14.2 Programming and calling up a macro . 513
At a Glance . 513
At a Glance . 514
Occupying the macro . 515
Creating the logic . 516
Calling up a macro from an SFC section. 519
Calling a macro from an FBD/LD section. 522

Chapter 15 Variables editor. 525
At a Glance . 525
General . 526
Declare variables. 527
Searching and replacing variable names and addresses 530
Searching and Pasting Variable Names and Addresses. 534
11

Exporting located variables . 537

Chapter 16 Project Browser . 539
At a Glance . 539
General information about the Project Browser . 540
Detailed view in the project browser . 543
Operating the Project Browser. 545

Chapter 17 Derived data types . 547
At a Glance . 547

17.1 General information on Derived Data Types . 549
At a Glance . 549
Derived Data Types . 550
Global / Local Derived Data Types . 553
Extended Data Type Definition (larger than 64 Kbytes). 555

17.2 Syntax of the data type editor . 557
At a Glance . 557
Elements of the Derived Data Types . 558
Key Words . 560
Names of the derived datatypes . 564
Separators . 565
Comments . 566

17.3 Derived data types using memory . 567
Use of Memory by Derived Data Types . 567

17.4 Calling derived data types . 569
Calling Derived Data Types . 569

Chapter 18 Reference data editor . 577
At a Glance . 577
General Information about the Reference Data Editor. 578
Converting RDE templates . 580
Changing signal states of a Located variable . 582
Cyclical Setting of Variables . 583
Unconditional locking of a section . 586
Animation . 587
Replacing variable names . 589
Load reference data. 590

Chapter 19 ASCII Message Editor . 591
At a glance . 591

19.1 ASCII Editor Dialog . 593
At a glance . 593
Generals to ASCII editor dialog . 594
Text . 595
Variables . 596
Control code. 597
12

Spaces . 597
Carriage Return. 598
Flush (buffer) . 599
Repeat. 600

19.2 User Interface of ASCII Message Editor . 601
At a glance . 601
How to Use the ASCII Message Editor . 602
Message Number . 603
Message Text . 604
Simulation Text . 604

19.3 How to Continue after Getting a Warning . 605
How to Continue after Getting a Warning . 605

19.4 ASCII Editor in Offline/Combination/Direct Modes . 606
ASCII Message Editor in Offline/Combination/Direct Modes 606

Chapter 20 Online functions .607
At a Glance . 607

20.1 General information about online functions. 609
General information. 609

20.2 Connect to PLC . 610
At a Glance . 610
General . 611
Presettings for ONLINE operation. 614
Modbus Network Link . 615
Modbus Plus Network . 616
Modbus Plus Bridge . 622
TCP/IP-Network Link. 624
Connecting IEC Simulator (32 bit). 624
State of the PLC . 625

20.3 Setting up and controlling the PLC . 626
At a Glance . 626
General Information. 627
Setting the Time for Constant Scans. 628
Single Sweeps. 629
Deleting memory zones from the PLC . 630
Speed optimized LL984-Processing . 631
Save To Flash . 632
Reactivate flash save . 635
Set PLC Password . 636

20.4 Selecting Process information (status and memory). 639
At a Glance . 639
General information. 640
PLC state. 641
Memory Statistics . 643

20.5 Loading a project. 645
At a Glance . 645
13

General information . 646
Loading . 647
Download Changes . 649
Uploading the PLC. 652
Upload Procedure . 654

20.6 Section animation . 656
At a Glance . 656
IEC-Sections animation . 657
LL984 Programming Modes. 658

20.7 Online Diagnosis . 659
Diagnostics Viewer . 659

20.8 Logging Write Access to the PLC . 661
Logging and Encrypted Logging . 661

Chapter 21 Import/Export . 665
At a Glance . 665

21.1 General Information about Import/Export. 667
General Information about Import/Export. 667

21.2 Exporting sections . 669
Exporting Sections . 669

21.3 Exporting variables and derived data types . 672
Exporting variables and Derived Data Types. 672

21.4 Section import . 673
At a Glance . 673
Importing Sections . 674
Procedure for importing sections . 679
Importing IL and ST Programs to FBD, SFC, IL or ST Sections
(with Conversion) . 686
Importing (insert file) IL and ST programs into IL or ST sections. 690
Procedure for "Copying" an IL section from an existing project into a
new project. 691
Procedure for converting FBD sections from an existing project into
IL sections of a new project. . 692

21.5 Variables import . 694
At a Glance . 694
Importing Variables in "Text Delimited" Format . 695
Importing structured variables . 698
Importing variables in Factory Link format . 701
Multiple Address Assignment after Variable Import . 702

21.6 Import/Export of PLC Configuration . 703
Introduction . 703
Import/Export of PLC Configuration using Concept . 704
Import/Export of PLC Configuration using Concept Converter 705
14

Chapter 22 Documentation and Archiving. .707
At a Glance . 707

22.1 Documentation of projects, DFBs and macros . 709
At a Glance . 709
Documentation contents . 710
Documentation Layout . 711
Defining Page Breaks for Sections . 713
Use of keywords . 717

22.2 Managing projects, DFBs and macros . 719
At a Glance . 719
Archiving projects, used DFBs, EFBs and data type files 720
Deleting projects, DFBs and macros. 722

Chapter 23 Simulating a PLC .723
Preview . 723

23.1 Simulating a PLC (16-bit simulator). 725
Simulating a Controller . 725

23.2 Simulating a PLC (32-bit simulator). 727
At a Glance . 727
Concept-PLCSIM32 . 728
Simulating a PLC. 730
Simulating a TCP/IP interface card in Windows 98. 732
Simulating a TCP/IP interface card in Windows NT . 733

Chapter 24 Concept Security .737
At a Glance . 737
General Description of Concept Security . 738
Access Rights . 740
Changing Passwords . 748
Activating Access Rights . 749
Protecting Projects/DFBs . 750

Appendices . 753
At a Glance . 753

Appendix A Tables of PLC-dependent Performance Attributes755
Introduction . 755
Performance of Quantum . 756
Performance Attributes of Compact . 761
Performance Attributes of Momentum. 766
Performance Attributes of Atrium . 772
15

Appendix B Windows interface . 779
At a Glance . 779

B.1 Window . 781
At a Glance . 781
Window Types . 782
Elements of a window . 784

B.2 Menu commands . 787
Menu commands . 787

B.3 Dialog boxes . 789
Dialog boxes . 789

B.4 Generating a project symbol . 791
Creating a Project Symbol in a Program Group. 791

B.5 Online help. 793
At a Glance . 793
At a Glance . 794
How the Online Help is set out. 795

Appendix C List of symbols and short cut keys . 799
At a Glance . 799

C.1 Icon bar . 801
At a Glance . 801
General icon bar . 802
Icon bar in the FBD editor . 803
Icon bar in the SFC-Editor . 804
Icon bar in the LD editor. 805
List of Symbols in the IL and ST Editor . 806
List of Symbols in the LL984-Editor . 807
Icons in PLC Configuration . 808
Toolbar in the RDE Editor . 809
Toolbar in the Project Browser. 809

C.2 Short cut keys . 810
At a Glance . 810
General Short Cut Keys . 811
Short Cut Keys in the IL, ST and Data Type Editor . 812
Short Cut Keys in the FBD and SFC Editor . 815
Shortcut keys in the LD-Editor . 819
Short Cut Keys in the LL984-Editor . 825

Appendix D IEC conformity . 827
At a Glance . 827

D.1 What is the IEC 1131-3 standard?. 829
At a Glance . 829
General information about IEC conformity. 830
IEC Conformity Test. 831
16

D.2 IEC standards tables . 832
At a Glance . 832
Common elements . 833
IL (AWL) language elements. 840
ST language elements . 842
Common graphic elements . 843
LD (KOP) language elements . 844
Implementation-dependent parameters . 846
Error causes . 850

D.3 Expansions of IEC 1131-3. 852
Expansions of IEC 1131-3. 852

D.4 Text language syntax . 853
Text Language Syntax . 853

Appendix E Configuration examples. .855
At a Glance . 855

E.1 Quantum Example - Remote Control with RIO . 857
Introduction . 857
Editing local drop. 858
Editing Remote Drop. 863

E.2 Quantum Example - Remote control with RIO (series 800) 865
Introduction . 865
Editing Local Drop. 866
Editing Remote Drop. 871
Editing Remote Drop. 875

E.3 Quantum Example - Remote Control with DIO . 878
Introduction . 878
Editing Local Drop. 879
Editing Local Drop. 883

E.4 Quantum Example – INTERBUS Control . 887
Introduction . 887
General Information. 888
Editing Local Drop. 889

E.5 Quantum Example - SY/MAX Controller . 893
Introduction . 893
Editing Local Drop. 894
Editing Remote Drop. 899

E.6 Quantum Example - Profibus DP Controller . 902
Introduction . 902
General Information. 903
Profibus DP Export Settings in SyCon . 904
Editing Local Drop. 906
Importing Profibus DP Configuration. 911
17

E.7 Quantum-Example - Peer Cop. 918
At a glance . 918
Generals to Peer Cop . 919
Configuration of Peer Cop . 921
Global data transfer . 923
Specific data transfer . 925

E.8 Compact Example . 927
Editing Local Drop . 927

E.9 Atrium Example – INTERBUS Controller . 932
Introduction . 932
General . 933
INTERBUS export settings in CMD . 934
Edit local I/O drop . 935
Edit remote I/O drop (import INTERBUS configuration) 939

E.10 Momentum Example - Remote I/O Bus . 942
Introduction . 942
General Information . 943
Editing local drop . 943
Example 10 – Editing Remote Drops (I/O Bus) . 947

E.11 Momentum Example - Ethernet Bus System . 951
Introduction . 951
Configure Ethernet. 952
Network Configuration in Different Operating Systems 953
Editing local drop . 963
Create online connection . 966

Appendix F Convert Projects/DFBs/Macros . 967
Converting projects/DFBs . 967

Appendix G Concept ModConnect . 971
At a Glance . 971

G.1 Introduction . 973
Introduction . 973

G.2 Integration of Third Party Modules. 974
At a Glance . 974
Integrating new Modules . 975
Removing Modules . 976

G.3 Use of third party module in Concept. 977
Use of Third Party Modules in Concept . 977

Appendix H Convertion of Modsoft Programs. 979
At a Glance . 979
Introduction . 980
How to Convert a Modsoft Program. 982
Exceptions . 983
18

Appendix I Modsoft and 984 References . 985
At a Glance . 985
Modsoft Keys with Concept Equivalents . 986
Modsoft Function Compatibility . 988

Appendix J Presettings when using Modbus Plus for startup989
Introduction . 989
Installing the SA85/PCI85 with Windows 98/2000/XP. 990
Installing the SA85/PC185 in Windows NT . 994
Installing the Modbus Plus Driver in Windows 98/2000/NT. 996
Virtual MBX Driver for 16 bit application capability with
Windows 98/2000/NT . 997
MBX Driver for connection between ModConnect Host interface
adapters and 32 bit applications with Windows 98/2000/NT. 998
Remote MBX - Driver for Remote Operation. 999
Ethernet MBX - Driver for Modbus Plus Function via TCP/IP 1000
Establishing the hardware connection. 1002

Appendix K Presettings when using Modbus for startup1003
Introduction . 1003
Interface Settings in Windows 98/2000/XP . 1004
Interface Settings in Windows NT . 1006
Setting up the hardware connection . 1007
Transfer problems . 1008

Appendix L Startup when using Modbus with the EXECLoader 1009
Introduction . 1009
Quantum first startup with EXECLoader . 1010
Compact first startup with EXECLoader . 1015
Momentum first startup for IEC with EXECLoader . 1020
Momentum first startup for LL984 with EXECLoader 1025

Appendix M Startup when using Modbus with DOS Loader 1031
Introduction . 1031
Quantum first startup with DOS Loader . 1032
Compact first startup with DOS Loader. 1035
Momentum first startup for IEC with DOS Loader . 1038
Momentum first startup for LL984 with DOS Loader . 1041

Appendix N Startup when using Modbus Plus with the EXECLoader . .1045
Introduction . 1045
Quantum first startup with EXECLoader . 1046
Compact first startup with EXECLoader . 1050
Atrium first startup with EXECLoader . 1054
Momentum first startup for IEC with EXECLoader . 1058
Momentum first startup for LL984 with EXECLoader 1062
19

Appendix O Startup when using Modbus Plus with DOS Loader 1067
Introduction . 1067
Quantum first startup with DOS Loader . 1068
Compact first startup with DOS Loader . 1072
Atrium first startup with DOS Loader . 1075
Momentum first startup for IEC with DOS Loader . 1078
Momentum first startup for LL984 with DOS Loader . 1081

Appendix P EXEC files . 1085
Loading Firmware . 1085

Appendix Q INI Files . 1089
Introduction . 1089

Q.1 Settings in the CONCEPT.INI File . 1091
Introduction . 1091
General information on the Concept INI file . 1092
INI Print Settings . 1093
INI Settings for Register Address Format, Variable Storage and
Project Name Definition . 1094
INI-settings for path information and global DFBs [Path] [Upload] 1095
Representation of Internal Data in the INI File. 1097
INI Settings for the LD Section. 1098
INI Settings for Online Processing [Colors] . 1098
INI Settings for Warning Messages and the Address Format 1099
INI Security Settings . 1099
INI-Settings for the RDE behavior . 1100
INI settings for the Options> Toolsmenu . 1100

Q.2 Settings in the Projectname.INI File. 1101
Introduction . 1101
General Information for Projectname.INI File . 1102
INI Settings for the Event Viewer [Online Events] . 1102
INI-Settings for the Online-Backup [Backup] . 1103

Appendix R Interrupt Processing . 1105
Introduction . 1105

R.1 General information about interrupt sections . 1107
General Information about Interrupt Processing . 1107

R.2 Interrupt section: Timer event section . 1109
Introduction . 1109
Timer Event Sections. 1110
Defining the Scan Rate . 1111
Defining the Phase. 1112
Execution Order . 1115
Operating System . 1116
Examples for Parameterization . 1119
20

R.3 Interrupt section: I/O event section . 1124
Introduction . 1124
I/O Event Sections. 1125
Priority . 1126
Runtime Error . 1127

R.4 Modules for interrupt sections . 1129
EFBs for Interrupt Sections . 1129

Appendix S Automatic Connection to the PLC .1131
At a Glance . 1131
Automatic Connection with Command Line Parameters
(Modbus, Modbus +, TCP/IP) . 1132
Automatic Connection with the CCLaunch Tool (Modbus Plus) 1135

Glossary . 1141

Index . 1165
21

22

§

Safety Information
Important Information

NOTICE Read these instructions carefully, and look at the equipment to become familiar with
the device before trying to install, operate, or maintain it. The following special
messages may appear throughout this documentation or on the equipment to warn
of potential hazards or to call attention to information that clarifies or simplifies a
procedure.

The addition of this symbol to a Danger or Warning safety label indicates
that an electrical hazard exists, which will result in personal injury if the
instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal
injury hazards. Obey all safety messages that follow this symbol to avoid
possible injury or death.

DANGER indicates an imminently hazardous situation, which, if not avoided, will
result in death or serious injury.

DANGER

WARNING indicates a potentially hazardous situation, which, if not avoided, can result
in death, serious injury, or equipment damage.

WARNING

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result
in injury or equipment damage.

CAUTION
33002204 23

Safety Information
PLEASE NOTE Electrical equipment should be installed, operated, serviced, and maintained only by
qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

© 2006 Schneider Electric. All Rights Reserved.
24 33002204

About the Book
At a Glance

Document Scope This user manual is intended to help you create a user program with Concept. It
provides authoritative information on the individual program languages and on
hardware configuration.

Validity Note The documentation applies to Concept 2.6 for Microsoft Windows 98, Microsoft
Windows 2000, Microsoft Windows XP and Microsoft Windows NT 4.x.

Related
Documents

User Comments We welcome your comments about this document. You can reach us by e-mail at
techpub@schneider-electric.com

Note: Additional up-to-date tips can be found in the Concept README file.

Title of Documentation Reference Number

Concept Installation Instructions 840 USE 502 00

Concept IEC Block Library 840 USE 504 00

Concept EFB User Manual 840 USE 505 00

Concept LL984 Block Library 840 USE 506 00
33002204 25

About the Book
26 33002204

33002204
1

General description of Concept
At a Glance

Overview This chapter contains a general description of Concept. It should provide an initial
overview of Concept and its helper programs.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

1.1 General description of Concept 29

1.2 Programming 33
27

General description of Concept
28 33002204

General description of Concept
1.1 General description of Concept

At a Glance

Overview This section describes the performance features of Concept and provides an
overview of the hardware that may be programmed using Concept.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 30

PLC hardware configuration 31

PLC Hardware Package Contents in Concept S, M and XL 32
33002204 29

General description of Concept
Introduction

Operating
System

Nowadays, a graphical user interface is a requirement for tasks of this kind. For this
reason, Concept has been established as an MS Windows application. Concept can
be operated in Windows 98, Windows 2000, Windows XP and Windows NT. These
operating systems have the advantage that they are used all over the world.
Therefore PC users have a basic knowledge of Windows technology and mouse
operation. In addition to this all common monitors, graphic cards and printers can be
used with MS Windows. As a user, you are not therefore tied to specific hardware
configurations.

International
Standard IEC
1131-3

For effective system configuration Concept offers a unified configuration
environment in accordance with international standard regulations IEC 1131-3.

PLC
Independence
when
Programming

The guiding principle behind the development of Concept was that all the system
configuration procedures and all the editors should have the same look and feel.
Most of the configuration steps, especially program creation, are designed
independently of the PLC to be programmed.

Graphical
Interface

The entire program is divided up into sections corresponding to the logic structure.

The Concept configuration tool enables objects (such as function blocks, steps, and
transitions) to be selected, placed and moved easily in graphical form. Plausibility
tests already take place in the SFC editor (Sequential Function Chart/ sequence
language) during object placing, as most of the links between objects are generated
automatically during placing. In the FBD editor (Function Block Diagram/Function
Block language) and LD editor (Ladder Diagram), plausibility tests take place when
blocks are linked. Unauthorized links, such as those between different data types
have already been rejected during configuration. A plausibility test also takes place
in the LL984 editor (Ladder Logic 984) during placing. In the IL editor (Instruction
List) and ST editor (Structured Text) unauthorized instructions are identified via a
colored outline. After the first successful program run, the program may be
optimized in graphic terms by moving links, blocks or texts to improve the display.

Print If desired the sections may be displayed with print preview information, in order to
individually control pages of documentation. Signals receive an expansive
designation with symbol names and comments. Unique notes on signal tracking are
provided at the signal breaks. The individual block processing sequences from one
section may be displayed and documented in the FBD editor.
30 33002204

General description of Concept
Import/Export
Functions

Sections from various projects can be combined as desired in another project using
import/export functions.

It is also possible to convert the sections of one IEC programmer language into
sections of another IEC programmer language.

Variables may be imported into and exported from the text using text delimited or
FactoryLink format.

Runtime System The runtime system on the PLC offers quick reactions to signal state process
changes (short cycle time), Simulating signal transmitters (see Simulating a PLC,
p. 723), Online display (see Online functions, p. 607), online parameter changes
and online program changes.

Open Software
Architecture

Concept possesses open software architecture to enable connection to external
systems (e.g. for visualization) via standard interfaces.

Online Help Special care was taken when developing the help function. The context sensitive
Online help function (see How the Online Help is set out, p. 795) provides support
for every configuration situation just by clicking on the subject using the mouse or
pressing the F1 key. Menu commands and dialogs are also context sensitive, as are,
function blocks and hardware components of the individual PLC families.

PLC hardware configuration

Description Concept is the unified projection tool for Quantum, Compact, Momentum and Atrium
products.

Hardware components (for example CPU, program memory, input/output units etc.)
can be specified before, during or after program creation.

This projection task can be performed both online (linked to the PLC) and locally (PC
alone). Projection is supported by Concept, and only suggests valid combinations.
Misprojection is therefore prevented. In online mode the projected hardware is
tested for plausibility immediately and input errors are rejected.

After linking the programmer device (PC) to the PLC, a plausibility test is performed
on the projected values (e.g. from the Variable Editor) using the actual hardware
resources and if necessary an error message will appear.
33002204 31

General description of Concept
PLC Hardware Package Contents in Concept S, M and XL

Description PLC Hardware Package Contents in Concept S, M and XL:

Concept version contain Hardware

Concept Vx.x S Momentum

Concept Vx.x M Compact, Momentum

Concept Vx.x XL Atrium, Compact, Momentum, Quantum
32 33002204

General description of Concept
1.2 Programming

At a Glance

Overview This section provides an overview of the editors which are available in Concept.

What's in this
Section?

This section contains the following topics:

Topic Page

General information 34

Libraries 35

Editors 37

Online functions 41

Communication 41

Secure Application 42

Utility program 44
33002204 33

General description of Concept
General information

At a Glance As a solution for automatic control engineering tasks, Concept provides the following
IEC 1131-3 compatible programming languages:
� Function Block language FBD (Function Block Diagram) (see FBD editor, p. 37),
� LD (Ladder Diagram) (see LD editor, p. 38),
� Sequential language SFC (Sequential Function Chart) (see SFC editor, p. 38),
� Instruction List IL (see IL editor, p. 39) and
� Structured Text ST (see ST editor, p. 39).

The Modsoft orientated language is also available
� Ladder Diagram LL984 (Ladder Logic) (see LL984 editor, p. 40).

The IEC programming language (FBD, LD, SFC, ST and IL) basic elements are
Functions and Function Blocks, which make up assembled logic units. Concept
contains various Block libraries (see Libraries, p. 35) with predefined elementary
functions/Function Blocks (EFBs). In order to locate the individual EFBs without
difficulty, they are split into different groups according to their area of use.

For the Modsoft orientated programming language LL984, there is a Block library
(see Libraries, p. 35) with Instructions available.

Sections The control program is constructed from sections according to the logic structure.
Only one programming language is used within a section.

Merging these sections makes up the entire control program and the automation
device uses this to control the process. Any IEC sections (FBD, LD, SFC, IL, ST)
may be mixed within the program. The LL984 sections are always edited as a block
before the IEC sections.

Data types A subset of Data types from the international standard IEC1131-3 is available.

In the Data type editor (see Data type editor (DDT editor), p. 40) intrinsic data types
can be derived from IEC data types.

Using variables Variables for linking basic elements (objects) within a section are not usually
necessary with the graphic programming languages FBD, LD, SFC and LL984, as
these links are usually made graphically. (An additional link using variables is only
necessary for incredibly complex sections.) Graphic links are managed by the
system and therefore no projection requirement is created. The Variable Editor (see
Variable Editor, p. 40) is used to project all other variables such as those for data
transfer between various sections.
34 33002204

General description of Concept
Libraries

At a Glance For program creation Concept provides various block libraries with predefined
Functions and Function Blocks.

There are 2 different types of block libraries:
� IEC library

Block libraries for sections in the IEC programming languages (FBD, LD, SFC, IL
and ST)

� LL984 Library
Block library for sections in the Modsoft orientated programming language LL984
33002204 35

General description of Concept
IEC library The following IEC libraries are available for applications:
� AKFEFB

This library contains the AKF/ALD EFBs, which are not covered by the IEC
library.

� ANA_IO
This library is for analog value processing.

� COMM
This library is used for exchanging data between a PLC and another Modbus,
Modbus Plus or Ethernet node.

� CONT_CTL
This library is for projecting process-engineering servoloops. It contains
controller, differential, integral, and polygon graph EFBs.

� DIAGNOSTICS
This library is used to investigate the control program for misbehaviors. It
contains action diagnostics, Reaction diagnostics, locking diagnostics, process
prerequisite diagnostics, dynamic diagnostics and signal group monitoring EFBs.

� EXPERTS
This library contains EFBs, which are necessary for using expert modules.

� EXTENDED
This library contains useful supplements for different libraries. It has EFBs for
creating average values, selecting maximum values, negating, triggering,
converting, creating a polygon with 1st degree interpolation, edge recognizing,
and for specifying an insensitive zone for control variables.

� FUZZY
This library contains EFBs for fuzzy logic.

� IEC
This library contains the EFBs defined in IEC 1131-3. It has for example EFBs for
mathematical calculations, counters, timers etc.

� LIB984
This library contains IEC 1131 compatible EFBs from the LL984 library, for
example, EFBs for register transfer.

� SYSTEM
This library contains EFBs for using system functions. It has EFBs for cycle time
recognition, for various system cycle use, for SFC section control and for system
status display.

LL984 Library The LL984 library contains the LL984 editor instructions (blocks). It contains
instructions for mathematical calculations, counters, timers, instructions for
displaying system status, controller, differential and integral instructions and
instructions for exchanging data between a PLC and another Modbus or Modbus
Plus node.
36 33002204

General description of Concept
Editors

At a Glance When generating a section specify which programming language you are going to
use.

The following editors are available for creating sections in the various programming
languages:
� FBD editor (Function Block Language) (see FBD editor, p. 37)
� LD editor (Ladder Diagram) (see LD editor, p. 38)
� SFC editor (Sequence language) (see SFC editor, p. 38)
� IL editor (Instruction List) (see IL editor, p. 39)
� ST editor (Structured Text) (see ST editor, p. 39)
� LL984 editor (Modsoft orientated Ladder Logic) (see LL984 editor, p. 40)

The following editors are available for declaring variables, creating data types and
displaying variables.
� the Variable Editor (for declaring variables), (see Variable Editor, p. 40)
� the reference data editor (for displaying and online changing of values) (see

Reference data editor, p. 41) and
� the data type editor (for creating user specific data types) (see Data type editor

(DDT editor), p. 40).

The following editors are available for creating user specific functions and Function
Blocks:
� Concept DFB (for creating Derived Function Blocks and macros) (see Concept

DFB, p. 44)
� Concept EFB (for creating user specific elementary functions and Function

Blocks) (see Concept EFB, p. 45)

FBD editor The FBD editor (see Function Block language FBD, p. 209) is used for graphic
function plan programming according to IEC 1131-3.

Elementary functions, Elementary Function Blocks (EFBs) and Derived Function
Blocks (DFBs) are connected with signals (variables) onto FBD sections for the
function plan. The size of a FBD section is 23 lines and 30 columns.

EFBs are equipped with a fixed or variable number of input variables and may be
placed anywhere on the section. Variables and EFBs may have comments
separately added to them, column layouts on a section may be commented on
anywhere using text boxes. All EFBs may be performed conditionally or
unconditionally.

All the EFBs are divided into function- and use-orientated libraries in various groups,
to make them easier to locate.
33002204 37

General description of Concept
LD editor The LD editor (see Ladder Diagram LD, p. 233) is used for graphic ladder
programming according to IEC 1131-3.

Contacts and coils are connected to the Ladder Diagram in LD sections using
signals (variables).

The size of a FBD section is 23 lines and 30 columns.

Furthermore, the elementary functions and Function Blocks (EFBs), which are
named in the FBD editor, the Derived Function Blocks (DFBs) and User Defined
Function Blocks (UDFBs) may also be bound in the ladder diagram (see FBD editor,
p. 37).

The structure of a LD section corresponds to a rung for relay switching. The left
power rail is located on its left-hand side. This left power rail corresponds to the
phase (L ladder) of a rung. With LD programming, in the same way as in a rung, only
the LD objects (contacts, coils) which are linked to a power supply, that is to say
connected with the left power rail, are "processed". The right power rail, which
corresponds to the neutral ladder, is not shown optically. However, all coils and EFB
outputs are linked with it internally and this creates a power flow.

SFC editor The SFC editor (see Sequence language SFC, p. 267) is used to graphically
program an IEC 1131-3 compatible sequential control.

The SFC elements are connected in a SFC section to one of the sequential controls
corresponding to the task setting. The size of a SFC section is 32 lines and 200 lines.

The following sequential control programming objects are available in Concept.
� Step (including actions and action sections)
� Transition (including transition section)
� Alternative branch and merge
� Parallel branch and merge
� Jump
� Connection

Simple diagnostics monitoring functions are already integrated in the steps.
38 33002204

General description of Concept
IL editor The IL editor (see Instruction list IL, p. 315) is used for programming IEC 1131-3
compatible instruction lists.

Existing IL instructions, elementary functions and Elementary Function Blocks
(EFBs), and Derived Function Blocks (DFBs) are written in series in text form in IL
sections from operators (commands) and operands (signals, variables).

When the program is entered, all the standard Windows services and some
additional commands for text-processing are available. The size of an IL section is
64 Kbyte maximum.

The following instruction list programming operators are available in Concept:
� Logic (AND, OR etc.)
� Arithmetic (ADD, SUB, MUL, DIV, …)
� Comparative (EQ, GT, LT, …)
� Jumps (JMP, … conditional/unconditional)
� EFB call (CAL , … conditional/unconditional)

IL programming is done in text form. When text is entered, all the standard Windows
services for text-processing are available. The IL editor also contains some further
commands for text-processing.

A spell check is performed immediately after text has been entered (instructions, key
words, separators), highlighting errors with a colored outline.

ST editor The ST editor (see Structured text ST, p. 383) is used for programming IEC 1131-3
structured text.

Existing ST statements, elementary functions and Elementary Function Blocks
(EFBs), and Derived Function Blocks (DFBs) are written in text form in IL sections
by printing (operator lists) and operands (signals, variables).

When the program is entered, all the standard Windows services and some
additional commands for text-processing are available. The size of a ST section is
64 Kbyte maximum.

The following structured text programming statements and operators are available
in Concept:
� conditional/unconditional statement execution (IF, ELSIF, ELSE, …)
� conditional/unconditional loop execution (WHILE, REPEAT)
� Mathematical, comparative, and logic operators
� conditional/unconditional EFB call

ST programming is done in text form. When text is entered, all the standard
Windows services for text-processing are available. The ST editor also contains
some further commands for text-processing.

A spell check is performed immediately after text has been entered (instructions, key
words, separators), highlighting errors with a colored outline.
33002204 39

General description of Concept
LL984 editor Using the Modsoft orientated LL984-Editor (see Ladder Logic 984, p. 429) (Ladder
Diagram 984), instructions, contacts, coils and signals (variables) are connected to
a ladder diagram. Instructions, contacts, coils and variables may be commented on.

The structure of a LL984 section corresponds to a rung for relay switching. The left
power rail is located on its left-hand side, but it is not visually displayed. This left
power rail corresponds to the phase (L ladder) of a rung. With LL984 programming,
in the same way as in a rung, only the LL984 objects (instructions, contacts, coils)
connected to a power supply, i.e. connected to the left power rail, are "processed".
The right power rail, which corresponds to the neutral ladder is not visually displayed
either. However, all coils and instruction outputs are linked with it internally and this
creates a power flow.

Concept has various predefined instructions for ladder programming using LL984.
These may be found in the block library LL984. Additional instructions for special
applications are available as loadables and may be loaded at a later time.

Variable Editor The Variable Editor (see Variables editor, p. 525) is used to declare and comment
on all necessary symbolic signal names (variables). Only declared variables may be
used in Concept programs.

A data type must be assigned to each symbolic signal name! If this variable is
assigned a reference address, a Located variable (without reference address =
Unlocated variable) is received. An initial value may also be provided for each
variable, which will be transferred into the PLC during the first load.

Data type editor
(DDT editor)

The Data type editor (see Derived data types, p. 547) may be used to define specific
Derived Data Types (Derived Data Type = DDT).

Derived Data Types combine several Elementary data types (BOOL, WORD, …) in
one data record. It is not only the same data types which may be combined as
ARRAY, but also various data types may be combined as STRUCT. In Concept, a
number of Derived Data Types are already available, which for instance may be
used for DFBs.

DDTs appear in DFBs or EFBs only as a connection, i.e. for instance in FBD a
variable input is only necessary in the block. It is thus recommended that frequently
recurring groups of elementary data types (and also DDTs) be defined as DDTs, in
order to improve accessibility of an application.

The definition appears in text form, and all the standard Windows services and some
additional commands for text-processing are available. The size of a data type file
is 64 Kbyte maximum.
40 33002204

General description of Concept
Reference data
editor

The Reference data editor (see Reference data editor, p. 577) may be used in online
mode to display the variable value, to force variables and to set variables. There is
also the possibility of separating variables from the process. Inputs may be saved in
a data file and be reused.

Online functions

Available online
functions

After the programming device has been linked to the PLC, a range of online Startup
and maintenance functions become available.
� the program on the programming device is compared with the program on the

PLC
� the PLC can be started and stopped
� Object information is displayed
� Programs can be loaded, sections can be changed online and loaded
� Variable values can be entered online
� Animation mode shows the program with its current signal states

Operating and
monitoring

Declaration of special operating and monitoring variables is not necessary in
Concept. The variables to be visualized can be identified as such in the Variable
Editor and then be exported into a ModLink or FactoryLink configuration data file.
This data file can be used for visualizing.

Communication

Description Communication between the PLC and another Modbus-, Modbus Plus-, SY/MAX-
Ethernet or TCIP/IP Ethernet node is projected using IEC languages (FBD, LD,
SFC, ST, IL) with the EFBs from the block library COMM. The instruction MSTR may
be used with the programming language LL984 to construct these communications.

A peer to peer transfer of register contents is possible using the peer cop,
independent of these blocks/instructions.

Communication is projected between the PLC and the decentralized I/O via the
INTERBUS by simply entering the NOA module in the component list and loading a
loadable (ULEX).

Communication is projected between the programming device and a PLC via
Ethernet by simply entering and parametering the appropriate couple module in the
component list.
33002204 41

General description of Concept
Secure Application

At a Glance In several areas of industry, the need for security demands regulated access to
PLCs, recording program changes and archiving those recordings. Following a
standardized procedure ensure that records may not be falsified. To enable these
requirements, new features have been implemented in Concept that ensure secure
application. To guarantee that all of these parameters are defined, the user can
activate the Secure Application check box in the Project → Project Properties
dialog. Concept will then ensure that all of these parameters are set and that their
contents remain valid. The project is then indicated as being a secure application,
and this information is included in the information that is downloaded to the PLC.

Secure
Application

The secure application is defined in the Project → Project Properties dialog by
activating the Secure Application check box. These settings are then exported,
imported, read and loaded to the PLC.

The log file is stored in the Concept directory and has the name of the current date
(YEARMONTHDAY.ENC, e.g. 20020723.ENC). The path of the log file can be
defined in dialog Common Preferences. If no path is defined then Concept uses
the default log path (Concept directory, e.g. C:\CONCEPT).

Among other things, logging write-access to the PLC can record the following data:
� Section name
� EFB/DFB Instance name, FB Type name
� Pin Name
� [Variable name] [Literal] [Address]
� Old value
� New value
� User name (if the Concept (Login) password is activated in Concept Security)
� Data and Time (see alsoAddress format in LOG file [Logging], p. 1099)

Note: When the secure application is activated, a NOT EQUAL status is generated
and required reloading to the PLC. Unchecking the check box also creates a NOT
EQUAL status so that loading is again required as well. If Concept is connected to
a PLC that is already defined with the "Secure Application" setting, the setting is
automatically accepted in Concept in case of upload the controller.
42 33002204

General description of Concept
Requirements The secure application can only be activated if the following prerequisites are met:
� can only be used with 140 CPU 434 12A or 140 CPU 534 14A/B
� at least one IEC section (if no IEC section exists then the download is aborted.)
� Offline mode (Online → Disconnect...)
� Supervisor Rights (see Concept under Help → About... → Current User:)

Activation
Combination for
Secure
Application

Various Activation Combinations for Secure Application:

Reading the
Encrypted Log
File

To read the encrypted log file, the View tool is opened automatically in the View
Logfile dialog.

"Secure
Application"
activated in
Concept

"Secure
Application"
loaded to PLC

Reaction to connection with the PLC

Not activated Not activated Normal operation without secure application

Not activated Activated When uploading, the Secure Application
check box is activated in Concept and
encrypted logging is activated.

Activated Not activated Download required because the status is NOT
EQUAL.

Activated Activated Normal operation with secure application (e.g.
encrypted logging).

Note: If an encrypted log file has been improperly modified in any way, the log is
decoded as much as is possible, and the lines that have been modified will remain
unreadable. The first line will contain the message: "This log file has been
modified".
33002204 43

General description of Concept
Utility program

At a Glance In addition to Concept the following range of utility programs are available:
� Concept DFB
� Concept EFB
� Concept SIM (16 bit)
� Concept PLCSIM32 (32 bit)
� Concept Security
� Concept WinLoader
� Concept Converter
� Concept ModConnect

Concept DFB Concept DFB is used to create DFBs (Derived Function Blocks) (see DFBs (Derived
Function Blocks), p. 457) and Macros (see Macros, p. 501).

DFBs (Derived Function Blocks)

DFBs can be used for setting both the structure and the hierarchy of a program. In
programming terms, a DFB represents a subroutine.

DFBs can be created in the programming languages FBD, LD, IL, and ST. In
Concept, DFBs can be called up in any programming language, regardless of the
programming language they were created in. One or several existing DFBs can be
called up within one DFB, with the called-up DFBs themselves able to call up one or
several DFBs.

Macros

Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).

Macros have the following properties:
� Macros can only be created in the programming language FBD.
� Macros only contain one section.
� Macros can contain a section of any complexity.
� In programming terms, there is no difference between an instanced macro, i.e. a

macro inserted into a section and a conventionally created section.
� It is possible to call up DFBs in a macro.
� It is possible to declare macro-specific variables for the macro.
� It is possible to use data structures specific to the macro
� Automatic transfer of the variables declared in the macro.
� Initial values are possible for the macro variables.
� It is possible to instance a macro many times in the entire program with different

variables.
� Section names, variable names and data structure names can contain the

character ~ as an exchange marking.
44 33002204

General description of Concept
Concept EFB The optional tool Concept EFB can be used to generate, in C++ programming
language, your own application specific Functions and Function Blocks (EFBs) and
to integrate them in the form of libraries with groups in your version of Concept.

The operating rules for these user-defined blocks (UDFBs) are identical to those for
standard EFBs.

It is, for instance, recommended that complex program parts with a high number of
calls and program parts, whose solution is to remain hidden from the user, e.g.
special technology objects etc. be generated using Concept EFB.

Concept SIM
(16 bit)

The 16 bit simulator Concept SIM (see Simulating a PLC (16-bit simulator), p. 725)
is available for simulating a PLC, i.e. to test your user program online without
hardware. Concept SIM simulates a coupled PLC via Modbus Plus.

Concept PLCSIM
(32 bit)

The 32 bit simulator Concept PLCSIM32 (see Simulating a PLC (32-bit simulator),
p. 727) is available for simulating a PLC, i.e. to test your user program online without
hardware. Concept PLCSIM32 simulates a PLC coupled via TCP/IP, where the
signal states of the I/O modules can also be simulated. Up to 5 programming
devices can be coupled to the simulated PLC at the same time.

Concept Security Concept Security (see Concept Security, p. 737) can be used to assign access.
Access signifies that the function of Concept and its utility programs is limited
depending on the user.

The access defined for one user is applicable to all Concept installation projects. A
maximum of 128 users may be defined.

Note: Concept EFB is not included as part of the Concept package and may be
ordered in addition.

Note: The simulator is only available for the IEC languages (FBD, SFC, LD, IL and
ST).

Note: The simulator is only available for the IEC languages (FBD, SFC, LD, IL and
ST).
33002204 45

General description of Concept
Concept
Converter

Projects, DFBs, macros, and data structures (Derived Data Types), created for an
earlier version of Concept, can be converted without hassle to work in the current
version of concept in the Concept Converter (see Convert Projects/DFBs/Macros,
p. 967).

Concept
EXECLoader

The Concept EXECLoader can be used to load Exec data files onto the PLC.

Concept
ModConnect

Concept-ModConnect (see Concept ModConnect, p. 971) can be used to extend
the configurator for new (specific) I/O modules.
46 33002204

33002204
2

New Performance Attributes of
Concept 2.6 in Comparison with
Concept 2.5
Introduction

Overview This Chapter describes the new performance attributes of Concept 2.6 in
comparison with Concept 2.5.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

New Performance Attributes of Concept 2.6 Compared with Concept 2.5 48

New performance attributes of Concept 2.6 SR2 in comparison with Concept
2.6 SR1

53

New performance attributes of Concept 2.6 SR3 in comparison with Concept
2.6 SR2

55
47

New Performance Attributes
New Performance Attributes of Concept 2.6 Compared with Concept 2.5

Highlights New general performance attributes:
� Interrupt sections
� Global variables
� Security features

New EFBs New EFBs in the SYSTEM library:

New EFBs in the COMM library:

New EFBs Description

I_LOCK Disable all interrupt sections

I_UNLOCK Enable all interrupt sections

I_MOVE Interrupt protected assignment

ISECT_OFF Disable specific interrupt sections

ISECT_ON Unlock a specific interrupt section

ISECT_STAT Interrupt section status

PRJ_VERS States project name and version

GET_IEC_INF Read IEC status flags

RES_IEC_INF Reset IEC status flags

New EFBs Description

PORTSTAT States Modbus Port status
48 33002204

New Performance Attributes
Start Concept New features when starting Concept:

Animation 12 different color schemes for animation in the FBD, IL, ST, SFC and LD editors:

Reference data
editor

New feature in the reference data editor:

Online functions New online features:

New performance attributes Description

Automatic connection to every
desired PLC

Startup using the Concept Project Symbol creates
automatic connection to any desired PLC. This
connection is defined by the Command line parameter
(see Automatic Connection with Command Line
Parameters (Modbus, Modbus +, TCP/IP), p. 1132).

When starting Concept using the
CCLaunch tool, a connection is
made to every desired PLC

In large networks, a topology file is created and is then
used in the CCLaunch tool. You can use this to create a
complete MB+ Routing path (see Automatic Connection
with the CCLaunch Tool (Modbus Plus), p. 1135), which
then creates a connection to the PLC automatically.

Displays list of previously opened
Projects/DFBs

When starting Concept a list of previously opened
Projects/DFBs (max. 4) is displayed in the File main
menu.

Archive content display When unpacking an archived project, all archived files
are shown first.

New performance attributes Description

CONCEPT.INI:
[Colors]

AnimationColors= (0-12)

Defines the color scheme for online animation in all
editors.

New performance attributes Description

Address format IEC (QW0000X) The IEC (QW0000X) address format can be displayed.

New performance attributes Description

Quantum password protection Quantum PLC is write protected by entering a
password.

Event sections Online diagnostics are displayed for Interrupt sections.

Event viewer Error descriptions can be defined in a project specific INI
file (see INI Settings for the Event Viewer [Online
Events], p. 1102) that should appear in the event viewer
(Online → Online events...).
33002204 49

New Performance Attributes
Message window New performance attributes in the Windows menu:

New CPU New CPU:

New Module New Quantum module:

New Momentum module:

Project Browser New features in the Project browser:

New performance attributes Description

Save messages After messages are displayed they can be saved to file
using the Save Messages... (main menu Window)
menu command.

PLC family Description

Atrium CPU 180-CCO-241-11

Module Description

140-NOE-771-01 Ethernet module without Hot Standby features.

140-NOE-771-11 Ethernet module (Factory Cast) without Hot Standby
features.

140-CPS-114-20 Power supply module

140-CPS-124-20 Power supply module

140-NOG-111-00 1/SFB Master module

140-NWM-100 00 Ethernet module (Factory Cast HMI)

Module Description

170-ANR-120-91 Analog/Digital Input/Output module

New performance attributes Description

Display interrupt sections When I/O event sections and Timer event sections are
used, they are displayed in the Project browser
structure.

Show detailed view The Project browser window is split vertically, and a
second window displays the substructure (e.g. DFBs,
Transitions sections, etc.) of the selected elements in a
structure tree.
50 33002204

New Performance Attributes
Analyze section New features when analyzing sections:

DFB New features for DFB programming:

Data types New features for DFB programming:

Configuration New features in the Configurator:

New performance attributes Description

Analyze interrupt sections There is now an additional analysis for Interrupt
sections.

Analyzing global variables in DFBs There is an analysis for global variables in DFBs.

New performance attributes Description

Located variables Located variables are permitted in DFBs when the
option in the IEC Extensions dialog box is enabled.
Global variables can be created throughout the program
with located variables in DFBs.

New performance attributes Description

View comments for data structure
elements

Comments for data type components defined in data
type files (*.ddt, *.dty) are displayed in:
� Editors status line
� Variables editor for the definition of initial values
� Inspect Animation field

Extended Data Type Definition
(larger than 64 Kbytes), p. 555

The 64 kb restriction is not imposed for local data type
definition with the introduction of unlocated Include files.

New performance attributes Description

1/SFB Coupler configuration Required to provide support for the A500/A350 I/O
module. Extended I/O range up to 160 input/output
words.

Quantum security parameter The following parameters can be defined in the new
dialog box (submenu of the Config. Extensions):
� Secure data area
� Network write restrictions
� Enable the Auto-Logout option

Interbus configuration with Atrium The Interbus configuration is done with Atrium CPUs
180 CCO 241 01 (= 1 INTERBUS) and 180 CCO 241 11
(= 2 INTERBUS).
33002204 51

New Performance Attributes
Logging
(*.LOG, *.ENC)

New features for DFB logging:

Secure
Application

New features for a secured application:

New Tools New Tools for Concept:

New performance attributes Description

Additional contents When logging PLC write access, modifications made to
variable and literal values are displayed in addition.

New Date/Time format By activating the check box Universal Date Format in
dialog Common Preferences (setting also affects the
CONCEPT.INI file) the format can be changed. The
month is then stated within Concept with 3 characters
and in English. Example: 24-Dec-2002 14:46:24

Encrypting the log By activating the check box Encrypt Logfile in dialog
Common Preferences (or indirectly using the check
box Secure Application in dialog Project Properties)
login the write access to the PLC will be encrypted. The
encrypted file contains the file extension *.ENC.

New performance attributes Description

Application backup If you activate the check box in the Project → Project
Properties dialog box, program modifications are
automatically logged and encrypted in a *.ENC file.
These settings can be loaded using Export/Import and
transferred to the PLC.

New Tool Description

CCLaunch This tool is used for making an automatic connection
(see Automatic Connection with the CCLaunch Tool
(Modbus Plus), p. 1135) with a PLC in a large network.

View Tool This tool allows you to view encoded LOG files (*.ENC).
It is started automatically with menu instruction View
Logfile if log encrypting has been activated.
52 33002204

New Performance Attributes
New performance attributes of Concept 2.6 SR2 in comparison with
Concept 2.6 SR1

New EFBs New EFBs in the IEC library:

Search/
Replacement of
FFBs

New features when searching for/replacing FFBs:

Create a new
project

New features when generating a new project:

New EFBs Description

CMPR Compares the Bit pattern of Matrix A to that of Matrix B.

MBIT with pointer Changes the bit position in a data matrix.

SEARCH Searches the register in a source table for a specific bit pattern.

SENS with pointer Checks the query value of a specific bit position in a data matrix.

XXOR Performs a Boolean Exclusive-OR-Operation with the bit
patterns of the source and target matrix.

New feature Description

FFB type is replaced in all
sections (only for DFBs)

In the dialog box Replace FFB Type by activating the new
check box Replace in all sections the selected FFB type can
be replaced in all sections (only for DFBs).

New feature Description

Specify project path when
generating a new project

When generating a new project (File → New Project) you can
define a new path or accept the standard path again.
33002204 53

New Performance Attributes
New options in
the upload and
loading dialog
box

New options in the upload and loading dialog box:

INI files New settings in the CONCEPT.INI:

New settings in the Projectname.INI:

New features Description

New check boxes in the
dialog box Load into the
PLC:
� State RAM + Initial

Values
� Only state RAM

By activating the check box State RAM + Initial Values at first
all initial values of the Located 4x-Variables are copied from the
Variable Editor into the state RAM mirror. Then, the initial values
and all blocked 0x and 1x-I/O-bits are loaded from the state
RAM mirror into the PLC.
By activating the check box State RAM Only the initial values
of the Located 4x-Variables and all blocked 0x and 1x I/O bits
are loaded from the state RAM mirror into the PLC.

New check boxes in the
dialog box PLC Upload:
� Upload State RAM +

Initial Values
� Only upload State

RAM

By activating the check box Upload State RAM + Initial Values
at first all Located 0x-, 1x, and 4x-values are read from the PLC
and saved in the state RAM mirror. Then, the initial values of the
4x-variables are overwritten with the value from the state RAM
mirror.
With the activation of the check box Only read state RAM all
Located 0x-, 1x- and 4x-values are read from the SPS, and
saved in the state RAM mirror.

New Settings Description

Define overwriting of the
uploaded state RAM
values

In the line [RDE] of the CONCEPT.INI you can define that
uploaded state RAM values are not overwritten by online
operations in the RDE.

Define start of the RDE-
Animation

In the line [RDE] of the CONCEPT.INI you can define that the
RDE animation is automatically started when opening a table.

Exclusion of all or global
DFBs from Online-Backup

In the line [Backup] of the CONCEPT.INI you can define that
after the Online-Backup the directories "DFB" and/or
"DFB.GLB" are not present in the backup directory.

New Setting Description

Define path and backup
files

In the line [Backup] of Projectname.INI, you can output a Batch-
file (EXE-file) for the Online-Backup-Operation, by which you
perform additional backups e.g. for another PC.
54 33002204

New Performance Attributes
Multiple Address
Assignment

New feature for multiple address assignment:

New performance attributes of Concept 2.6 SR3 in comparison with
Concept 2.6 SR2

New menu
command

New menu command:

New feature Description

Cleaning up multiple
assignment of a single
address by different
variable names

In the dialog box Multiple Address Assignments variable
names that are all assigned to the same address are replaced
or renamed. In the end, only one variable name is assigned to
this address.

New menu command Description

Options → Tools Use this menu command to open a menu to execute
additional applications or help programs.
33002204 55

New Performance Attributes
56 33002204

33002204
3

Project structure
At a Glance

Overview This chapter describes the structure of projects in Concept.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Project Structure and Processing 58

Programs 64

Sections 68

Configuration data 74
57

Project structure
Project Structure and Processing

Structure of a
project

The creation of a PLC program with Concept is carried out hierarchically in a project
using PLC configuration (see Configuration data, p. 74) and Program (see
Programs, p. 64). The program is divided into section groups and Sections (see
Sections, p. 68).

The PLC configuration and required program parts can be created in any order
within a project (top down or bottom up).

Structure of a project:

Project

Section group

Section group

Program

cycl. cycl. HW HW Timer

(cyclic)

cycl.
Sect.

cycl.
Sect. Sect. Sect.

Timer
Sect. Sect. Sect. Sect.

Section group
I/O event

Section group
Timer event

Configuration
58 33002204

Project structure
Processing an
IEC/LL984
project

This table describes the processing of a LL984/IEC project (Quantum):

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - 4 In these stages, the logic for the LL984 sections is executed by the logic
processor in segments 1-3 (corresponding to the settings in the Segment
scheduler (see Segment manager, p. 117)).
At the same time the I/O processor transfers the output values calculated in the
respective previous segment to the hardware and the hardware reads the input
values required for the next respective segment.

n In this step, the logic processor in segment n runs the LL984 sections logic.
At the same time the I/O processor transfers the output values calculated in the
previous segment to the hardware and the hardware reads the input values
required for segment 1.
Note: The output values calculated in this segment are only executed on next
execution of stage 2, i.e. after the IEC logic and the overhead have been
processed. Therefore no time critical logic should be executed in this segment.

n+1 - m The logic processor runs the IEC sections logic in these steps.
It then "jumps back" to stage 1.

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 Executing LL984 segment 1 Writing outputs calculated in segment n

Reading inputs required in segment 2

3 Executing LL984 segment 2 Writing outputs calculated in segment 1

Reading inputs required in segment 3

4 Executing LL984 segment 3 Writing outputs calculated in segment 2

Reading inputs required in segment 4

...

n Executing LL984 segment n (n =< 32) Writing outputs calculated in segment
n-1

Reading inputs required in segment 1

n+1 Executing IEC section 1 -

n+2 Executing IEC section 2 -

n+3 Executing IEC section 3 -

.. -

m Executing IEC section n (n =< 1600)
and back to stage 1

-

33002204 59

Project structure
Note: No hardware signals are read or written. The values calculated/read in
stages 2 to n are used exclusively. The outputs calculated in these stages are
transferred in stages 2 to n (corresponding to the settings in the segment
scheduler).

Processing a
LL984 project

This table describes the processing of a LL984 project (Quantum):

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - 4 In these stages, the logic for the LL984 sections is executed by the logic
processor in segments 1-3 (corresponding to the settings in the Segment
scheduler (see Segment manager, p. 117)).
At the same time the I/O processor transfers the output values calculated in the
respective previous segment to the hardware and the hardware reads the input
values required for the next respective segment.

n In this step, the logic processor in segment n runs the LL984 sections logic.
At the same time the I/O processor transfers the output values calculated in the
previous segment to the hardware and the hardware reads the input values
required for segment 1.
It then "jumps back" to stage 1.
Note: The output values calculated in this segment are only processed the next
time stage 2 is completed, i.e. after the overhead has been processed. Therefore
no time critical logic should be executed in this segment.

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 Executing LL984 segment 1 Writing outputs calculated in segment n

Reading inputs required in segment 2

3 Executing LL984 segment 2 Writing outputs calculated in segment 1

Reading inputs required in segment 3

4 Executing LL984 segment 3 Writing outputs calculated in segment 2

Reading inputs required in segment 4

...

n Executing LL984 segment n (n =< 32)
and back to stage 1

Writing outputs calculated in segment
n-1

Reading inputs required in segment 1
60 33002204

Project structure
Processing an
IEC project

This table describes the processing of an IEC project (Quantum):

1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - n The hardware signals from the allocated modules respective segments are
written and read by the I/O processor in these stages (corresponding to the
settings in the Segment scheduler (see Segment manager, p. 117)).

n+1 - m The logic processor runs the IEC sections logic in these steps.
It then "Returns" to stage 1.
Note: No hardware signals are read or written. The values read in stage 2 to n
are used exclusively. The outputs calculated in these stages are transferred in
stages 2 to n (corresponding to the settings in the Segment manager).

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 - Writing outputs allocated to segment 1

Reading inputs allocated to segment 1

3 - Writing outputs allocated to segment 2

Reading inputs allocated to segment 2

4 - Writing outputs allocated to segment 3

Reading inputs allocated to segment 3

...

n - Writing outputs allocated to segment n
(n =< 32)

Reading inputs allocated to segment n
(n =< 32)

n+1 Executing IEC section 1 -

n+2 Executing IEC section 2 -

n+3 Executing IEC section 3 -

.. -

m Executing IEC section n (n =< 1600)
and back to stage 1

-

33002204 61

Project structure
Processing an
IEC project

This table describes the processing of an IEC project (Quantum):

Step Logic processor I/O processor

1 Overhead, e.g. communication with
NOM, NOE etc.

-

2 - Writing outputs allocated to segment 1

Reading inputs allocated to segment 1

3 - Writing outputs allocated to segment 2

Reading inputs allocated to segment 2

4 - Writing outputs allocated to segment 3

Reading inputs allocated to segment 3

HE1 1. I/O event section, spontaneous
execution, when Hardware Interrupt
occurs

-

HE2 2. I/O event section, spontaneous
execution, when Hardware Interrupt
occurs

-

...

HE64 64. (last) I/O event section,
spontaneous execution, when
Hardware Interrupt occurs

-

TE1 1. Timer event section, only executed
when time interrupt occurs

-

TE2 2. Timer event section, only executed
when time interrupt occurs

-

...

TE16 16. Timer event section, only executed
when time interrupt occurs

-

...

n - Writing outputs allocated to segment n
(n =< 32)

Reading inputs allocated to segment n
(n =< 32)

n+1 Executing IEC section 1 (cyclically) -

n+2 Executing IEC section 2 (cyclically) -

n+3 Executing IEC section 3 (cyclically) -

.. -

m Executing IEC section n (n =< 1600)
and return to stage 1

-

62 33002204

Project structure
1 The overhead is executed in this stage (e.g. communication with the coupling
modules NOM, NOE).

2 - n The hardware signals from the allocated modules respective segments are
written and read by the I/O processor in these stages (corresponding to the
settings in the Segment scheduler (see Segment manager, p. 117)).

n+1 - m The logic processor processes the IEC sections logic in these steps.
It then "Returns" to stage 1.
Note: No hardware signals are read or written. The values read in stage 2 to n
are used exclusively. The outputs calculated in these stages are transferred in
stages 2 to n (corresponding to the settings in the Segment scheduler).

HE1 - HE64 If a hardware interrupt signal specially assigned to a section changes
its value according to its parameter configuration, the cyclical processing and if
necessary the processing of a Timer event section is immediately stopped and
returned to the I/O event section. Once all event sections (and Timer event
sections) are processed, the cyclical processing is continued at the point where
the interrupt occurred. (See also chapter "I/O Event Sections, p. 1125")

TE1 - TE16 When a specially configured Timer interrupt signal for a section occurs,
cyclical processing is immediately stopped and jumps to the Timer event section.
Once Timer event sections are processed, the cyclical processing is continued at
the point where the interrupt occurred as long as there are no further instructions
for Timer event sections. (See also chapter "Timer Event Sections, p. 1110")
33002204 63

Project structure
Programs

Structure of a
program

A program consists of one or more Sections (see Sections, p. 68) or section groups.
Section groups can contain sections and other section groups. Section groups can
be created exclusively and filled using Project → Project browser (see Project
Browser, p. 539). Sections describe the entire systems mode of operating.

Moreover the variables, constants, literals and direct addresses are managed within
the program.

Variables Variables are used to exchange data within a section, between several sections and
between the program and the PLC.

Variables are declared using the menu command Project → Variable declaration.
If the variable with this function is assigned an address, it is called a Located
variable. If the variable has no address assigned to it, it is called an Unlocated
variable. If the variable is assigned with a derived data type, it is called a Multi-
element variable.

There are also constants and literals.

The following table provides an overview of the various types of variables:

Variable type Description

Located variables Located variables are allocated a State RAM address (reference
address 0x, 1x, 3x,4x). The value of this variable is saved in the
State RAM and can be changed online using the Reference data
editor. These variables can be addressed using their symbolic
names or using their reference address.

All PLC inputs and outputs are connected to the State RAM. The
program can only access peripheral signals attached to the PLC
via located variables. Access from external pages via Modbus or
Modbus Plus interfaces of the PLC, e.g. from visualization
systems can be made using located variables.

Unlocated variables Unlocated variables are not assigned a State RAM addresses.
They therefore do not occupy any State RAM addresses. The
value of this variable is saved internally in the system and can be
changed using the Reference data editor. These variables are
only addressed using their symbolic names.

Signals requiring no peripheral access, e.g. intermediate results,
system tags etc, should primarily be declared as unlocated
variables.
64 33002204

Project structure
Variable start
behavior

In start behavior of PLCs there is a distinction between cold restarts and warm
restarts:
� Cold restart

Following a cold restart (loading the program with Online → Download) all
variables (irrespective of type) are set to "0" or their initial value if available.

� Warm restart
In a warm restart (stopping and starting the program or Online → Download
changes) different start behaviors are valid for located variables/direct
addresses and unlocated variables:
� Located variables/direct addresses

In a warm restart all 0x, 1x and 3x registers are set to "0" or their initial value
if available.
The buffered coils are an exception to this. Buffered coils retain their current
value (storage behavior).
4x registers retain their current value (storage behavior).

� Unlocated variables
In a warm restart all unlocated variables retain their current value (storing
behavior).

Multi element variables A variable which is assigned a Derived data type.

A distinction is made here between Structured variables and Array
variables.

Structured variables Variables to which a Derived data type defined using a STRUCT
(structure) is assigned.

A structure is a collection of data elements with generally different
data types (Elementary data types and/or Derived data types).

Array variables A variable which is assigned a defined data type with the key word
ARRAY.

An array is a collection of data elements with the same data type.

Variable type Description
33002204 65

Project structure
This varying behavior in a warm restart leads to peculiarities in the warm restart
behavior of set and reset functions.
� Set and Reset in LD and IL

Warm restart behavior is dependent on the variable type used (storage behavior
in use of unlocated variables; non storage behavior in use of located variables/
direct addresses)

� SR and RS Function Blocks in FBD, LD, IL and ST
These function blocks work with internal unlocated variables and therefore
always have a storage behavior.

Constant
variables

Constants are unlocated variables assigned a value, which cannot be modified by
the logic program (read only).

Literals (values) Literals are used to describe FFB inputs, and transition conditions etc using direct
values. These values cannot be overwritten by the program logic (read only).

The values of literals can be changed online.

There are two different types of literal; generic and standardized.

The following table provides an overview of the various types of literals:

Literal Description

Generic literals If the literal’s data type is not relevant, simply
specify the value for the literal. In this case,
Concept automatically assigns a suitable
data type to the literal.

Standardized literals If you would like to manually determine a
literal’s data type, this may be done using the
following construction: "Data type
name"#"Literal value"
For example
INT#15 (Data type: Integer, value: 15),
BYTE#00001111 (Data type: Byte, value:
00001111)
REAL#23.0 (Data type: Real, value: 23.0)

To assign the data type REAL the value may
also be specified in the following manner:
23.0.
Entering a comma will automatically assign
the data type REAL.
66 33002204

Project structure
Direct addresses Direct addresses are memory ranges in the PLC. They are located in the State RAM
and can be assigned Input/Output modules.

Direct addresses can be entered or displayed in various formats. The display format
is specified in the dialog box Options → Preferences → Common. Setting the
display format has no impact on the entry format, i.e. direct addresses can be
entered in any format.

The following address formats are possible:
� Standard format (400001)

The five character address comes directly after the first digit (the Reference).
� Separator format (4:00001)

The first digit (the Reference) is separated from the following five-character
address by a colon (:).

� Compact format (4:1)
The first digit (the Reference) is separated from the following address by a colon
(:), and the leading zeros of the address are not given.

� IEC format (QW1)
In first place, there is an IEC identifier, followed by the five-character address.
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

The values of direct address can be modified online using the Reference data editor
(see Reference data editor, p. 577).

Start behavior of
digital outputs

Outputs that are assigned 0x registers are deleted during PLC startup. Digital
outputs that assigned 4x registers keep their current value when the PLC is stopped
or started.
33002204 67

Project structure
Sections

Introduction A program consists of one or more sections. A section describes the mode of
functioning of a systems technological unit (for example a motor).

Each section has its own document window in Concept. For overview purposes it is
useful to divide a very large section into several small ones. The scroll bar is used
to move within a section.

The page break can be made visible for each section, so that the page format can
be monitored when programming. In this way, a readable printout of the section is
assured.

Section types There are three different types of sections in Concept provided for Quantum
processing.
� Cyclical section are executed in every program cycle. The reaction time

depends on the cycle time and is a minimum of one cycle and maximum of two
cycles.

� I/O event sections are not executed cyclically, but are started and processed
spontaneously when a specially assigned Interrupt signal value changes state
(corresponding to the setting in the Configurator and Section properties).
The 140-HLI-340-00 module provides 16 Interrupt inputs. The local backplane
has space for a maximum of 4 HLI modules.
The reaction time to an I/O event generally depends on the process duration of
the EFBs to be processed in the section as well as the transition times.

� Timer event sections are started and processed in precise user defined
intervals.
The time intervals are defined in multiples of 1ms and a Phase in the Section
properties for Timer Event Sections dialog box.
The reaction time is independent of the cycle time. Reactions to outputs are also
carried out in defined time intervals.

Maximum
number of
sections

There can be up to a maximum of 1,600 sections per program.

Programming
languages

Sections can be programmed using the IEC programming languages FBD (Function
Block Diagram), LD (Ladder Diagram), SFC (Sequential Control), IL (Instruction
List), or ST (Structured Text), or in the LL984 programming language (Ladder
Logic), which resembles Modsoft. Only one of the stated programming languages is
permitted to be used within a section.
68 33002204

Project structure
Exchanging
values

Values are exchanged within sections via links, variables, or direct addresses.
Values are exchanged between different sections via variables or direct addresses.

Section
execution order

The LL984 sections are the first to be executed. The LL984 section vertical
sequence can be defined via the Project → Configurator → Configure →
Segment scheduler... dialog box. Once the entire LL984 section has been
processed, the IEC sections are then processed (FBD, SFC, LD, IL, ST). The
execution order can be determined using either the Project → Execution order...
or the Project browser (see Project Browser, p. 539) dialog box.

Printing sections Sections are divided into pages when printing out. The amount of information on
these pages is dependent on the settings in the menu File → Print. Page division
can be displayed using the menu option View → Page breaks.

Section variable A Multi-element variable is automatically generated for each IEC section (FBD, SFC,
LD, IL, and ST) and has the same name as the section.

This variable is SECT_CTRL data and has two elements:
� The "disable" BOOL data type element for disabling sections.
� The "hsbyState" BYTE data type element for displaying the Hot Standby status

of sections.
If the smallest bit of this element is set, the data from this section is transferred/
received, see the Hot Standby User's manual. (This bit corresponds to the
exclamation mark in the project browser.)
33002204 69

Project structure
Disabling
sections

The component "disable" can be used to enable/disable the section variable If the
multi element address is not used or if the value 0 has been assigned to "disable",
the corresponding section is executed. If "disable" is assigned the value "1", the
corresponding section will not be executed. By using this variable, the execution of
sections can be controlled according to events.

Disabling
Interrupt
Sections

A specific Interrupt section can be disabled using the ISECT_OFF block. It can be
enabled again using the ISECT_ON block. The section names are provided by the
SECT_CTRL control variable.

The I_LOCK block can disable all interrupt sections. They can be enabled again
using the I_UNLOCK block.

Note: If a disabled section is animated, the DISABLED status is displayed in the
status bar.

Risk of unwanted process states.

Disabling a section does not mean that programmed outputs will be deactivated
within the section if an output has already been set in a prior cycle, this status
remains even after the section is disabled. The status of these outputs cannot be
modified.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

Note: A possible interrupt on an interrupt section has no effect.
70 33002204

Project structure
Lock section UN-
CONDITIONALL
Y (possibility 1)

The procedure for locking a section unconditionally is as follows:

Step Action

1 Using Online → Reference data editor open the Reference data editor (see
Reference data editor, p. 577).

2 By double clicking on a line number, open the Lookup variables dialog box.

3 From the area Data type first choose the option Structured and then from this
list SECT_CTRL.
Result: The names of all sections are displayed.

4 Now select the names of the section to be locked.

5 Use the command button Components... to select the ANY type components
dialog box.

6 Select the line disable: BOOL and confirm with OK.

7 If the following has not been performed yet:
Create a connection between the PLC and the programming device and load
your program onto the PLC.

8 Change the entry in the column Value to 1 (TRUE) to lock the section or 0
(FALSE) to enable the section.

9 Using Online → Animation activate the animation if it is inactive.
Result: The section is disabled or enabled according to the value.

Note: Locking a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior cycle,
this status remains even after the section has been disabled. The status of these
outputs cannot be modified.

Risk of unwanted process states.

The entry in the column Value remains even after the reference data editor has
been closed (even if the entries are not saved), or in other words, the section
remains disabled and must be explicitly re-enabled via the reference data editor
(value = 0).

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
33002204 71

Project structure
Lock section
UNCONDITI-
ONALLY
(possibility 2)

The procedure for locking a section unconditionally is as follows:

Step Action

1 Using Project → Project browser open the Project browser (see Project
Browser, p. 539).

2 From Online → Connect... create a connection between the programming
device and the PLC.

3 From Online → Download... (if the program is in NOT EQUALmode) or Online
→ Download changes (if in MODIFIED mode) restore the consistency between
the programming device and the PLC.

4 Select the section to be locked from the project browser.

5 Activate the context menu for sections using the right mouse button, and activate
Animate enable state.

6 Change the enable status using the menu command Switch enable state from
the context menu (right mouse button) of the selected section.

Note: Sections may only be disabled or enabled via the Project browser, if they
have not already been disabled/enabled via another Section (see Locking a
section CONDITIONALLY, p. 73) or via the Reference data editor (see Lock
section UNCONDITIONALLY (possibility 1), p. 71).

Result: The section is locked.

Note: Locking a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior cycle,
this status remains even after the section has been disabled. The status of these
outputs cannot be modified.
72 33002204

Project structure
Locking a
section CON-
DITIONALLY

The procedure for locking a section conditionally (program dependent) is as follows:

Step Action

1 Create the logic according to the section to be locked, for example in an FBD
section.
When doing this, please note that the logic must carry a BOOL data "output" and
that the section to be disabled will be disabled at logic "1".

Note: The section containing a logic for disabling/enabling other sections should
not be disabled.

2 By double clicking on your logic’s "output", open the Connect FFB dialog box.

3 Use the command button Lookup... to open the Lookup Variable dialog box.

4 From the area Data type first choose the option Structured and then from this
list SECT_CTRL.
Reaction: The names of all sections are displayed.

5 By double clicking, now select the names of the section to be locked.

6 Select the line disable: BOOL and confirm with OK.
Result: The multi-element variable from the section to be locked (Section
name.disable) now creates the "output" of the logic.

7 From Project → Execution order... open the Section Execution Order dialog
box.

8 Using the command buttons, ensure that the section containing the logic for
locking is executed before the section to be locking is executed.

9 If the following has not been performed yet:
Create a connection between the PLC and the programming device.

10 Download your program to the PLC.

Result: When logic "1" is at the "Output" the section to be locked is not edited.

Note: Locking a section does not mean that programmed outputs will be
deactivated within the section if an output has already been set in a prior cycle,
this status remains even after the section has been disabled. The status of these
outputs cannot be modified.
33002204 73

Project structure
Configuration data

Description The PLC configuration is the interface between the program and the hardware.

The configuration data consists essentially of the component list and the entry in the
address field of the program.

Loadables facilitate communication with the IEC programming language and the
loading of further LL984-Instructions.
74 33002204

33002204
4

Creating a Project
At a Glance

Overview This chapter describes the general procedure for the initial creation of a project. The
most linear sequence possible is used here, in order to show a Concept-newcomer
an easily manageable way of creating a project. Crosslinks between the Menu
Commands are of course possible. As they gain experience, users will learn
shortcuts and alternatives. For more detailed information, please see the relevant
chapters in the user manual.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Overview 76

Step 1: Launching Concept 77

Step 2: Configuring the PLC 78

Step 2.1: Required Configuration 79

Step 2.2: Optional Configuration 81

Step 3: Creating the User Program 85

Step 4: Save 87

Step 5: Perform Memory Prediction 88

Step 6: Loading and Testing 89

Step 7: Optimize and Separate 94

Step 8: Documentation 95
75

Creating a Project
Overview

Project Creation The creation of a project has 8 main steps:

Notes

Step Action

1 Launching Concept (see Step 1: Launching Concept, p. 77)
Launch Concept and start a new project.

2 Configuring the PLC (see Step 2: Configuring the PLC, p. 78)
Set the hardware configuration.

3 Creating the user program (see Step 3: Creating the User Program, p. 85)
Create new sections and create your program.

4 Save (see Step 4: Save, p. 87)
Save your project

5 Perform Memory Prediction (see Step 5: Perform Memory Prediction, p. 88)
Check the PLC memory workload.

6 Loading and testing the project (see Step 6: Loading and Testing, p. 89)
Create a link between the PC and the PLC. Load the project in the PLC and start
it. Test the program with the Online Test Function. Now eliminate any mistakes
in the program! Load the altered sections into the PLC.

7 Optimize and Separate (see Step 7: Optimize and Separate, p. 94)
It is now advisable to optimize the program storage capacity and to reload the
optimized program into the PLC. After successfully loading, testing and (if
necessary) optimizing, you may disconnect the PC from the PLC. The program
will now run offline.

8 Documenting (see Step 8: Documentation, p. 95)
Create a complete set of documentation of your project.

Note: The steps "Configuring the PLC" and "Creating the User Program" can be
performed in either order. This means that the PLC configuration can also be
changed after the creation of the program.

Note: In order to prevent loss of data, you should save your program regularly.
76 33002204

Creating a Project
Step 1: Launching Concept

Launching
Concept

The procedure for launching Concept is as follows:

Note

Resume Now proceed with Step 2: Configuring the PLC (see Step 2: Configuring the PLC,
p. 78).

Step Action

1 Double click on the Concept icon to launch Concept.

2 Select File → New Project.

3 You can specify a new project path or accept the standard project path with the
project name namenlos.prj.
Result:The new project is opened.
Note: If you select the standard project path with the project name
namenlos.prj , you can save this project with a name at a later time Step 4:
Save, p. 87. A saved project can be invoked with the Open Project..., or by using
its project icon.

Note: For additional steps please note the settings in the submenu Options →
Preferences!
33002204 77

Creating a Project
Step 2: Configuring the PLC

What should be
configured?

Using Project → PLC configuration configure the entire hardware configuration for
your project.

Required
Configuration

The following configurations are necessary for the configuration:
� Specifying the type of PLC (minimum configuration), p. 79
� Set memory partitions, p. 79
� Install loadables, p. 80
� Set I/O map, p. 80

Optional
Configuration

The following configurations are to be used according to the project:
� Set head setup, p. 81
� Set Modbus communication , p. 81
� Set Peer Cop communication , p. 82
� Set data protection, p. 82
� Various PLC settings, p. 83
� ASCII messages (only for 984 LL), p. 83

Note: The PLC type must first be set! All further configurations can then be
executed independently of the processing sequence.
78 33002204

Creating a Project
Step 2.1: Required Configuration

Precondition The PLC type must first be set! All further configurations can then be executed
independently of the processing sequence.

Specifying the
type of PLC
(minimum
configuration)

The procedure for specifying the type of PLC (minimum configuration) is as follows:

Set memory
partitions

The procedure for setting the memory partition is as follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the PLC Selection menu command from the list.
Response: The PLC selection dialog is opened.

3 From the PLC family list select your PLC type.

4 Select your CPU from the CPU/Executive list.

5 From the Runtime list select the Enable status.
Response: It is possible to program sections in IEC languages (FBD, LD, IL and
ST).
Note: In the Runtime list, the status Not available, Disabled or Only 984 is
displayed, then the selected CPU does not support any IEC programming
languages. If in the list the status Only IEC is displayed, then the selected CPU
exclusively supports IEC languages and these do not have to be explicitly
enabled.

6 With simple tests and programs the configuration can now be exited and the
procedure continued from Step 3: Creating the User Program, p. 85 orStep 4:
Save, p. 87.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the PLC memory partition menu command from the list.
Response: The PLC memory partition dialog is opened.

3 In the Discretes and Words ranges select the probable number of I/O flag bits
and I/O words, to be required by the user program
Note: The maximum address range, that must not be exceeded, can be read on
the right-hand side of the dialog.
33002204 79

Creating a Project
Install loadables The procedure for installing the loadables is as follows:

Set I/O map The procedure for setting the I/O map is as follows:

Resume Now proceed with Step 3: Creating the user program (see Step 3: Creating the User
Program, p. 85).

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Loadables menu command from the list box.
Response: The Loadables dialog is opened.

3 Select the loadable in the Available: list.
Note: Loadables are assigned in the Loadables, p. 114section.

4 Select the Install => command button.
Response: The selected loadable is moved to the Installed: field.

5 Repeat the steps 3 and 4 until all the loadables required have been installed.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the I/O map menu command from the list.
Response: The I/O map dialog is opened.

3 Select the Supervision time column and enter a time, within which a
communication exchange must take place. If this time is exceeded, an error
message appears.

4 Select the Edit... command button.
Response: The dialog for entering modules is opened.

5 In the Module column, select the ... command button.
Response: The I/O Module Selection dialog is opened.

6 In the Modules column, select the module.
Response: The module is displayed in the current slot.

7 Select the Input start and/or Output start columns and enter the first address
of the occupied input and/or output reference range for the module.

8 Select the module and choose the Paramscommand button.
Response: If the module has a parameter dialog, you can define the parameter
(e.g. disconnect behavior, data format, measuring range) here.
80 33002204

Creating a Project
Step 2.2: Optional Configuration

General
Information

The following configurations do not need to be executed urgently, but they offer
extended functions.

Set head setup The procedure for specifying the remote I/O is as follows (this procedure is optional
for minimum configuration):

Set Modbus
communication

To set the Modbus communication (Quantum slave, terminal, printer, etc.) proceed
as follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the I/O map menu command from the list.
Response: The I/O map dialog is opened.

3 Select the Head setup... command button.
Response: The Head Setup dialog is opened.

4 Enter the slots for the RIO or NOM modules.
Response: Return to the I/O map dialog.

5 Select the head setup in the Go To list.

6 Select an empty line (last line) in the table, and select the Insertcommand
button.
Response: In the Type column another I/O station is entered.

7 Select the Drop column and enter the station number.
Note: Only as many remote I/O stations can be configured as there are
segments registered in the segment scheduler.

8 Select the head setup in the Go To list for the 2nd drop.

9 Next, carry out steps 3 to 6 of the Set I/O map, p. 80 procedure.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Modbus Port settings menu command from the list.
Response: The Modbus port settings dialog is opened.

3 Make the corresponding settings.
33002204 81

Creating a Project
Set Peer Cop
communication

If a Modbus Plus link exists, the Peer Cop functionality is able to transfer state RAM
data globally or directly between several nodes on a local network. The procedure
for setting the Peer Cop communication is as follows:

Set data
protection

Address ranges of coils and holding registers can be protected from being
overwritten by external signals. The procedure for setting the data protection is as
follows:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Config. Extensions → Select Extensions list.
Response: The Select extensions dialog is opened.

3 Check the Peer Cop box.
Response: Return to the PLC configuration window and the Peer Cop menu
command is now available.

4 Select Config. Extensions → Peer Cop.
Response: The Peer Cop dialog is opened.

5 In the Go To range select the local bus devices, and enter the slot.

6 Select in the Global range the Receive... and Send... command buttons to
define the destination and source addresses of the transmission data and/or the
address of the other bus devices.

7 Select in the Specific range the Receive... and Send... command buttons to
define the destination and source addresses of the transmission data and/or the
address of the other bus devices.

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Config. Extensions → Configuration extensions.
Response: The Configuration extensions dialog is opened.

3 Check the Data protection box.
Response: Return to the PLC configuration window and the Data protection
menu command is now available.

4 Select Config. Extensions → Data protection.
Response: The Data protection dialog is opened.

5 Select the range for the coils and holding registers. This range should contain
write-protection.
82 33002204

Creating a Project
Various PLC
settings

Diverse internal PLC data can be evaluated, a watchdog timeout for the user
program can be specified, the time windows for the communication (I/O time disk)
parameterized and the multiple assignment of outputs authorized. The procedure for
setting the PLC settings is as follows:

ASCII messages
(only for 984 LL)

To set the ASCII messages (only for 984LL), execute the following steps:

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select the Specials menu command from the list.
Response: The Specials dialog is opened.

3 Check the Battery coil, Timer register and Time of Day check boxes and enter
an address in the corresponding text boxes.

4 Check the Allow Duplicate Coils check box and enter the address from which
this should be allowed in the text box..

5 In the Watchdog timeout (ms*10): text box enter a numeric value between 2
and 255 (ms). This enables you to set an impulse watchdog for the user program.
Response: As soon as the count pulses exceed the specified time, an error
message appears.

6 In the Online Editing Timeslice (ms): text box enter a numeric value between
3 and 100 (ms). This enables you to define a time for executing the multi-cycle
edit functions (paste, delete, find etc.)

Step Action

1 Select Project → PLC configuration.
Response: The PLC configuration window is opened, this contains further
menu commands for hardware configuration.

2 Select from the list ASCII → ASCII Setup.
Response: The ASCII Setup dialog is opened.

3 Enter the total messages, the size of the message width and the number of
ASCII ports (from the I/O periphery) in the text boxes.
Response: In the PLC configuration → ASCII window the ASCII Port Settings
menu command is available.

4 Select from the list ASCII → ASCII port settings.
Response: The ASCII port settings dialog is opened.

5 Make the corresponding settings.
Note: ASCII messages can now be created under Project → ASCII
messages... .
33002204 83

Creating a Project
Resume Now proceed with Step 3: Creating the user program (see Step 3: Creating the User
Program, p. 85).
84 33002204

Creating a Project
Step 3: Creating the User Program

General A user program is created in sections. Each section is programmable in one of the
available languages and has a unique name in the project. Sections can be
generated at any time during the programming.

Overview The creation of a user program consists of 9 steps:

Generating a
New Section

The procedure for generating a new section is as follows:

Declaring the
Variables

A program consists of functions and Function Blocks (FFBs) or of instructions with
the statement of variables (e.g. signals), addresses or literals. While direct
addresses and literals can be used immediately, variables must be declared before
they can be used in programming. The procedure for declaring variables is as
follows:

Step Action

1 Generating a New Section (see Generating a New Section, p. 85)

2 Declaring the Variables (see Declaring the Variables, p. 85)

3 Programming a Section (see Programming a Section, p. 86)

4 Analyzing Program/Section (see Analyzing Program/Section, p. 86)

5 Specifying the section execution sequence (see Set execution order of sections,
p. 86)

Step Action

1 In the main menu File call up the menu command New section... .
Result: The dialog box New program section is opened.

2 Click on the programming language desired for this section.

3 In the text box Section name enter the unique name for this section.

4 Generate all the required sections in this way.

Step Action

1 In the main menu Project call the menu command Variable declaration... .
Result: The dialog box Variable declaration is opened.

2 Enter the variable name, the associated data type, and if necessary the
reference address, the initial value and a comment.

3 Confirm the entries with OK.
Note: Further editing is also possible from a FFB connection or contact etc. by
double-clicking -> Var. Declaration... . This starts the Variables editor.
33002204 85

Creating a Project
Programming a
Section

The procedure for programming a section is as follows:

Analyzing
Program/Section

Check a section or the entire program for syntax violations! The procedure for
analyzing a program/section is as follows:

Set execution
order of sections

The sections are initially stored in the order of their creation and are executed after
the program has started. In general this sequence must be adjusted project-
specifically to suit the task setting. The procedure for specifying the section
execution sequence is as follows:

Resume Now proceed with Step 4: Saving (see Step 4: Save, p. 87).

Step Action

1 Using File → Open section open the section to be programmed.

2 Create programs according to the rules of the individual programming
languages:
� Function Block Diagram FBD (see Function Block language FBD, p. 209)
� Ladder Diagram LD (IEC) (see Ladder Diagram LD, p. 233)
� SFC (Sequential Control) (see Sequence language SFC, p. 267)
� Instruction list (IL) (see Instruction list IL, p. 315)
� Structured text (ST) (see Structured text ST, p. 383)
� LL984 (Ladder Diagram (Modsoft)) (see Ladder Logic 984, p. 429)

Step Action

1 In the main menu Project call up the menu command Analyze section or
Analyze program.

2 Remove the cause of the displayed or reported error.
Note: Loading a section or program into the PLC is only possible after an error-
free check. (The removal of the cause of warnings is not absolutely necessary.
Checking the warnings is, however, sensible.)

Step Action

1 To specify the section execution sequence there are two alternatives:
� In the main menu Project call the menu command Execution order... and

using the command buttons First, Last, Next, Previous sequence the
sections as required.

� In the main menu Project call up the menu command Project browser and
sequence them as required by moving them around in the Project Browser,
p. 539.
86 33002204

Creating a Project
Step 4: Save

General
Information

General information about saving:
� If you exit a project without saving, you will be automatically asked if you want to

save the project or not. If you answer yes to this question, this begins the same
procedure described below.

� In order to prevent loss of data, projects should be saved regularly during long
periods of configuration or programming sessions.

Saving a Project
for the First Time

The procedure for saving a project for the first time is as follows:

Supplementary
Saving

The procedure for supplementary saving is as follows:

Resume Now proceed with Step 5: Executing memory prediction (see Step 5: Perform
Memory Prediction, p. 88).

Step Action

1 In the File main menu invoke the Save Project As... menu command.

2 In the File name text box, enter the project name name.prj.

3 Select the desired drive and directory from the Directory list.
Alternatively, it is possible to enter the whole path specification in the File name
text box, e.g. c:\product1\reactor3.prj (max. 28 characters +
.prj). If these directories do not yet exist, they will be automatically created.
Note: According to IEC 1131, a project includes all programs, data etc which
belong to a PLC. If several projects (i.e. PLCs) belong to one system, then all
projects should be stored in a common directory named after the system.

4 Click the OK command button.
Response: The project has now been stored in the specified directory under the
given name.

Step Action

1 From the File main menu simply select the Save menu command.
33002204 87

Creating a Project
Step 5: Perform Memory Prediction

Check the PLC
memory
workload

Perform an offline memory prediction of the configured PLC before downloading the
program to the PLC. The table displayed in the Project → Memory Prediction
dialog shows the use of individual memory ranges. An expected memory workload
is then recognized.

Resume Now proceed with Step 6: Loading and testing the project (see Step 6: Loading and
Testing, p. 89).

Note: In some cases the memory prediction is not very accurate. A discrepancy
between required memory in the PLC and the memory prediction under Concept
may occur. The memory prediction always indicates more available memory than
is actually available in the PLC.
This is due to the dynamic memory in the DFBs and Sections, which is difficult to
calculate. Especially ST sections cause a great difference between the prediction
and PLC. To be sure that there is sufficient memory available in the PLC, load a
project into a PLC for examination. The simulator cannot be used because many
projects have sufficient memory in the simulator but not in the PLC.
88 33002204

Creating a Project
Step 6: Loading and Testing

General
Information

Loading and testing programs is only possible if
� either the 16-bit simulator Concept SIM is switched on or
� the Concept SIM 16-bit simulator is switched off and a PLC is attached with a

Modbus Plus, Modbus, TCP/IP cable, or
� the Concept PLCSIM32 simulator is switched on.

Overview Loading and testing macros is divided into 9 main steps:

Connecting the
PC and PLC

The procedure for linking the PC and the PLC is as follows:

Note: Testing using Concept SIM (see Simulating a PLC (16-bit simulator), p. 725)
and Concept PLCSIM32 (see Simulating a PLC (32-bit simulator), p. 727)
simulators is only possible with IEC user programs.

Step Action

1 Loading the EXEC file into the PLC (see Concept Installation Instructions)

2 Connecting the PC and PLC (see Connecting the PC and PLC, p. 89)

3 Loading and Starting the Program (see Loading and Starting the Program, p. 90)

4 Activating the Animation (see Activating the Animation, p. 91)

5 Changing the Values of Literals (see Changing the Values of Literals, p. 91)

6 Changing the Values of Variables (see Changing the Values of Variables, p. 92)

7 Locating Errors (see Locating Errors, p. 92)

8 Downloading Changes (see Downloading Changes, p. 93)

9 Starting and Stopping the PLC (see Starting and Stopping the PLC, p. 93)

Step Action

1 From the Online main menu invoke the Connect... menu command.
Response: The Link to PLC dialog box opens.

2 Set the protocol type (Modbus, Modbus Plus, TCP/IP or Simulator) and the PLC
node (when working in a network) with which you wish to communicate.

3 Under Access right select the Change Configuration option

4 Confirm the details with OK.
33002204 89

Creating a Project
Loading and
Starting the
Program

The procedure for loading and launching the program is as follows:

Step Action

1 From the Online main menu invoke the Connect... menu command.
Response: The Download Controller dialog box will be opened in the PLC.

2 When loading the program for the first time, use the All command button.

3 Click the Load command button.
Response: Various dialog boxes will be displayed.

4 Answer the question Stop the program in PLC? Yes/No with Yes.
Note: This question only appears when a program is already running in the PLC.

5 Answer the question Start a program in PLC? Yes/No with Yes, if there
are no errors.
If warnings or errors are reported, these will be listed in the Messages window.
Correct the warnings or errors at the specified point.
90 33002204

Creating a Project
Activating the
Animation

With the animation (online status report) it is possible to monitor the status of
variables, steps, transitions etc within individual sections of the editor window. The
procedure for activating the animation is as follows:

Changing the
Values of Literals

The procedure for changing literals is as follows:

If… Then…

To display binary values exclusively. To display binary values exclusively, invoke the
Online main menu and click on the Animate
booleans menu command.
Response: The valences of all booleans (variables,
direct addresses, literals) are displayed in colour (0-
Signal = red, 1-Signal = green).

If you want to display the values of all
variables.

To display the values of all variables invoke the
Editing main menu option and select the Select All
menu command (selects all items in the current
section).
Thereafter invoke from the Online main menu option
the Animate selection menu command.
Response: The valences of all values (variables,
direct addresses, literals) are displayed in colour (red
= 0-Signal, green = 1-Signal, yellow = either, for
variables, immediate display of the value or, for multi-
element-variables, displays the value by double-
clicking on the variable).

If you want to enter monitoring fields
in the text languages (IL and ST).

Use the Selected Inspect menu command to paste
the text languages IL and ST into section monitoring
fields.
Response: The current value of the allocated
variables is shown in these monitoring fields. With
multi element variables, only the value of the first
element is shown.
This can be changed by double-clicking on the
monitoring field of the Numeric Inspect Settings
dialog box, which invokes the options available.

Step Action

1 Activate the animation, as described in Activating the Animation, p. 91.

2 Double-click on the literal to be changed.

3 Enter a new value and confirm with OK.
Response: The new value will be sent to the PLC during the next logic scan.
33002204 91

Creating a Project
Changing the
Values of
Variables

With the Reference data editor (see Reference data editor, p. 577) it is possible to
show and set the values of variables (state, control, force). The procedure for
changing variables is as follows:

Locating Errors If errors occur during the processing of the program by the PLC, these will generally
be reported on screen Messages and entered in an events list in log book form. The
procedure for locating errors is as follows:

Step Action

1 From the main menu, select Online and then the Reference data editor menu
command.

2 Enter the variables to be displayed in the dialog box marked RDE Templates.

3 To set the value highlight the Disable check box, and enter the desired value.

4 The RDE template can be saved under a unique name.
To do this, invoke the RDE main menu option and select the Save template as…
menu command.
Note: Several RDE templates can be invoked at once. To do this, invoke the
RDE main menu option and select the Open template... menu command.

Step Action

1 From the Online main menu invoke the Event Viewer menu command.
Response: A window is opened, in which all errors are listed and described.

2 Select an error line and use the command button Go to Error.
Response: This will go directly to the section in which the error occurred. The
faulty object is highlighted.

3 Correct the program.

4 If your program now has the UNEQUAL status carry out the steps in
Downloading and Starting the Program (see Loading and Starting the Program,
p. 90) once again.
If the program now has the MODIFIED status perform the steps in Downloading
Changes (see Downloading Changes, p. 93) once again.
92 33002204

Creating a Project
Downloading
Changes

If the project has the MODIFIED status after it has been altered, these changes can
be loaded online into the PLC without stopping the program currently running. The
procedure for downloading changes is as follows:

Starting and
Stopping the
PLC

The procedure for starting and stopping the PLC is as follows:

Resume Now proceed with Step 7: Optimize and Separate (see Step 7: Optimize and
Separate, p. 94).

Step Action

1 From the Online main menu access the Download Changes... menu
command.

2 Click on OK.
Response: The changes will be downloaded to the controller.

Step Action

1 If the same project is running on the PC and PLC (EQUAL), then the PLC can
be started or stopped with Online → Online Control Panel... .
33002204 93

Creating a Project
Step 7: Optimize and Separate

Optimizing
Projects

At the end of the installation and/or after several runs of Download Changes... it is
useful to perform an optimization, so that any gaps in the program data memory
management are filled. After optimization the project is UNEQUAL on the PC and
PLC and the program must be loaded into the PLC with Download... (Warning:
Program must be stopped and restarted!). The procedure for optimizing projects is
as follows:

Step Action

1 Save the project with File → Save Project.

2 In the File main menu invoke the Close project menu command and take note
of the dialog boxes which then appear.

3 In the File main menu invoke the Optimize Project... menu command and select
the project to be optimized. Take note of the dialog boxes which subsequently
appear.

4 Check the size of the program data memory in the Online main menu with the
Memory Statistics... menu command.

5 The sizes can then be altered with PLC configuration.

6 Save the project with File → Save Project.

7 Reload the optimized program into the PLC using Online → Download... . To do
this the program currently running must be stopped.

8 Start the newly loaded program using Online → Online Control Panel.
94 33002204

Creating a Project
Separating the
PC and
Controller

After successfully testing the program in the PLC (with a connected process) the PC
can be separated from the controller. The procedure for separating the PC and the
controller is as follows:

Resume Now proceed with Step 8: Documenting (see Step 7: Optimize and Separate, p. 94).

Step 8: Documentation

General
information

Each project should be fully documented. Changes and additions should also be
documented (partial documentation).

Among other things documentation includes:
� Comments on the project (Project → Properties),
� Comments on each separate section (File → Section properties),
� Comments on variables,
� Comments on the functions applied, function modules and DFBs (command

button Comment in the property dialog of each module),
� Comments on steps and transitions (command button Comment in the property

dialog of each element),
� Comments in the form of freely placed text elements in the graphic programming

languages (Object → Text),
� Comments on each line of commands in the textual programming languages
� Comments on user-specific data types,
� Comments on derived function modules (DFBs).

Step Action

1 Please take note of the program status in the footnote!
To maintain consistency EQUAL must be there.
� if it readsMODIFIED, modifications must be loaded first Downloading

Changes, p. 93.
� If it readsUNEQUAL the program must be reloaded into the PLC Loading and

Starting the Program, p. 90.

2 From the Online main menu access the Disconnect... menu command. Take
note of the information in the displayed dialog box.

3 The project can be closed after separation.
In the File main menu invoke the Close project... menu command. Take note of
the information in the dialog box, if displayed.
33002204 95

Creating a Project
Printing the
documentation

The procedure for printing documentation is as follows:

Step Action

1 In the main menu call up File menu command Print... .

2 In dialog box Documentation contents select Page layout whether each page
should have a uniform header and footer as well as printing a front page. The
appearance of header, footer and front page is stored in the available ASCII files.

3 In the areaContents and in dialog box Documentation contents, select what is
to be printed.

4 If Variable list has been selected, call up Options in order to select the variables
which are to be printed.

5 When Sections has been selected,
� call up Select and specify the sections that are to be printed and
� also call up Options. In area Graphics enlargement factor also specify the

appropriate size of the logic which is to be printed.

6 Activate command button OK.
Reaction: All entries are saved.

7 Make sure that the page set-up of the sections is as desired.
In the main menu call up Viewfollow this with the successive menu commands
Overview and Pabe Break.

8 Change the order of for example the FFBs in such a way, that there are as few
transitions between adjoining pages as possible.

9 In the main menu call up File the menu commandPrint...again and activate
command button Print.
The printout is made with defined settings and the dialog box is closed.
96 33002204

33002204
5

PLC configuration
At a Glance

Overview This section describes the single process for the hardware configuration.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

5.1 General information about hardware configuration 99

5.2 Configuration in OFFLINE and ONLINE mode 102

5.3 Unconditional Configuration 106

5.4 Optional configuration 122

5.5 Backplane Expander Config 133

5.6 Configuration of various network systems 137

5.7 Quantum Security Settings in the Configurator 150
97

PLC configuration
98 33002204

PLC configuration
5.1 General information about hardware
configuration

At a Glance

Overview This section contains general information about hardware configuration.

What's in this
Section?

This section contains the following topics:

Topic Page

General information 100

Proceed in the following way with the configuration 101
33002204 99

PLC configuration
General information

At a Glance The system configuration has far-reaching consequences as it influences the entire
control work mode. It has to define all control-specific information as well as general
information, allocate the necessary memory space and determine the input/output
area. For the first configuration the user must enter several basic details for the PLC
area, such as PLC type and memory. Only valid configurations are authorized.

A configuration always refers to a Project, i.e. the menu command PLC
configuration is only available when a project has been opened.

The configuration is available offline or online.
100 33002204

PLC configuration
Proceed in the following way with the configuration

Introduction In this section you are given a general overview on how to proceed with the
configuration.

Use
Configuration
Menu

There are menu commands that absolutely must be carried out and are available in
the PLC Configuration window. Grayed out menu commands are currently
unavailable and can be enabled for extending the hardware-configuration in the
Config. Extensions directory with the menu command Select Extensions.

Read in Module
Set-up

The PLC module set-up is entered manually and can be compared with the
connected hardware in ONLINE mode. After it has been read in, the modules
missing in Concept are shown in the I/O map, and can be re-edited.

The I/O addressing must then be done for each module.

When doing this, please ensure the permitted references are used:

Downloading the
Hardware
Configuration

The hardware configuration of a project is saved and can be downloaded to the
simulation program Concept-SIM, Concept-SIM32 or an automation installation. By
doing this, the EQUAL status is established between the host computer and the
PLC.

Modules References

Analog input modules 3x references

Analog output modules 4x references

Digital input modules 3x or 1x references

Digital output modules 4x or 0x references

Expert modules - input 3x or 1x references

Expert modules - output 4x or 0x references

Note: The Concept-SIM must be deactivated for transfer of the configuration to a
real PLC.
33002204 101

PLC configuration
5.2 Configuration in OFFLINE and ONLINE mode

At a Glance

Overview This section contains information for configuration in OFFLINE and ONLINE mode.

What's in this
Section?

This section contains the following topics:

Topic Page

General information 103

Available Functions in OFFLINE and ONLINE Modes 104
102 33002204

PLC configuration
General information

At a Glance In OFFLINE mode no link is created between programming device and PLC, and the
configuration can be performed. In ONLINE mode there is a link between
programming device and PLC, so that only one conditional configuration can take
place.
33002204 103

PLC configuration
Available Functions in OFFLINE and ONLINE Modes

Introduction This section contains an overview of the available functions in OFFLINE and/or
ONLINE mode. The possibilities in the ONLINE mode are different in their use of the
simulator and the real PLC.

Configuration in
OFFLINE Mode

In OFFLINE mode all menu commands are available for the hardware configuration
in the PLC Configuration window. The submenus in the Config. Extensions
directory can be enabled in the Select Extensions dialog to extend the
configuration.

If the PLC is in ONLINE mode, you can switch to OFFLINE mode using the menu
command Online → Disconnect.... In the footer of the editor window, the status-bar
indicator NOT CONNECTED appears.

Configuration in
ONLINE Mode
and in the Active
Simulator

A configuration is not possible in ONLINE mode with an active simulator or a
Modbus Plus connection, i.e. no entries can occur. The available dialogs can only
be invoked and read.

You can switch to ONLINE mode using the menu command Online → Connect...
and establishing a connection between the host computer and the PLC.

Configuration in
ONLINE Mode
and in the Real
PLC

Using the connection to a real PLC a configuration in ONLINE mode is possible, as
long as the Change Configuration access level is activated.

It is not possible to configure or reconfigure a PLC while the PLC is in RUN mode.
If a program is already running in the PLC, it must be stopped before reconfiguration
can be implemented. Stop the PLC with Online → Online Control Panel → Stop
PLC. After editing, the changes are automatically transferred to the hardware when
the PLC is started up.

You can switch to ONLINE mode using the menu command Online → Connect...
and establishing a connection between the host computer and PLC.

Note: When you delete an Expert module in ONLINE mode in the I/O map, the
allocated loadable is also automatically deleted. If you wish to place this module
back in the I/O map at a later time, it will be necessary to download again.
104 33002204

PLC configuration
Effects of
ONLINE
Changes

If the following conditions are satisfied, all animated windows are automatically
closed if a change is made in the I/O map (e.g. deleting or adding to a module)

Conditions:
� ONLINE mode
� animated section(s)
� Status between PLC and host computer is EQUAL
� Controller stopped
� Access level Change Configuration is activated.
33002204 105

PLC configuration
5.3 Unconditional Configuration

At a Glance

Overview This section contains a description of the configuration to be performed
unconditionally and an overview of the presettings in the configuration menu.

What's in this
Section?

This section contains the following topics:

Topic Page

Precondition 107

PLC selection 108

CPU Selection for the PLC Type 109

PLC memory mapping 113

Loadables 114

Segment manager 117

I/O Map 119
106 33002204

PLC configuration
Precondition

Introduction Only when the CPU has been selected in the PLC Selection dialog will all the other
menu commands become available in the PLC Configuration window.

The following dialogs are a minimum selection and MUST be edited as part of the
hardware configuration.
� PLC Selection

� PLC Memory Partition

� Loadables

� Segment Scheduler

� I/O Map

The preferences can be adopted as long as they are compatible with the hardware
being used.
33002204 107

PLC configuration
PLC selection

Introduction Select the PLC family (Quantum, Compact, Momentum or Atrium) and the CPU, as
well as the memory size, according to use. All the available CPUs are listed in the
list box.

Determine logic
zone

The logic zone for the desired programming language (IEC or LL984) can be
expanded to the corresponding PLC type with the PLC family selection.

The assignment and installation of the loadables is determined according to the
following settings:

Determine total
IEC memory

By defining the total IEC memory size and the global data, you also automatically
determine the IEC-program memory size. On the basis of this size, the available
memory space for the LL984 user program can also be determined.

Selection Meaning

Enable Installation of the IEC loadables. A desired memory area for the IEC
zone can be set up. The assignment and installation of the loadable
pairing to the selected CPU is performed automatically in the
Loadables dialog.

Disable No installation of the IEC loadables. This will completely switch off
the IEC zone and the entire logic zone will be made available for the
LL984.

984 only/IEC only Some Momentum CPUs can only be programmed in the IEC zone
or only in the LL984 zone.

Note: With global data it is the memory space of the unlocated variables.

Note: Total IEC memory = IEC program memory + global data
108 33002204

PLC configuration
CPU Selection for the PLC Type

Introduction When installing hardware (Concept EXECLoader), you are required to load various
EXEC data files (*.BIN). This determines the firmware for various PLC types. The
available PLC types, which can be operated by loading the EXEC data files with the
corresponding CPUs, are shown in the following tables.
33002204 109

PLC configuration
Loading
Firmware for
Quantum PLC
Types

The following table shows the current EXEC versions, which are located on the
Service Release CD and supplied with Concept.

Quantum PLC type:

Loading
Firmware for
Quantum LL984
Hot Standby
Mode

The Quantum CPUs not ending in X or S can be used for the LL984 Hot Standby
mode. A special EXEC file must be downloaded onto the CPU for this. The loadable
for LL984 Hot Standby (CHS_208.DAT) is automatically installed by the system.

140 CPU Q186Vxxx
(IEC+LL984)

Q486Vxxx
(IEC+LL984)

Q58Vxxxx
(IEC+LL984)

Q5RVxxxx
(IEC+LL984)

QIECVxxx
(IEC only) *

IEC Memory
(kbyte)

113 02 X
(LL984 only)

- - - -

113 02S - - - - X max. 150

113 02X X
(LL984 only)

- - - -

113 03 X - - - - max. 136

113 03S - - - - X max. 379

113 03X X - - - - max. 136

213 04 X - - - - max. 305

213 04S - - - - X max. 610

213 04X X - - - - max. 305

424 0x - X - - - max. 465

424 0xX - X - - - max. 465

434 12 - - X - - max. 890

534 14 - - X - - max. 2550

434 12A
(Redesigned
CPU)

- - - X - max. 890

534 14A/B
(Redesigned
CPU

- - - X - max. 2550

Note: * After the QIECVxxx.BIN EXEC data file has been loaded, the EMUQ.EXE
loadable must be loaded into Concept in the Loadables dialog.
110 33002204

PLC configuration
Loading
Firmware for
Quantum IEC Hot
Standby Mode

The 140 CPU 434 12 and 140 CPU 534 14 CPUs can also be used for IEC Hot
Standby. A special EXEC file must be downloaded onto the CPU for this. The
loadables for IEC Hot Standby (IHSB196.EXE and CHS_208.DAT) are
automatically installed by the system.

Loading
Firmware for
Quantum
Equation Editor

The Quantum CPUs not ending in X or S can be used for the LL984 equation editor.
A special EXEC file must be downloaded onto the CPU flash for this. This EXEC file
is not part of the Concept delivery range but can be obtained over the Internet at
www.schneiderautomation.com.

Loading
Firmware for
Momentum PLC
Type

The following table shows the current EXEC versions, which are located on the
Service Release CD and supplied with Concept.

Momentum PLC type (CPU 171 CCC 7x0 x0):

Momentum PLC type (CPU 171 CCC 9x0 x0):

Momentum PLC type (CPU 171 CCS 7x0 x0):

The stripped EXEC of the M1 supports up to a maximum of 44 I/O modules.

171 CCC M1Vxxx
(LL984 only)

M1IECxxx
(IEC only)

IEC Memory
(kbyte)

760 10-984 X -

760 10-IEC - X 256

780 10-984 X -

780 10-IEC - X 256

171 CCC M1EVxxx
(LL984 only)

M1EWIxxx
(IEC only)

IEC Memory
(kbyte)

960 20-984 X -

960 30-984 X -

960 30-IEC - X 220

980 20-984 X -

980 30-984 X -

980 30-IEC - X 220

171 CCS M1Vxxx
(LL984 only)

M1IECxxx
(IEC only)

IEC Memory
(kbyte)

700 10 X -

700/780 00 X -

760 00-984 X -

760 00-IEC - X 160
33002204 111

PLC configuration
Loading
Firmware for
Compact PLC
Types

The CTSXxxxD.BIN EXEC file must be downloaded onto the CPU flash for all
Compact CPUs.

Loading
Firmware for
Atrium PLC
Types

A special EXEC file (see table below) must be downloaded onto the CPU flash for
each Atrium CPU.

180 CCO EXEC file

121 01 AI3Vxxxx.BIN

241 01 AI5Vxxxx.BIN

241 11 AI5Vxxxx.BIN
112 33002204

PLC configuration
PLC memory mapping

At a Glance For the creation of the program, sufficient address zones for the necessary number
of input bits, output/flag bits, input words and output/flag words are to be entered.

An overview of the state RAM value is also given:
� Max. state RAM

� State RAM in use

� State RAM use

An unassociated value is shown with an error message, and can be automatically
suited to the given value.

IEC Hot Standby
data

After configuration of an IEC Hot Standby system, enter sufficient address zones for
the required number of input words. The higher the number of IEC Hot Standby input
words, the larger the transmit buffers for the IEC component. This means all the
bigger the IEC application in use can be.

System cycle time influence!

The size of the configured state RAM in an IEC Hot Standby project has a
significant effect on the system cycle time. As soon as a configured cycle ends, the
next starts after the transfer of all state RAM data to the CHS module.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
33002204 113

PLC configuration
Loadables

Introduction Loadables are loadable programs, which are only loaded into the PLC when
required.

The various uses of loadables are described in the following sections.

Downloading
Loadables for the
IEC Runtime
System

The following loadables for the combined execution of IEC and LL984 programs
(CPU 113 0x, CPU 213 0x or CPU 424 02) are available:

Downloading
Loadables for
Expert Modules

The following loadables are available for Expert modules:

Note: When you delete an Expert module in online mode in the I/O map the
allocated loadable is also automatically deleted. If you wish to place this module
back in the I/O map at a later time, it will be necessary to download again.

If... Then...

you want to use CPUs with the
mathematics processor for IEC
programming,

install the loadable pairing @1S7196 and @2I7196.

you want to use CPUs without the
mathematics processor for IEC
programming,

install the loadable pairing @1SE196 and @2IE196.

If... Then...

you are configuring the 140 ESI
062 00 module with 32 bit runtime
system and the 140-NOA-611-x0
module

install the loadable ASUP196.
Note: The ULEX196 loadable is automatically installed.
The ASUP 196 loadable is only installed automatically
on 32-bit CPUs. On 16-bit CPUs with Stripped EXEC
(QIECVxxx.BIN), the ASUP196 loadable must be
installed afterwards.

you are configuring the 140 ESI
062 10 module,

install the loadable pairing NSUP + ESI.
Note: These two loadables do not come with the
Concept software package, but are supplied with the
140 ESI 062 10 module and must be unpacked at the
time of installation (Unpack...).
114 33002204

PLC configuration
Downloading
Loadables for
LL984

These are not included in the Concept delivery range. You can order these
loadables via the "Automation Customer Service Bulletin Board (BBS)" (related
topics README).

Downloading
Loadables for
Hot Standby

The following loadables for Hot Standby mode are available:

Downloading
User Loadables

Loadables that are created by the user are called user loadables (*.EXE, *.DAT).
They are located in the Concept directory DAT and using the Unpack... command
button they can be inserted into the Loadables dialog at installation.

Downloading
Loadables for
IEC Support Only

The following loadables for IEC support only (CPU 113 xxS without mathematics
processor) are available:

Downloading
Loadables for
INTERBUS and
IEC Support Only

The following loadables for IEC support are available:

If... Then

you are using the LL984 Hot
Standby mode,

the loadable CHS_208 is automatically installed.

you are using the IEC Hot Standby
mode,

the loadables IHSB196 and CHS_208 will be loaded
automatically.

If... Then

your application uses REAL
arithmetic,

install the loadable EMUQ196.
Note: The loadable is installed together with the EXEC-
file QIECVxxx (installation in Concept EXECLoader).

If the CPU Then

� 113 02S
� 113 03S
� 213 04S
� 534 14
� 434 12

is configured,

install the loadable ASUP196.
Note: The ULEX196 loadable is automatically installed.
The ASUP 196 loadable is only installed automatically
on 32-bit CPUs. On 16-bit CPUs with Stripped EXEC
(QIECVxxx.BIN), the ASUP196 loadable must be
installed afterwards.

113 03 is configured install the loadable pairing @1SE196 + @2IE196. The
ULEX196 loadable is automatically installed.

213 04 is configured, install the loadable pairing @1S7196 + @2I7196. The
ULEX196 loadable is automatically installed.
33002204 115

PLC configuration
Downloading
Loadables for
INTERBUS and
LL984 Support
Only

The following loadables for LL984 support are available:

If the CPU Then

� 113 02
� 113 03
� 213 04

is configured,

you can install the following loadables:
� ULEX196
� @1S7196 + @2I7196 + ULEX196

Note: The ULEX196 loadable is automatically installed
with this.

� 534 14
� 434 12

is configured,

the loadables ASUP196 and ULEX196 will be loaded
automatically.
116 33002204

PLC configuration
Segment manager

At a Glance If a remote I/O st. (Drop) is configured, the sequence and method of processing the
LL984 section can be defined in the dialog box Segment manager.

When deleting (in the dialog box I/O map) a configured remote I/O st. (Drop), it is
automatically deleted in the segment manager.

Mode of
Functioning

Every I/O st. (Drop) is assigned a segment. It is therefore not permitted to enter
fewer segments in the segment scheduler, than there are I/O st.s (Drops) configured
in the I/O map. In the segment scheduler, the maximum segment numbers is by
default set at 32.

The configurator checks the agreement between the two dialogs and classifies the
I/O st.s (Drops) in the segment scheduler. A window informs you which I/O stations
(Drops) have been inserted.

Altering the
segment
processing
sequence

The sequence for segment processing can be altered manually, in that the segment
number or I/O st. number can be edited in the corresponding line. For the local I/O
st. (Drop), 1 is entered in the first line of the dialog box in the columnsIn stat. and
Out stat. automatically.1

If no sequence was defined, the segments are processed in ascending order.

Sorting criteria
for additional I/O
st.s

Recently added I/O st.s (Drops) are classified in the segment manager according to
the following criteria:

If… Then…

A new I/O st. is added, it is automatically classified behind the last available
line.

All determined segments are
already in use,

the last segment is reused for the input of the new I/O st.
(Drop), i.e. a segment number can be repeated, as the
stations are differentiated.
33002204 117

PLC configuration
Available
methods for
segment
processing

When setting the segment manager, the following methods of processing can be
selected:

Advanced
settings in the
segment
manager

With the "Controlled" type of processing, only the reference numbers 0x and 1x are
authorized, which determines when the logic for the corresponding section is
processed.

The field In. stat. and Out stat. allow the input of corresponding I/O st. numbers,
which must be configured. If a 0is entered, no input/output is served by this segment
number.

Processing type Meaning

Continuous Cyclic processing

Controlled Manually controlled processing

WDT reset Reset watchdog timer

End of logic End of processing

Note: If subprograms are to be used in LL984, the last configured segment cannot
be processed in the segment manager. The type of solution must unconditionally
be End of logic.
118 33002204

PLC configuration
I/O Map

Introduction In the I/O map, configure the I/O stations (drops) with the modules in use. Afterwards
perform the I/O addressing and the parameterization of the configured modules.

Allocating Drops Drop numbers can be allocated optionally except for the first one (from 2 to). The
first drop number is automatically recognized as the local drop, and cannot be
edited.

Configuring the
Backplane
Expander

The 140 XBE 100 00 module is necessary to expand the backplane. By doing this
you can connect a second backplane, and gain 13 extra slots. The 140 XBE 100 00
module is mounted in both backplanes and, in addition, requires an independent
power supply (power supply unit).

Expanded backplanes are configured in Concept in the first drop using slots 2-1 to
2-16.

A more detailed description about the configuration of expanded backplanes with
the 140 XBE 100 00 module is given in the chapter Backplane Expander Config,
p. 133.

The slot assignment of the 140 XBE 100 00 is not shown in the configurator,
so a double assignment is possible.

You should take note of the hardware slots of the module and the power supply,
and should not occupy these slots with other modules in the I/O map.

Failure to follow this instruction can result in injury or equipment damage.

Note: The flow of data via an expanded backplane is quicker than via the remote
system.

CAUTION
33002204 119

PLC configuration
Allocating the I/O
Ranges

When allocating the I/O ranges the following references are allowed:
� 3x references for analog input modules

� 4x references for analog output modules

� 3x or 1x references for digital input modules

� 4x or 0x references for digital output modules

� 1x or 3x references for Expert modules (input)

� 0x or 4x references for Expert modules (output)

Parameterization Configured modules can be individually parameterized to determine the variable
process conditioned settings.

Connection to
other Network
Systems

In addition to local and remote drops, links to other network systems can be
established with configured coupling modules:
� Ethernet

� INTERBUS

� Profibus DP

See also the chapter entitled Configuration of various network systems, p. 137 and
Configuration examples, p. 855.

Note: The unique addressing is checked so that no addresses are occupied twice
within the configuration.
120 33002204

PLC configuration
Read in Map In the ONLINE mode of the stopped PLC, the hardware modules are listed in the I/
O map and can be transferred as follows:

Step Action

1 Open a project.

2 Open the PLC Configuration window.

3 Using the PLC Type menu command, open the PLC Type dialog and select the
PLC type.

4 Connect the host computer to the PLC (Online → Connect...).

5 Open the I/O Map dialog (PLC Configuration → I/O Map).

6 Use the Edit command button to open the Local Quantum I/O station dialog.

7 Check the Poll check box.
Response: The recognized modules are listed in the Read column in color.

8 Double click on the colored text boxes in the Read column.
Response: The listed modules are transferred to the Module column.

9 Enter the address zone in the corresponding columns (In.Ref., In End, Out Ref.,
Out End).

10 After the hardware matching between the host computer and the PLC, the
configuration can continue.
33002204 121

PLC configuration
5.4 Optional configuration

At a Glance

Overview This section contains the description of the optional configuration.

What's in this
Section?

This section contains the following topics:

Topic Page

Settings for ASCII Messages 123

Making Additional Functions Available in the Configurator 124

Data Exchange between Nodes on the Modbus Plus Network 125

How many words are really used when data is received (Peer Cop) 126

Protecting Data in the State RAM before Access 128

Parameterize interfaces 129

Special Options 131
122 33002204

PLC configuration
Settings for ASCII Messages

Introduction To create the ASCII messages, you are required first of all to set a mask, which
contains the number of messages, the message area size and the ASCII ports.
Once you have done that you can create the ASCII messages, which are then
processed with the Ladder Logic programming language.

Precondition ASCII messages are only possible in the Quantum family, and can only be
processed with the LL984 processing language.

Procedure To create the ASCII messages, you must first set the mask:

Step Action

1 In the PLC Configuration → ASCII window, open the ASCII Setup dialog.

2 In the Total Messages text box specify a value from 1 to 999.

3 In the Message Area Size text box specify a value from 1 to 9999 bytes.

4 In the ASCII Ports text box specify an interface from 2 to 32.

5 Confirm your entries with the OK command button.
Response: The settings are saved and the dialog is exited.

6 In the Project main menu open the ASCII Message Editor dialog (with the
ASCII Messages... menu command).

7 Create the ASCII messages here, see also the description ASCII Message
Editor, p. 591.
33002204 123

PLC configuration
Making Additional Functions Available in the Configurator

Introduction Additional functions can be used for the configuration, if they have previously been
enabled or set in the Select Extensions dialog.

Activating
Advanced
functions/
Dialogs

By checking the check box or setting the Ethernet modules the corresponding menu
commands are enabled and can be edited in the PLC Configuration → ASCII
window.

The following functions/dialogs can be activated:
� Data protection
� Peer Cop
� Hot Standby
� Ethernet I/O-Scanner

Specify Coupling
Modules

Coupling modules must be configured in order to connect to other network systems.
To do this, specify the number of modules in the corresponding list box, which are
then available in the I/O map.

The following systems can be configured:
� TCP/IP Ethernet

� Symax-Ethernet

� MMS-Ethernet

� Profibus DP

Note: The available functions are dependent upon the configured CPU. Also see
the online help "Select Extensions".

Note: The maximum number of coupling modules depends upon the configured
CPU. Also see the online help "Select Extensions".
124 33002204

PLC configuration
Data Exchange between Nodes on the Modbus Plus Network

Introduction With a Modbus Plus (MB+) connection you can configure a PLC using the Peer Cop
functionality, so that data exchange with another PLC is possible. In such a case,
the Peer Cop takes data from a reference area within a "source" PLC and places
this via the Modbus Plus (MB+) network into a determined reference range of a
"destination" PLC. This operation is performed in the same identical way for each
token rotation.

Using the Peer Processor, input data from other nodes on the local network can be
received by the user program. Likewise, output data from the user program can be
transmitted to other nodes on the local network.

The Peer Cop has two variants for data exchange:
� global data exchange

� specific data exchange

Precondition The Peer Cop menu command is only available if, in the Select extensions dialog
the Peer Cop check box is checked.

Global Data
Exchange

With global data exchange, the data sent from the current "source" PLC is received
by all "destination" PLC devices in the Modbus Plus (MB+) network. Up to 64
destination devices can be reached in this way, which can each receive the data in
8 destination addresses of the State RAM.

See also section "How many words are really used when data is received (Peer
Cop), p. 126".

Specific Data
Exchange

With specific data exchange, data is sent from a selected "source" PLC to a selected
"destination" PLC in the Modbus Plus (MB+) network. To do this, enter the
respective addresses for the data exchange in a table at the corresponding source
and destination nodes (1-64).

The address must correspond to the MB+ node address on the back of the
respective module. This address setting can be altered and must be specified before
mapping. (See also hardware description)

Select the node to be read or written according to the hardware configuration.
33002204 125

PLC configuration
How many words are really used when data is received (Peer Cop)

Introduction The number of words used may not exceed 500. To avoid this a simple formula can
be used, how many words are used on receipt.

Formula The formula, to find the number of words used is as follows:

Length + (index – 1) = number of words

Example The Peer Cop dialog Global Input has the following entry:

Global Input

(1-64)

1*
2
3
4
5
6

8
9
10

Clear Subfields

Cancel HelpOK

Range:

Subfield

1

2

3

4

5

6

7

8

400001-401872

400001

1-28

Index

3

Length

1

1-32

Bin/BCD

BIN

7

400002 5 18 BIN

Dest. Ref.
126 33002204

PLC configuration
The following process takes place:

Step Action

1. Bus node 1 sends 1 word to the subfield start reference 400001, starting at
index 3.

2. At index 3 (word 3) the receipt of the data begins. (The preceding words are also
counted.)
Word 1 - 500

3. In total 3 words are required by subfield 1.
Formula: 1 + (3 - 1) = 3

4. Bus node 1 sends 18 words to the subfield start reference 400002, starting at
index 5.

5. At index 5 (word 5) the receipt of the data begins. (The preceding words are also
counted.)
Word 1 - 500

6. In total 22 words are required by subfield 2.
Formula: 18 + (5 - 1) = 22

Note: Only the largest number of words used per bus node by be taken into
account. In the example 22 words from a maximum of 500 permitted words are
used.
For more bus nodes the largest number of words used per bus node must be
added.
For example:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...1 500

Index 3, 1 word

52 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...1 500

Index 3, 1 word

Index 5, 18 words

Bus node 1 with 22 words

Bus node 2 with 28 words

50 words from 500 words allowed.

+

33002204 127

PLC configuration
Protecting Data in the State RAM before Access

Introduction Output address ranges (coils and registers) can be protected by specifying the
address from which writing is possible in the Data Protection dialog. All addresses
before this are write-protected.

Precondition The Data Protection menu command is only available if, in the Select Extensions
dialog, the Data Protection check box is checked.

Entering Access
Protection

This access protection operates in connection with "normal" data access, which
happens externally via a Modbus or Modbus Plus interface. Access from the host
computer out is in any case permitted and bypasses this protection mechanism.
128 33002204

PLC configuration
Parameterize interfaces

At a Glance Depending on their use in Concept, the following interfaces must be parameterized:
� ASCII interface

� Modbus interface

Parameterize
ASCII interface

For an ASCII message transmission, in the dialog box ASCII port settings the serial
communication parameters for the port interfaces can be specified.

Parameterize
Modbus
interface

For a Modbus coupling, in the dialog box Modbus port settings the serial
communication parameters of the port interface can be entered on the programming
device, on a CPU and the NOM assemblies (Network Option Module).

Switch on the NOM

Note: The dialog box ASCII port settings is only available when the number of
ASCII ports has been specified beforehand in the dialog box ASCII set up.

CAUTION

Do not make any online changes since this will cause all Editors to close!

The Modbus port settings should not be altered in Online mode, or else all Editors
are automatically closed.

Failure to follow this instruction can result in injury or equipment damage.

Note: The settings of a Modbus coupling in Concept only have an effect if the
switch on the front of the assembly is at the lowest position (mem). In this case, the
baud rate must be set at 19200 Bd.

ASCII

RTU

mem
33002204 129

PLC configuration
Interface
parameterizing
with network
connections
between Modbus
and Modbus Plus

A network connection between Modbus and Modbus Plus nodes can be made in the
dialog box Modbus port settings by checking the check box Bridge mode.

Note: The settings are then only effective when the switch on the front of the
assembly is in the mid-position (RTU).
130 33002204

PLC configuration
Special Options

Introduction In the Specials dialog you can configure special options:
� Battery coil

� Timer register:

� Time stamp for MMI applications (TOD)

� Allow duplicate coils

� Watchdog-Timeout (ms)

� Time slice for online changes (ms)

Battery coil You can specify an address of a coil, which shows the status of the battery. This
assignment is used for battery monitoring. In this way, the weak battery can be
replaced early to avoid a loss of data.

Timer Register: The content of the time register is incremented every 10 ms and has a free value
between 0000 and FFFF hex.

Time for MMI
applications
(Date/Time)

This time stamp is only intended for a MMI application. Eight registers are reserved
for setting the clock.

The TOD input (Time of Day) is in the American format:

4xxxx Control register

Discrete 1 (MSB)
Discrete 2
Discrete 3
Discrete 4

1 = set clock values
1 = read clock values
1 = preset discrete
1 = error discrete

4xxxx+1 Day of week (1 - 7)

4xxxx+2 Month (1 - 12)

4xxxx+3 Day (1 - 31)

4xxxx+4 Year (00 - 99)

4xxxx+5 Hours (0 - 23)

4xxxx+6 Minutes (0 - 59)

4xxxx+7 Seconds (0 - 59)
33002204 131

PLC configuration
Allow Duplicate
Coils

You can assign several outputs to a coil. To do this, check the check box, and
specify the first address to which several outputs can be allocated in the First Coil
Address: text box.

Watchdog
Timeout (ms*10)

You can set a pulse supervision for the user program by entering a numerical value
of between 2 and 255 (ms). As soon as there are no count pulses within the specified
time, an error message will appear.

Time Slice for
Online Changes
(ms)

You can set a time supervision for the communication between the nodes by
entering a numerical value between 3 and 30 (ms). As soon as there is no
communication within the specified time, an error message will appear.

Note: This function is unavailable with the Momentum PLC family.
132 33002204

PLC configuration
5.5 Backplane Expander Config

At a glance

Introduction This chapter describes the function and configuration of the backplane expander.

What's in this
Section?

This section contains the following topics:

Topic Page

Generals to Backplane Expander 134

Edit I/O Map 135

Error handling 136
33002204 133

PLC configuration
Generals to Backplane Expander

Introduction The Quantum backplane expander provides a single backplane expansion to a local
drop or a RIO drop through the 140 XBE 100 00 module.

Function
description

The module connects two Quantum backplanes (primary and secondary) through a
custom cable and support all data communication between the backplanes. Each
backplane requires a 140XBE10000 module that occupy a single slot and requires
its own power supply.

Procedure at an
Error

The backplane expander is designed in the way that if it is not installed or improperly
connected, it will not effect the functionality of the primary rack. Only the backplane
expander installed and connected properly, the both racks are then able to
communicate and controlled by prime CPU or RIO drop controller.
134 33002204

PLC configuration
Edit I/O Map

Requirements Currently only Quantum controllers support backplane expander. Primary rack
contains the CPU or RIO drop controller and is allowed to config all type of additional
modules up to the physical slot address limitation. All I/O modules can be also added
to the secondary rack. However, option modules, such as NOMs, NOEs and CHSs
must reside in the primary rack.

To place a module in proper rack, it is necessary to add an extra attribute in the I/O
module database to specify that the module is available only for the primary or
secondary or both.

Configuration in
I/O Map

Exist Quantum local drop or RIO drop only support one rack up to sixteen slots. With
backplane expander, it is extended as if the drop support two racks, and each has
sixteen slots. By clicking at the button ... on Module column, all modules available
to the rack clicked (primary or secondary) will show in the module selection dialog
that can be selected and assigned to the current slot.

Each rack requires a 140 XBE 100 00 module to make backplane expander work
properly.

The module will just look like an unfilled slot in the Concept I/O map. If any module
is configured in the secondary rack, it is user’s responsibility to ensure there is one
slot in each rack that is reserved for 140 XBE 100 00 module and all hardware are
connected properly.

Note: The 140 XBE 100 00 module does not have a personality code and therefore
can not be recognized by the Concept.
33002204 135

PLC configuration
Error handling

Introduction The validate processes for the primary rack will be applied to the secondary rack too,
such as duplicate reference, missing input or output reference, etc. Besides existing
regular validation, traffic cop will do some special check for the backplane expander.

No reserved slot
for
140 XBE 1000 00

If any module is found in the secondary rack and there is no empty slot left in either
of racks when user trying to exit the rack editor dialog, an error message will be
displayed: "There must be one empty slot reserved for 140 XBE 100 00 module in
each rack to make backplane expander work." The rack editor dialog will then not
be closed.

Special module
in secondary
rack

To prevent any special module (such as, NOE, CHS, etc) being added to the
secondary rack, rack editor dialog do not allow to cut/copy these head modules. It
will also check module personalities before user try to do any paste operation. If
some unsupported module for the secondary rack is found, an error message will be
displayed: "The buffer contains some module that can not reside in the secondary
rack." The paste operation will be aborted.
136 33002204

PLC configuration
5.6 Configuration of various network systems

At a Glance

Overview This section contains the description of the configuration of various network
systems.

What's in this
Section?

This section contains the following topics:

Topic Page

Configure INTERBUS system 138

Configure Profibus DP System 139

Configure Ethernet 141

RTU extension 143

Ethernet I/O Scanner 144

How to use the Ethernet / I/O Scanner 148
33002204 137

PLC configuration
Configure INTERBUS system

At a Glance The configuration of the INTERBUS system can take place within the PLC families
of Quantum and Atrium.

INTERBUS
configuration
with Quantum

With the Quantum family the coupling of a remote bus takes place in a Quantum
I/O station (Drop). To do this, the INTERBUS Master NOA 611 00 must be
configured and parameterized in the CMD tool (Configuration Monitoring and
Diagnostic Tool).

See also Configuration example 4 (see Quantum Example – INTERBUS Control,
p. 887).

INTERBUS
configuration
with Atrium

With the Atrium family, the coupling of the remote bus takes place via the master
assembly 180 CCO 121 01, 180 CCO 241 01 or 180 CCO 241 11 in this way, the
INTERBUS Master CRP 660 0x is automatically inserted into the local I/O station
(Drop). The INTERBUS I/O station (Drop) nodes are configured in the CMD tool
(Configuration Monitoring and Diagnostic tool), saved as a *.SVC data file and
imported to Concept. After the import into the I/O map the configuration can be
changed afterwards in Concept.

See also Configuration example 9 (see Atrium Example – INTERBUS Controller,
p. 932).
138 33002204

PLC configuration
Configure Profibus DP System

Introduction The configuration of the Profibus DP system can take place within the PLC families
of Quantum and Atrium.

Profibus DP
Configuration
with Quantum

With the Quantum family the connection to the Profibus DP system takes place in a
Quantum drop. To do this, you must first of all set the number of bus controllers
(CRP 811 00) used in the Select Extensions dialog. The modules then appear in
the list box of the I/O Module Selection dialog and can be inserted into the I/O map.

The configuration of the Profibus DP node is created in the SyCon configuration tool,
saved as a *.CNF file and transferred directly to Concept. However, the
configuration (*.CNF) can be imported to Concept at a later time.

PROFIBUS DP ADDRESSES MAY BE OVERWRITTEN

When working with Profibus DP configuration make sure that the addresses of two
8 bit E/A modules without gap to the following 16 bit limit is only permitted when
both 8 bit modules belong to the same Profibus DP master. If you do not adhere to
this guideline, the input bits of one module (e.g. Profibus DP Master A) may be
overwritten by the other module (e.g. Profibus DP Master B).

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
33002204 139

PLC configuration
Importing the
Profibus DP
Configuration

To import the configuration (*.CNF) to Concept, proceed as follows:

Configuration
Example

An example of configuration is given in Example 11 (see Quantum Example -
Profibus DP Controller, p. 902).

Step Action

1 In the PLC Configuration window, open the I/O Map dialog.

2 Select the drop and use the Editdialog Local Quantum I/O Drop.

3 Double click on the in the Modulecolumn.
Reaction: The I/O Modules Selection dialog is opened.

4 In the I/O Adapter column, select the CRP-811-00 module, and press the OK
command button.
Reaction: The CRP-811-00 will be inserted in the I/O map.

5 In the Local Quantum I/O Drop dialog, select the line of the mapped bus
controller (CRP-811-00) and press the Params command button.
Reaction: The CRP-811-00 (Profibus DP) dialog will open.

6 Using the Import open the Select Import File window.

7 To import, specify the path of the CNF file, and press the OK command button.
Reaction: The Profibus DP configuration is entered in the Concept I/O map.
Note: After the Profibus DP nodes are entered into Concept, the reference
ranges for all modules and diagnostic data must be edited later.
140 33002204

PLC configuration
Configure Ethernet

Introduction An Ethernet bus system can be configured within the following PLC families:
� Quantum
� Atrium
� Momentum

Precondition In order to connect to the Ethernet bus system, a PCI network card must be
available in the host computer. Afterwards the Ethernet interface needs to be
parameterized and the drivers that are provided on CD need to be installed
(Configure Ethernet, p. 952).

After the Ethernet module has been slotted into the central backplane, the internet
address, subnet mask, gateway and frame type can be allocated by the network
administrator.

Configuration
with Quantum

The procedure for Ethernet configuration in Concept is as follows:

Step Action

1 In the PLC Configuration window, open the Select Extensions dialog.

2 Enter the number of Ethernet modules (NOE) in the text boxes.
Response: The modules then appear in the list box in the I/O Module Selection
dialog and can be inserted into the I/O map.

3 In the PLC Configuration window, open the Ethernet I/O Scannerdialog, in
which you enter the information from the network administrator (Internet
address, subnet mask, gateway, frame type).

4 In the Online main menu, open the Connect to PLC dialog (menu command
Connect...).

5 In the Protocol Type list box, select the option TCP/IP, and in the IP address
or DNS Hostname text box, enter the address of the TCP/IP card.

6 After programming, in the Online main menu, open the Load into PLC dialog
(menu command Load...), and click on the Load command button.
Response: A message appears, asking whether you would like to start the PLC.

7 Before you confirm the message with the Yes command button, the display "link"
must appear on the Ethernet module.
33002204 141

PLC configuration
Error Action After configuration, only start the PLC once the display "link" has appeared on the
Ethernet module. If this is not the case, withdraw the Ethernet module from the
central backplane and then slot it in again. If the display "link" is still not shown, there
must be a serious error.

Available
Ethernet
Modules

The maximum number of NOE modules is dependent upon the configured CPU
(select in the PLC Selection dialog):

Configuration
with Momentum

The configuration of the Ethernet bus system with Momentum is described in the
section Momentum Example - Ethernet Bus System, p. 951.

CPUs Number of NOE modules

113 02/S/X 0 - 2

113 03/S/X 0 - 2

213 04/S/X 0 - 2

424 0x/X 0 - 6

434 12 0 - 6

534 14 0 - 6
142 33002204

PLC configuration
RTU extension

Requirements To make the RTU menu command available you have to choose a Compact CPU
with LL984 programming language in the PLC Selection dialog.

CTS-/RTS-Delay In this dialog you can set time delay for CTS or RTS independently for Comm port
1 of your Compact PLC. This feature allows modem communications with radios that
require longer time frames. The delay time range is 0 ... 500 ms using 10 ms units.
Enter the time delays your require.

Secured Data
Area (SDA)

This feature allows you to configure an area in RAM that is secured from being
overwritten. Secured Data Area (SDA) is a block of the Compact PLCs RAM that is
set aside as 6x data space. The SDA can only be written to by specific functions that
require secured data storage. General purpose Modbus commands, builtins, can
not write to the SDA. Modbus Read (function 20) is able to read from the SDA,
Modbus Write (function 21) is not able to write to the SDA. The SDA size range is 0
... 128 K words using only 1 K word blocks. Enter the size your require.

Refer to the applicable user manual for the specific function for the required SDA
size. For example, for Gas Flow, refer to the "Starling Associates Gas Flow
Loadable Function Block" User Guide (890 USE 137 00).

PLC Login
Password
Protection

For the description of password protection, refer to section Set PLC Password,
p. 636.
33002204 143

PLC configuration
Ethernet I/O Scanner

Introduction This function is for the following Quantum modules available:
� 140-NOE-211-x0
� 140-NOE-251-x0
� 140-NOE-771-xx

This function is for the following Momentum modules available:
� 171-CCC-960-20
� 171-CCC-980-20
� 171-CCC-980-30
� 171-CCC-960-30

Ethernet address and I/O scanning parameters can be modified using the Ethernet
/ I/O Scanner dialog box. From the PLC Configuration window, select Ethernet /
I/O Scanner. This menu option will only be available if you have selected an M1
Processor Adapter with an Ethernet port or have Quantum TCP/IP Ethternet
modules (NOE) as specified above.

This section describes how to configure the Ethernet port, including IP address,
other address parameters and I/O scanning.

Ethernet
Configuration
Options

The Ethernet / I/O Scanner screen offers three options for configuring the Ethernet
port on an M1 Processor Adapter:

Configuration options Meaning

Specify IP Address This is the default option. It allows you to type the IP address,
gateway and subnet mask in the text boxes in the upper righthand
corner of the screen.

Use Bootp Server Click this radio button if you want the address parameters to be
assigned by a Bootp server. If you select this option, the address
parameter text boxes in the upper righthand corner of the screen
will be grayed out. They will not display the actual address
parameters.

Disable Ethernet Click this radio button if you want to disable the Ethernet port.
Disabling the port will reduce the scan time for the Processor
Adapter.
144 33002204

PLC configuration
Setting Ethernet
Address
Parameters

If you choose to specify the IP address, you should complete all four text boxes in
the upper righthand corner of the dialog box:

Parameters Meaning

Internet Address Type a valid IP address in the Internet Address text box (for
example: 1.0.0.1).
Caution: POTENTIAL FOR DUPLICATE ADDRESSES!
Obtain a valid IP addresses from your system administrator to
avoid duplication. Failure to observe this precaution can result
in injury or equipment damage.

Gateway Consult your system administrator to determine the appropriate
gateway. Type it in the Gateway text box.

Subnet Mask Consult your system administrator to obtain the appropriate
subnet mask. Type it in the Subnet Mask text box (for example:
255.255.255.0).

Frame Type For NOE there is an additional Frame Type field. Your two
possible choices are ETHERNET II or IEEE 802.3
33002204 145

PLC configuration
Configuring I/O Once the Ethernet port address parameters have been set, you may assign
parameters for I/O scanning.

The text box Master Module (Slot) contains the Module type that you have
configured for Ethernet communications. In the case of the Momentum Ethernet
controller the slot will always be number 1, and the configured module type is
displayed in the variable dialog field. If you are configuring a NOE in a standard rack
the slot number assigned in the I/O Map will be displayed along with the module
type. Until the I/O Map is conmpeted this test field will indicate "Unassigned". In
instances where more than one NOE is configured the I/O Scan parameters reflect
the unit currently in the dialog box from which you can select the additional unit by
activating the Pulldown list.

The text field Health Block (1x/3x) is only available by using the 140-NOE-771-xx.
The health timeout is used for setting the health bit. If the response arrives before
the end of the HealthTimeout period, the health bit is set; otherwise it is cleared. If
the Health Timeout is zero, the health bit is set to true once communications are
established, and it is never cleared.

The text box Diagnostic Block (3x/4x) is only available by using the Momentum
Ethernet (M1E) and allows you to define the starting register of a number of bits
which are used for diagnostic. The block can be specified in either 3x or 4x registers.
For more information, refer to the user guide Quantum NOE 771 xx Ethernet
Modules, model no. 840 USE 116 00.

Note: The configuration of the health block, refer to the user guide Quantum NOE
771 xx Ethernet Modules, model no. 840 USE 116 00.
146 33002204

PLC configuration
I/O Scanner Configuration table:

How to use For more information about how to use the Ethernet / I/O Scanner dialog see section
How to use the Ethernet / I/O Scanner, p. 148.

Column Description

Slave IP Address Type the IP address of the slave module in this column (for example:
128.7.32.54). This address will be stored in a pulldown menu, so that
you may use it in another row by clicking on the down arrow and
selecting it.

Unit ID If the slave module is an I/O device attached to the specified slave
module, use the Unit ID column to indicate the device number. The Unit
ID is used with the Modbus Plus to Ethernet bridge to route to Modbus
Plus networks.

Health Timeout Use this column to specify the length of time in ms to try the transaction
before timing out. Valid values are 0 ... 50 000 ms (1 min).
To avoid timing out, specify 0.

Rep Rate Use this column to specify how often in ms to repeat the transaction.
Valid values are 0 ... 50 000 ms (1 min).
To repeat the transaction continually, specify 0.

Read Ref Master Use the read function to read data from the slave to the master.
This column specifies the first address to be read (for example: 400001).

Read Ref Slave Use the read function to transfer data from the slave to the master.
This column specifies the first address of up to 125 to read to (for
example: 400050).

Read Length Use the read function to read data from the slave to the master.
This column specifies the number of registers to read (for example: 20).

Write Ref Master Use the write function to write data from the master to the slave.
This column specifies the first address to write (for example: 400100).

Write Ref Slave Use the write function to write data from the master to the slave.
This column specifies the first address of up to 100 to write to (for
example: 400040).

Write Length Use the write function to write data from the master to the slave.
This column specifies the number of registers to write (for example: 40).

Description You can type a brief description (up to 32 characters) of the transaction
in tis column.

Note: You may include read and write commands on the same line.
33002204 147

PLC configuration
How to use the Ethernet / I/O Scanner

Introduction This section describes how to complete your Ethernet I/O configuration using the
Copy, Cut, Paste, Delete and Fill Down buttons.

Copy and Paste To save time when typing similar read and write commands, you may copy and
paste entire rows within your configuration:

Cut and Paste To move a row within the configuration list, follow the direction:

Delete To delete a row within the configuration list, follow the direction:

Step Action

1 Select the row you want to copy by clicking on the row number at the far left.

2 Click the Copy button above the I/O configuration list.

3 Select the row where you would like to paste the data (by clicking on the row
number at the far left).

4 Click the Paste button.

Step Action

1 Select the row you want to move by clicking on the row number at the far left.

2 Click the Cut button above the I/O configuration list.

3 Select the row where you would like to paste the data (by clicking on the row
number at the far left).

4 Click the Paste button.
Note: Multiple rows may be cut/copy and pasted. The number of rows actually
pasted is limited by the number of rows selected. For example if you copy 10
rows to the clipboard, then select an area of 6 rows to past, only the first six rows
of clipboard data is pasted.

Step Action

1 Select the row you want to delete by clicking on the row number at the far left.

2 Click the Delete button above the I/O configuration list.
Note: Multiple rows may be deleted.
148 33002204

PLC configuration
Fill down To copy part of any row to the next row or to a series of adjoining rows, use the Fill
Down button, following the steps in the table

NOE Ethernet
modules

In this dialog the NOE Ethernet modules 140 NOE 211 x0,140 NOE 251 x0 and 140
NOE 771 10 are parameterized (in the Ethernet Configuration area).

In this dialog the NOE Ethernet module 140 NOE 771 00 is parameterized and
addressed (in the I/O Scanner Configuration area).

For the followings modules you receive an function description:
� 140 NOE 211 x0
� 140 NOE 251 x0
� 140 NOE 771 xx

Momentum
Ethernet
modules

In this dialog the Momentum Ethernet modules are addressed (in the I/O Scanner
Configuration area).

For the followings modules you receive an function description:
� 171 CCC 980 30 IEC
� 171 CCC 980 30 984
� 171 CCC 980 20 984
� 171 CCC 960 30 IEC
� 171 CCC 960 30 984
� 171 CCC 960 20 984

Step Action

1 Use your mouse to select the data you would like to copy and the cells you would
like to copy it to.
Note: You must select one contiguous block of cells, with the data to be copied
in the first row. You cannot select two separate blocks.

2 Click the Fill down Button.
Result: The data from the first row is copied to the selected cells in the defined
block.
33002204 149

PLC configuration
5.7 Quantum Security Settings in the Configurator

Quantum Security Parameters

Introduction Various security parameters can be defined in the configuration of the Quantum
CPUs 140 434 12A and 140 534 14A/B which are indicated in the log file *.LOG. This
guarantees secure process documentation which includes the logging with the
automatic logout, write access of NOEs/NOMs on the PLC as well as limited
participants (max. 12) for network write access.

The definition of the security parameters can be found in dialog Configuration →
Quantum Security Parameters.

Dialog Quantum Security Parameters:

Requirements The security parameters are only available if the following conditions have been met:
� Supervisor Rights (see Concept under Help → About... → Current User:)
� only with CPUs 140 CPU 434 12A and 140 CPU 534 14A/B

Automatic
Logout

The automatic logout procedure logs a user out as soon as a predefined time limit
(max. 90 minutes) is reached with no activity on the connection. This could be a lack
of read or write activity from the programming device to the PLC for example.

The Never setting disables this function, i.e. automatic logout cannot occur.

Quantum Security Parameters

Modbus+ Write Restriction Table

Cancel

OK

Help

Never

Enable Write Restriction

Disable all Writes from NOEs/NOMs

Delete

Add...

Clear

00.00.00.00.00
1.3.0.7.1
1.3.0.7.2
1.3.0.7.3

Auto Logout:

Disable all Writes from CPU Modbus Ports
150 33002204

PLC configuration
Disable all Writes
from NOEs/
NOMs

By disabling all writes from

� 140 NBE 210 00 (ID Code 0x0406)
� 140 NBE 250 00 (ID Code 0x0407)
� 140 NOE 211 00 (ID Code 0x0404)
� 140 NOE 251 00 (ID Code 0x0405)
� 140 NOE 311 00 (ID Code 0x0408)
� 140 NOE 351 00 (ID Code 0x0409)
� 140 NOE 511 00 (ID Code 0x040A)
� 140 NOE 551 00 (ID Code 0x040B)
� 140 NOE 771 00 (ID Code 0x040D)
� 140 NOE 771 01 (ID Code 0x0422)
� 140 NOE 771 10 (ID Code 0x040E)
� 140 NOE 771 11 (ID Code 0x0423)
� 140 NOM 211 00 (ID Code 0x010C)
� 140 NOM 212 00 (ID Code 0x010C)
� 140 NOM 252 00 (ID Code 0x010C)
� 140 NWM 100 00 (ID Code 0x0420)

to the PLC, all write instructions are ignored by the CPU and responded to with an
error message.

Disable all Writes
from CPU
Modbus Ports

To disable writes from the Quantum CPU Modbus connections, check the Disable
all Writes from CPU Modbus Ports check box.

Limited Write
Access on the
Modbus Plus
Network

A restricted number of participants that have access to the PLC can be configured
for the Modbus Plus network. A maximum of 12 participants are allowed, the
participant address of the programming device is automatically entered in the
participant list and cannot be deleted.

Dialog Add Modbus Plus Address (press Add...)

Note: MSTR-Read-Operations are not executed when the check box Disable all
Writes from NOEs/NOMs is checked. (This also means the error state of the
MSTR block shows no error!)

Add Modbus Plus Address

HelpCancelOK

1

Enter a Modbus Plus address which
will have write access to the PLC.

Modbus Plus Address: 3 0 7 4|
33002204 151

PLC configuration
Examples of
Modbus Plus
Paths

Modbus Plus Network:

The address must be entered from the point of view of the PLC which is ready to
receive to the sender and therefore begins with the first gateway or the next PLC.
This depends whether the sender and receiver are in the same Modbus Plus
segment (no bridges/gateways), or if the sender and receiver are in different
segments (separated by one or more bridges/gateways).

Example 1:

Concept (MB+ address 1) writes to PLC 6. There are no bridges or gateways
between the two nodes. Therefore the entered address looks like this: 1 or 1.0.0.0.0

Example 2:

PLC 2 (MB+ address 2) writes to PLC 6. A gateway is between the nodes (MB+
address 3). Therefore the entered address looks like this: 3.2.0.0.0

Note: Only the first Modbus Plus address can be detected by the PLC, i.e. as soon
as the first bridge or gateway address is recognized, all devices in the network
behind bridge or gateway have write access to the PLC. This means that PLC 7
can also write to PLC 6 in our example (Address: 3.7.0.0.0).

Quantum PLC
MB+ address: 4

Quantum PLC
MB+ address: 6

Concept station
MB+ address: 1

Modbus Plus Gateway

MB+ address: 3 MB+ address: 5

Quantum PLC
MB+ address: 2

Quantum PLC
MB+ address: 7
152 33002204

33002204
6

Main structure of PLC Memory
and optimization of memory
At a Glance

Overview This Chapter describes the main structure of the PLC Memory and the optimization
of the memory with the different PLC families.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

6.1 Main structure of the PLC Memory 155

6.2 General Information on Memory Optimization 156

6.3 Memory Optimization for Quantum CPU X13 0X and 424 02 160

6.4 Memory Optimization for Quantum CPU 434 12(A) and 534
14(A/B)

174

6.5 Memory optimization for Compact CPUs 185

6.6 Memory optimization for Momentum CPUs 195

6.7 Memory optimization for Atrium CPUs 201
153

PLC Memory and optimization
154 33002204

PLC Memory and optimization
6.1 Main structure of the PLC Memory

General structure of the PLC Memory

At a Glance In principle, the memory of a PLC consists of three parts:
� the memory for the Exec file,
� the state RAM and
� the program memory.

Memory for the
EXEC file

The EXEC file contains the operating system and one or two runtime systems (IEC
and/or LL984) for operating the user programs.

State RAM The state RAM can be divided into different zones:
� the used 0x, 1x, 3x and 4x references,
� a reserve for further 0x, 1x, 3x and 4x references,
� possibly an extended memory zone for 6x references.

Program Memory The program memory can be divided into different zones:
� the I/O map etc.,
� a reserve for extensions,
� the ASCII messages (if used), the Peer Cop configuration (if used), the Ethernet

configuration (if used) etc.,
� a reserve for extensions,
� the IEC loadables (if required),
� the Global Data, consisting of the Unlocated Variables,
� the IEC program memory with the program codes, EFB-Codes and program data

(section data and DFB instance data),
� possibly the ULEX loadable for INTERBUS or other loadables,
� the LL984 program memory.
33002204 155

PLC Memory and optimization
6.2 General Information on Memory Optimization

Introduction

Overview This Section contains general information on memory optimization.

What's in this
Section?

This section contains the following topics:

Topic Page

Possibilities for Memory Optimization 157

PLC-Independent 157
156 33002204

PLC Memory and optimization
Possibilities for Memory Optimization

Description The possibilities for memory optimization are partly dependent on the PLC family
and CPU used:
� PLC-Independent, p. 157
� Memory Optimization for Quantum CPU X13 0X and 424 02, p. 160
� Memory Optimization for Quantum CPU 434 12(A) and 534 14(A/B), p. 174
� Memory optimization for Compact CPUs, p. 185
� Memory optimization for Momentum CPUs, p. 195
� Memory optimization for Atrium CPUs, p. 201

PLC-Independent

Introduction There are 3 PLC-independent possibilities for memory optimization:
� Optimize State RAM for 0x and 1x References, p. 157
� Only Download Required Loadables, p. 158
� Optimize Expansion Size, p. 159

Optimize State
RAM for 0x and
1x References

The state RAM contains the current values of the 0x, 1x, 3x and 4x references.

Even if the state RAM zone is outside the program memory zone, the size of the
state RAM for 0x and 1x references influences the size of the program memory.
Therefore, do not select a state RAM zone that is too large. In theory, the procedure
only needs as many 0x and 1x references as the hardware requires. However, you
will require a somewhat larger number of references if the I/O map is to be extended.
It is advisable to be generous with the number of references during the creation
phase of the user program when frequent changes are still being made. At the end
of the programming phase, the number of these references can be reduced in order
to create more space for the user program.

The settings for the 0x-, 1x-references can be found in Project → PLC
Configurator → PLC Memory Partition.

In this dialog box, there is an overview of the size of the occupied state RAM zone
and the percentage of the maximum state RAM that this represents.
33002204 157

PLC Memory and optimization
Optimize state RAM for 0x, 1x, 3x and 4x references:

Only Download
Required
Loadables

All the installed loadables are downloaded into the program memory zone and
occupy space. Therefore, only install those loadables which you really need (related
topics Loadables, p. 114).

The memory space occupied by the installed loadables is displayed in the
Loadables dialog box under Used Bytes (Project → PLC configurator). This
information is calculated from the size of the loadable files and from the memory size
assigned to the loadables.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

potential extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
158 33002204

PLC Memory and optimization
Optimize
Expansion Size

Each time, there is the possibility to reserve memory space for later expansion in the
mapping zone (I/O map) and in the configuration expansion zone (Peer Cop). This
memory space is necessary if e.g. the I/O map or the Peer Cop settings should be
changed online. It is advisable to overestimate the reserves during the installation
phase of the user program, that is, when modifications are often being made. At the
end of the programming phase the reserves may be reduced again, to provide more
space for the user program.

The settings for the mapping reserves are found in Project → PLC Configurator →
I/O Map → Expansion Size. The settings for the Peer Cop reserves can be found
in Project → PLC Configurator → Config. Extensions → Select Extensions →
Peer Cop → Expansion Size.

Optimize Expansion Size

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
33002204 159

PLC Memory and optimization
6.3 Memory Optimization for Quantum CPU X13 0X
and 424 02

Introduction

Overview This Section describes the memory optimization for the Quantum CPUs CPU X13
0X and CPU 424 02.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Quantum CPU X13 0X and
424 02

161

Selecting Optimal EXEC File 163

Using the Extended Memory (State RAM for 6x references) 167

Harmonizing the IEC Zone and LL984 Zone 169

Harmonizing the Zones for Global Data and IEC Program Memory 171
160 33002204

PLC Memory and optimization
General Information on Memory Optimization for Quantum CPU X13 0X and
424 02

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configuration
in the configurations overview in the PLC zone. The entry for the memory size is
given in Nodes for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
� Selecting Optimal EXEC File, p. 163
� Using the Extended Memory (State RAM for 6x references), p. 167
� Harmonizing the IEC Zone and LL984 Zone, p. 169
� Harmonizing the IEC Zone and LL984 Zone, p. 169

Note: Also note the PLC-independent possibilities for memory optimization (see
General Information on Memory Optimization, p. 156).
33002204 161

PLC Memory and optimization
Structure of the CPU X13 0X memory (simplified representation):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

LL984 operating system

Operating system

EXEC file
Q186vxxx.bin
Q486vxxx.bin

potential extended memory
(6x references)

potential ULEX loadable

Configuration

Configuration

IEC
total
memory
162 33002204

PLC Memory and optimization
Selecting Optimal EXEC File

Introduction The simplest and most basic option is to download the optimal EXEC file for your
requirements onto the PLC (see also Installation Instructions).

Depending on which EXEC file you select, zones will be reserved in the program
memory of the PLC for IEC and/or LL984 programs. Therefore, if you install a
'combined EXEC file' and then only use one of the two language types in the user
program, the program memory will not be used optimally.

Therefore, decide which languages you want to use:
� Exclusive Use of IEC, p. 164
� Exclusive Use of LL984, p. 165
� Joint Use of IEC and LL984, p. 166
33002204 163

PLC Memory and optimization
Exclusive Use of
IEC

If you want to use IEC exclusively, download the EXEC file "QIEC_xxx.bin" (not
available for CPU 424 02). Since this EXEC file does not contain an operating
system, you have to download the IEC runtime system onto the PLC in the form of
a loadable (EMUQ.exe) (related topics Loadables, p. 114). The loadable is
downloaded into the program memory zone and takes up memory space.

Structure of the CPU X13 0X memory with exclusive use of IEC:

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

IEC loadable EMUQ.EXE

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
164 33002204

PLC Memory and optimization
Exclusive Use of
LL984

If you want to use LL984 exclusively, download the EXEC file "Q186Vxxx.bin" for a
CPU X13 0X and the EXEC file "Q486Vxxx.bin" for a CPU 424 02.

Structure of the CPU X13 0X memory with exclusive use of LL984:

LL984 program memory

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

Configuration
33002204 165

PLC Memory and optimization
Joint Use of IEC
and LL984

If joint use of IEC and LL984 is required, download the EXEC file "Q186Vxxx.bin" for
a CPU X13 0X and the EXEC file zone "Q486Vxxx.bin" for a CPU 424 02. Since
these EXEC files only contain the LL984 operating system, you have to download
the IEC operating system onto the PLC in the form of loadables (@2I7/@2IE or
@1S7/@1SE) (see also Loadables, p. 114). Both loadables will be downloaded into
the program memory zone and occupy memory space.

Structure of the CPU X13 0X memory with joint use of IEC and LL984:

Note: Joint use of IEC and LL984 is not possible with the CPU 113 02 because its
memory is too small for this application.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
166 33002204

PLC Memory and optimization
Using the Extended Memory (State RAM for 6x references)

Introduction If a CPU 213 04 or CPU 424 02 is used, you can make a zone in the state RAM
available for the 6x references.

Even if the state RAM memory zone is outside the program memory zone, the size
of the state RAM influences the size of the program memory.

Using the extended memory (state RAM for 6x references):

Note: 6x references are registers and can only be used with LL984 user programs.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

potential extended memory
(6x references)

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
33002204 167

PLC Memory and optimization
If you do NOT
use 6x

If you do not want to use any 6x references, you can, with a CPU 213 04, select
whether to reserve state RAM 6x references or not.

Under Project → PLC Configuration → PLC Selection select from the Memory
Partition the 48 K Logic / 32 K Memoryentry.

If you use 6x If you want to use 6x references, select under Project → PLC Configuration →
PLC selection in the Memory Partition list box, the 32 K Logic / 64 K
Memoryentry.

Note: With a CPU 424 02 there is no option for deactivating the 6x zone.
168 33002204

PLC Memory and optimization
Harmonizing the IEC Zone and LL984 Zone

Introduction With joint use of IEC and LL984 sections, the sizes of both zones should be
harmonized with each other.

Harmonizing the IEC zone and LL984 zone:

Global Data
(Unlocated Variables)

LL984 program memory

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Reserve for extensions

ASCII messages, Peer Cop,
Ethernet, etc.

Reserve for extensions

I/O map, etc.

Reserve for extensions

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
33002204 169

PLC Memory and optimization
Size of IEC Zone The size of the total IEC memory and also the available space for LL984 data (user
program) is determined by the memory size of the loadable @2I7 or @2IE.

You can define the memory size of the loadables in Project → PLC Configuration
→ Loadables → Install @2I7 or @2IE → Edit... → Memory Size.

The total size is given in paragraphs. A paragraph equals 16 bytes.

For the @1S7 or @1SE loadables, no memory size is needed. Ensure that "0" is
specified here.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory, p. 171.

Size of LL984
Zone

The size of the available memory for LL984 user programs is calculated using the
following formula:

LL984 zone = available LL984 nodes – memory size of loadable @2I7/@2IE – size
of loadables @2I7 or @2IE – size of loadables @1S7 or @1SE

When doing this calculation, it must be ensured that the size of the LL984 zone is
node-oriented and the remaining instructions are byte-oriented.

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The loadable memory size is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory, p. 171).
170 33002204

PLC Memory and optimization
Harmonizing the Zones for Global Data and IEC Program Memory

Introduction The total IEC memory space, determined by the loadable memory size, (see
Chapter Harmonizing the IEC Zone and LL984 Zone, p. 169) is made up of two
zones:
� IEC Program Memory

� comprising the EFB codes,
� the program codes,
� the section data,
� the DFB specimen data,
� the block links,
� possibly data from online changes,
� possibly animation data etc.

� Global Data
� comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.
33002204 171

PLC Memory and optimization
Harmonizing the Zones for IEC Program Memory and Global Data:

Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IECzone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

IEC loadable (@2I7/@2IE)

IEC loadable (@1S7/@1SE)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Logic
zone

Configuration
in PLC Selection
dialogIEC

total
memory

Configuration
172 33002204

PLC Memory and optimization
Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The loadable memory size is too small (see Chapter Harmonizing the IEC Zone

and LL984 Zone, p. 169).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).
33002204 173

PLC Memory and optimization
6.4 Memory Optimization for Quantum CPU 434 12(A)
and 534 14(A/B)

Introduction

Overview This section describes the memory optimization for the Quantum CPUs 434 12(A)
and 534 14(A/B).

What's in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Quantum CPU 434 12(A) and
534 14(A/B)

175

Harmonizing IEC Zone and LL984 Zone 177

Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434
12(A) / 534 14 (A/B))

182
174 33002204

PLC Memory and optimization
General Information on Memory Optimization for Quantum CPU 434 12(A) and
534 14(A/B)

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configurator
in the configurations overview in the PLC zone. The memory size is given in nodes
for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
� Harmonizing IEC Zone and LL984 Zone, p. 177
� Harmonizing the Zones for Global Data and IEC Program Memory

(CPU 434 12(A) / 534 14 (A/B)), p. 182

Note: Also note the PLC-independent possibilities for memory optimization (see
General Information on Memory Optimization, p. 156).
33002204 175

PLC Memory and optimization
Structure of the CPU 434 12(A) / 534 14(A/B) memory (simplified representation):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

Operating system

EXEC file
Q58Vxxxx.bin
Q5RVxxxx.bin

Extended memory (6x references)
(cannot be disabled)

LL984 operating system

IEC operating system

IEC
total
memory

Configuration
176 33002204

PLC Memory and optimization
Harmonizing IEC Zone and LL984 Zone

Introduction The EXEC file "Q58Vxxxx.bin" is required for the CPU 434 12 and 534 14.

The EXEC file "Q5RVxxxx.bin" is required for the CPU 434 12A and 534 14A/B
(redesigned CPUs).

These EXEC files contain the runtime systems for IEC and LL984.

The sizes of the logic zones for IEC and LL984 should be harmonized with each
other. The size of both zones can be defined in Project → PLC Configurator →
PLC selection.

Depending on the size you select for the IEC zone, zones will be reserved in the
program memory of the PLC for IEC and/or LL984 programs. Therefore, if you
define a combined IEC and LL984 zone and then only use one of the two language
types in the user program, the program memory will not be used optimally.

Therefore, decide which languages you want to use:
� Exclusive Use of IEC, p. 178
� Exclusive Use of LL984, p. 179
� Joint Use of IEC and LL984, p. 180
33002204 177

PLC Memory and optimization
Exclusive Use of
IEC

If you require exclusive use of the IEC, select in Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the entry Enable and drag
the total IEC memory slider to the right hand margin (highest value). This will
completely switch off the LL984 zone and the entire logic zone will be made
available for the IEC user program.

Structure of the CPU 434 12 (A)/ 534 14(A/B) memory with exclusive use of IEC:

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

IEC
total
memory

Configuration
178 33002204

PLC Memory and optimization
Exclusive Use of
LL984

If you require exclusive use of LL984, select from Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the Disable entry. This will
completely switch off the IEC zone and the entire logic zone will be made available
for the LL984 user program.

Structure of the CPU 434 12(A)/ 534 14(A/B) memory with exclusive use of LL984:

LL984 program memory

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Configuration
33002204 179

PLC Memory and optimization
Joint Use of IEC
and LL984

When using IEC and LL984 jointly, you should harmonize the sizes of both zones
with each other.

By setting the total IEC memory size and Global Data you can automatically
determine the size of the IEC program memory, and also the available space for
LL984-data (user program).

The size of the available memory for LL984 user programs is calculated using the
following formula:

LL984 zone = available LL984 nodes - total IEC memory

When performing this calculation, it must however be ensured that the size of the
LL984 zone is node-oriented and the remaining instructions are kilobyte-oriented.

To set the total IEC memory, select from Project → PLC Configuration → PLC
selection in the IEC Operating System list box, the Enable entry. The IEC zone is
now enabled and you can enter the required memory size in the Total IEC Memory
text box. The memory size is given in kilobytes.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory, p. 171.
180 33002204

PLC Memory and optimization
Structure of the CPU 434 12(A)/ 534 14(A/B) memory with exclusive use of IEC and
LL984:

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The logic zone is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory (CPU 434 12(A) / 534 14 (A/B)), p. 182).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

IEC
total
memory

Configuration
33002204 181

PLC Memory and optimization
Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434 12(A)
/ 534 14 (A/B))

Introduction The fixed total IEC memory (see chapter Harmonizing IEC Zone and LL984 Zone,
p. 177) is made up of two zones.

The total IEC memory space, determined by the loadable memory size, (see
Chapter Harmonizing the IEC Zone and LL984 Zone, p. 169) is made up of two
zones:
� IEC Program Memory

� comprising the EFB codes,
� the program codes,
� the section data,
� the DFB specimen data,
� the block links,
� possibly data from online changes,
� possibly animation data etc.

� Global Data
� comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.
182 33002204

PLC Memory and optimization
Harmonizing the Zones for Global Data and IEC Program Memory (CPU 434 12(A)
/ 534 14 (A/B))

Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IECzone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

Configuration in
PLC Selection
dialog

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Logic
zone

IEC
total
memory

Configuration
33002204 183

PLC Memory and optimization
Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The total IEC memory size is too small (see Chapter Harmonizing IEC Zone and

LL984 Zone, p. 177).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).
184 33002204

PLC Memory and optimization
6.5 Memory optimization for Compact CPUs

At a Glance

Overview This Section describes the memory optimization for Compact CPUs.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Compact CPUs 186

Harmonizing IEC Zone and LL984 Zone 188

Harmonizing the Zones for Global Data and IEC Program Memory (Compact) 193
33002204 185

PLC Memory and optimization
General Information on Memory Optimization for Compact CPUs

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configuration
in the configurations overview in the PLC zone. The entry for the memory size is
given in Nodes for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.

Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
� Harmonizing IEC Zone and LL984 Zone, p. 188
� Harmonizing the Zones for Global Data and IEC Program Memory (Compact),

p. 193

Note: Also note the PLC-independent possibilities for memory optimization (see
General Information on Memory Optimization, p. 156).
186 33002204

PLC Memory and optimization
Structure of a Compact CPU memory (simplified representation)

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Peer Cop configuration, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

Operating system

EXEC file
CTSXxxxx.binLL984 operating system

IEC operating system

Expansion Size

IEC
total
memory

Configuration
33002204 187

PLC Memory and optimization
Harmonizing IEC Zone and LL984 Zone

Introduction The IEC zone "CTSXxxxx.bin", required for Compact CPUs, contains the runtime
systems for IEC and LL984 (see also Installation instructions).

The sizes of the logic zones for IEC and LL984 should be harmonized with each
other. You can define the size of both zones in Project → PLC Configurator → PLC
Selection.

Depending on the size you select for the IEC zone, zones will be reserved in the
program memory of the PLC for IEC and/or LL984 programs. Therefore, if you
define a combined IEC and LL984 zone and then only use one of the two language
types in the user program, the program memory will not be used optimally.

Therefore, decide which languages you want to use:
� Exclusive Use of IEC, p. 189
� Exclusive Use of LL984, p. 190
� Joint Use of IEC and LL984, p. 191
188 33002204

PLC Memory and optimization
Exclusive Use of
IEC

If you require exclusive use of the IEC, select in Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the entry Enable and drag
the total IEC memory slider to the right hand margin (highest value). This will
completely switch off the LL984 zone and the entire logic zone will be made
available for the IEC user program.

Structure of the Compact CPU memory with exclusive use of IEC

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Peer Cop configuration, etc.

IEC
total
memory

Configuration
33002204 189

PLC Memory and optimization
Exclusive Use of
LL984

If you require exclusive use of LL984, select from Project → PLC Configuration →
PLC Selection in the IEC Operating System list box, the Disable entry. This will
completely switch off the IEC zone and the entire logic zone will be made available
for the LL984 user program.

Structure of the Compact CPU memory with exclusive use of LL984

LL984 program memory

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Peer Cop configuration, etc.
Configuration
190 33002204

PLC Memory and optimization
Joint Use of IEC
and LL984

When using IEC and LL984 jointly, you should harmonize the sizes of both zones
with each other.

By setting the total IEC memory size and Global Data you can automatically
determine the size of the IEC program memory, and also the available space for
LL984-data (user program).

The size of the available memory for LL984 user programs is calculated using the
following formula:

LL984 zone = available LL984 nodes - total IEC memory

When performing this calculation, it must however be ensured that the size of the
LL984 zone is node-oriented and the remaining instructions are kilobyte-oriented.

To set the total IEC memory, select from Project → PLC Configuration → PLC
selection in the IEC Operating System list box, the Enable entry. The IEC zone is
now enabled and you can enter the required memory size in the Total IEC Memory
text box. The memory size is given in kilobytes.

The fixed total IEC memory size is again made up of several zones. You will find the
explanation of how to harmonize these zones vertically in the chapter Harmonizing
the Zones for Global Data and IEC Program Memory (Compact), p. 193.
33002204 191

PLC Memory and optimization
Structure of the Compact Memory with joint use of IEC and LL984:

Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The logic zone is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory (Compact), p. 193).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Extended memory
(6x references)

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Program
memory

Peer Cop configuration, etc.

IEC
total
memory

Configuration
192 33002204

PLC Memory and optimization
Harmonizing the Zones for Global Data and IEC Program Memory (Compact)

Introduction The fixed total IEC memory (see chapter Harmonizing IEC Zone and LL984 Zone,
p. 188) is made up of two zones.
� IEC Program Memory

� comprising the EFB codes,
� the program codes,
� the section data,
� the DFB specimen data,
� the block links,
� possibly data from online changes,
� possibly animation data etc.

� Global Data
� comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.

Harmonizing the Zones for Global Data and IEC Program Memory (Compact):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

LL984 program memory

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Peer Cop configuration, etc.

Logic
zone

Configuration in
PLC Selection
dialog

IEC
total
memory

Configuration
33002204 193

PLC Memory and optimization
Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IEC zone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The total IEC memory size is too small (see Chapter Harmonizing IEC Zone and

LL984 Zone, p. 188).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).
194 33002204

PLC Memory and optimization
6.6 Memory optimization for Momentum CPUs

Introduction

Overview This Section describes the memory optimization for Momentum CPUs.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Momentum CPUs 196

Selecting Optimal IEC Zone 198

Harmonizing the Zones for Global Data and IEC Program Memory
(Momentum)

199
33002204 195

PLC Memory and optimization
General Information on Memory Optimization for Momentum CPUs

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configuration
in the configurations overview in the PLC zone. The entry for the memory size is
given in Nodes for LL984 (1 node equals 11 bytes) and in kilobytes for IEC.
196 33002204

PLC Memory and optimization
Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
� Selecting Optimal IEC Zone, p. 198
� Harmonizing the Zones for Global Data and IEC Program Memory (Momentum),

p. 199

Structure of a Momentum CPU memory (simplified representation):

Note: Also note the PLC-independent possibilities for memory optimization (see
General Information on Memory Optimization, p. 156).

LL984 program memory

Expansion Size

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

LL984 operating system

Operating system

EXEC file
M1Vxxx.bin
M1IECxxx.bin
M1EVxxx.bin
M1EWIxxx

Peer Cop configuration, etc.
Configuration
33002204 197

PLC Memory and optimization
Selecting Optimal IEC Zone

Introduction It is not possible to use IEC and LL984 jointly in Momentum.

Using IEC EXEC file assignment during IEC use:

Using LL984 EXEC file assignment during LL984 use:

171 CCS M1IECxxx M1EWIxxx

760 00 x -

760 10 x -

780 10 x -

960 30 - x

980 30 - x

171 CCS M1Vxxx M1EVxxx

700 10 x -

700/780 00 x -

760 00 x -

760 10 x -

780 10 x -

960 20 - x

960 30 - x

980 20 - x

980 30 - x
198 33002204

PLC Memory and optimization
Harmonizing the Zones for Global Data and IEC Program Memory (Momentum)

Introduction The logic zone for the total IEC memory is made up of two zones.
� IEC Program Memory

� comprising the EFB codes,
� the program codes,
� the section data,
� the DFB specimen data,
� the block links,
� possibly data from online changes,
� possibly animation data etc.

� Global Data
� comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.

Harmonizing the Zones for Global data and IEC Program Memory (Momentum 171
CCS 760 00-IEC):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Logic
zone

max.
State RAM

Peer Cop configuration, etc.

Program
memory

Configuration in
PLC Selection
dialog

IEC
total
memory

Configuration
33002204 199

PLC Memory and optimization
Size of the IEC
Program Memory
Zone

The settings for the IEC user program zone are available in Online → Memory
statistics... → Memory statistics in the Configured text box. This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, because hardly any memory is needed for global
data.

Size of the Zone
for Global Data

The zone for global data (unlocated variables and block links) is calculated using the
following formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are two possible reasons for an error message, saying that the user program
is too large for the PLC memory, appearing while downloading the program onto the
PLC:
1. The memory is currently too small.
2. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).
200 33002204

PLC Memory and optimization
6.7 Memory optimization for Atrium CPUs

At a Glance

Overview This Section describes the memory optimization for Atrium CPUs.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information on Memory Optimization for Atrium CPUs 202

Use of IEC 204

Harmonizing the Zones for Global Data and IEC Program Memory (Atrium) 206
33002204 201

PLC Memory and optimization
General Information on Memory Optimization for Atrium CPUs

Logic Memory The program memory zone, in which the user program is located, is called the logic
zone. This zone therefore determines the maximum size of your user program.

The current size of the logic zone is displayed under Project → PLC Configurator
in the configurations overview in the PLC zone. The memory size is given in
kilobytes for IEC.
202 33002204

PLC Memory and optimization
Optimizing the
Logic Memory

You have various possibilities for optimising the logic memory to suit your
requirements:
� Use of IEC, p. 204
� Harmonizing the Zones for Global Data and IEC Program Memory (Atrium),

p. 206

Structure of the Atrium CPU Memory (simplified representation):

Note: Also note the PLC-independent possibilities for memory optimization (see
General Information on Memory Optimization, p. 156).

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

Program
memory

max.
State RAM

Operating system

EXEC file
AI3Vxxxx.bin
AI5Vxxxx.bin

IEC operating system

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

IEC
total
memory

Configuration
33002204 203

PLC Memory and optimization
Use of IEC

Introduction The EXEC files required for the CPUs of the Atrium family contain the operating
systems for IEC (see also Installation Instructions).

When using the Atrium 180 CCO 121 01, load the EXEC file "AI3Vxxxx.bin".

When using the Atrium 180 CCO 241 01and 180 CCO 241 11 load the EXEC file
"AI5Vxxxx.bin".

Select in Project → PLC Configuration → PLC Selection in the IEC Operating
System list box, the entry Enable and drag the total IEC memory slider to the right
hand margin (highest value). This will completely switch off the LL984 zone and the
entire logic zone will be made available for the IEC user program.

Structure of the Atrium CPU memory with exclusive use of IEC:

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

Expansion Size

I/O map, etc.

Logic
zone

Program
memory

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

ASCII messages, Peer Cop,
Ethernet, etc.

IEC
total
memory

Configuration
204 33002204

PLC Memory and optimization
Error Message
during Download
of Program

There are three possible causes for an error message, which says that the user
program is too large for the PLC memory, appearing during download:
1. The memory is currently too small.
2. The logic zone is too small (see current chapter).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see chapter Harmonizing the Zones for Global Data and IEC
Program Memory (Atrium), p. 206).
33002204 205

PLC Memory and optimization
Harmonizing the Zones for Global Data and IEC Program Memory (Atrium)

Introduction The fixed total IEC memory (see chapter Use of IEC, p. 204) is made up of two
zones.
� IEC Program Memory

� comprising the EFB codes,
� the program codes,
� the section data,
� the DFB specimen data,
� the block links,
� possibly data from online changes,
� possibly animation data etc.

� Global Data
� comprising the Unlocated Variables

The zones for global data and IEC program memory can be harmonized with one
another.

Harmonizing the Zones for Global Data and IEC Program Memory (Atrium):

IEC program memory (code + data)
+ EFB code
+ program code
+ section data
+ DFB (specimen data)
+ block links
(+ possible online changes, animation etc.)

Global Data
(Unlocated Variables)

Expansion Size

ASCII messages, Peer Cop,
Ethernet, etc.

Expansion Size

I/O map, etc.

Expansion Size

State RAM used
for 0x, 1x, 3x, 4x references

max.
State RAM

Program
memory

Configuration
in PLC Selection
dialog

IEC
total
memory

Configuration

Logic
zone
206 33002204

PLC Memory and optimization
Size of the IEC
Program Memory
Zone

You change the settings for the IEC program memory in Project → PLC
Configuration → PLC selection in the IEC zone. Enter the size of the total IEC
memory and the global data, so that the IEC program memory size will be calculated
(IEC program memory size = total IEC memory - global data). This setting is only
possible when the PC and PLC are offline. If you do not use any or only a few
unlocated variables and have no or only a few block links, you can select the IEC
program memory as very large, since hardly any memory is needed for global data.

Size of the Zone
for Global Data

The zone for global data (unlocated variables) is calculated using the following
formula:

Zone for global data = memory size of the loadable - IEC program memory

The current content of the individual zones (EFBs, specimen data, user program
etc.) is displayed under Online → Memory statistics... → Memory statistics. This
display is only possible when the PC and PLC are online.

Error Message
during Download
of Program

There are three possible reasons for an error message, which says that the user
program is too large for the PLC memory, appearing while downloading the program
onto the PLC:
1. The memory is currently too small.
2. The total IEC memory size is too small (see Chapter Use of IEC, p. 204).
3. The zone for global data and the IEC program memory zone are not optimally

harmonized (see current chapter).
33002204 207

PLC Memory and optimization
208 33002204

33002204
7

Function Block language FBD
At a Glance

Overview This Chapter describes the Function Block language FBD which conforms to
IEC 1131.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

7.1 General information about FBD Function Block 211

7.2 FBD Function Block objects 212

7.3 Working with the FBD Function Block langauge 219

7.4 Code generation with the FBD Function Block language 227

7.5 Online functions of the FBD Function Block language 228

7.6 Creating a program with the FBD Function Block language 230
209

Function Block language FBD
210 33002204

Function Block language FBD
7.1 General information about FBD Function Block

General information on Function Block language FBD

At a Glance The objects of the programming language FBD (Function Block Diagram) help to
divide a section into a number of:
� EFBs (Elementary Functions and Elementary Function Blocks) (see EFB,

p. 213),
� DFBs (Derived Function Blocks) (see DFB, p. 215) and
� UDEFBs (User-defined Functions and Function Blocks) (see UDEFB, p. 216).

These objects, combined under the name FFBs, can be linked with each other by:
� Links (see Link, p. 216) or
� Current parameters (see Actual parameters, p. 217).

Expansive logic can also be placed in the FBD section in the form of macros (see
also Macros, p. 501).

Theoretically, each section can contain as many FFBs and also as many inputs and
outputs as required. However, it is advisable to subdivide a whole program in logic
units, that is to say in different sections.

Comments can be provided for the logic of the section with text objects (see Text
Object, p. 218).

Processing
sequence

The processing sequence of the individual FFBs in an FBD section is determined by
the data flow within the section (see also FFB Execution Order, p. 222).

Editing with the
keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the FBD and SFC Editor, p. 815)

IEC conformity For a description of the IEC conformity of the FBD programming language see IEC
conformity, p. 827.
33002204 211

Function Block language FBD
7.2 FBD Function Block objects

At a Glance

Overview This section describes the FBD Function Block objects.

What's in this
Section?

This section contains the following topics:

Topic Page

Functions and Function Blocks (FFBs) 213

Link 216

Actual parameters 217

Text Object 218
212 33002204

Function Block language FBD
Functions and Function Blocks (FFBs)

Introduction FFB is the generic term for:
� EFB (Elementary Function and Elementary Function Block) (see EFB, p. 213)
� DFB (Derived Function Block) (see DFB, p. 215)
� UDEFB (Derived Elementary Function and Derived Elementary Function Block)

(see UDEFB, p. 216)

EFB EFB is the generic term for:
� Elementary Function (see Elementary Function, p. 213)
� Elementary Function Block (see Elementary Function Block, p. 214)

EFBs are functions and function blocks that are available in Concept in the form of
libraries. The logic of EFBs is built in C programming language and cannot be
changed in the FBD editor.

Elementary
Function

Functions have no internal conditions. If the input values are the same, the value at
the output is the same for all executions of the function. E.g. the addition of two
values gives the same result at every execution.

An Elementary Function is represented graphically as a frame with inputs and
outputs. The inputs are always represented on the left and the outputs always on the
right of the frame. The name of the function, that is the function type, is displayed in
the center of the frame. The function counter is displayed above the frame.

The function counter cannot be changed and always has an .n.m. structure.

.n = current section number

.m = current function number

Functions are only executed in FBD if the input EN=1 or if the input EN is grayed out
(see also EN and ENO, p. 216).

Elementary Function

ADD_DINT

.6.5
33002204 213

Function Block language FBD
Elementary
Function Block

Function blocks have internal conditions. If the inputs have the same values, the
value at the output at every execution is another value. E.g. with a counter, the value
on the output is incremented.

A function block is represented graphically as a frame with inputs and outputs. The
inputs are always represented on the left and the outputs always on the right of the
frame. The name of the function block, that is the function block type, is displayed in
the center of the frame. The instance name is displayed above the frame. The
instance name serves as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m

FBI = Function Block Instance

n = Section number (current number)

m = Number of the FFB object in the section (current number)

The instance name can be edited in the Object → Properties dialog box of the
function block. The instance name must be unique throughout the whole project and
is not case sensitive. If the name entered already exists, you will be warned and you
will have to choose another name. The instance name must correspond to the IEC
name conventions, otherwise an error message occurs.

Function blocks are only executed in FBD if the input EN=1 or if the input EN is
grayed out (related topics EN and ENO, p. 216).

Elementary Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
menu command Options → Preferences → IEC Extensions... → Permit
Leading Figures in Identifiers will enable this.

CU

R

PV

Q

CV

CTU_DINT

FBI_3_6
214 33002204

Function Block language FBD
DFB Derived Function Blocks (DFBs) are function blocks that have been defined in
Concept DFB.

With DFBs, there is no distinction between functions and function blocks. They are
always treated as function blocks regardless of their internal structure.

A DFB is represented graphically as a frame with double vertical lines and with
inputs and outputs. The inputs are always represented on the left and the outputs
always on the right of the frame. The DFB name is displayed centrally within the
frame. The instance name is displayed above the frame. The instance name serves
as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m

FBI = Function Block Instance

n = Section number (current number)

m = Number of the FFB object in the section (current number)

The instance name can be edited in the Object → Properties dialog box of the DFB.
The instance name must be unique throughout the whole project and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must correspond to the IEC name
conventions, otherwise an error message occurs.

Derived function blocks are only executed in FBD if the input EN=1 or if the input EN
is grayed out (related topics EN and ENO, p. 216).

Derived Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
menu command Options → Preferences → IEC Extensions... → Permit
Leading Figures in Identifiers will enable this.

IN1

IN2

IN3

OUT1

OUT2

EXAMP

FBI_3_7
33002204 215

Function Block language FBD
UDEFB UDEFB is the generic term for:
� User-defined Elementary Function
� User-defined Elementary Function Block

UDEFBs are functions and function blocks that have been programmed with
Concept EFB in C++ programming language and are available in Concept in the
form of libraries.

In Concept, there is no functional difference between UDEFBs and EFBs.

EN and ENO With all FFBs, an EN input and an ENO output can be configured.

The configuration of EN and ENO is switched on or off in the FFB Properties dialog
box. The dialog box can be called up with the Objects → Properties... menu
command or by double-clicking on the FFB.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is automatically set to "0" in this case.

If the value of EN is equal to "1", when the FFB is called up, the algorithms which
are defined by the FFD will be executed. After successful execution of these
algorithms, the value of ENO is automatically set to "1". If an error occurs during
execution of these algorithms, ENO will be set to "0".

The output behavior of the FFBs in FBD does not depend on whether the FFBs are
called up without EN/ENO or with EN=1.

Link

Description Links are connections between FFBs.

Several links can be connected with one FFB output. The link points are identified
by a filled-in circle.

Data Types The data types of the inputs/outputs to be linked must be the same.

Creating Links Links can be created using Objects → Link.

Editing Links Links can be edited in select mode. An overlap with other objects is permitted.

Configuring
Loops

No loop can be configured with links because in this case, the execution order in the
section cannot be determined uniquely. Loops must be resolved with actual
parameters (see Configuring Loops, p. 225).
216 33002204

Function Block language FBD
Actual parameters

At a Glance In the program runtime, the values from the process or from other actual parameters
are transferred to the FFB over the actual parameters and then re-emitted after
processing.

These actual parameters can be:
� direct addresses (see Direct addresses, p. 67)
� Located variables (see Variables, p. 64)
� Unlocated variable (see Variables, p. 64)
� Constants (see Constant variables, p. 66)
� Literals (see Literals (values), p. 66)

Direct addresses The information on/display of direct addresses can be given in various formats. The
display format is set in the dialog box Options → Presettings → Joint. Setting the
display format has no impact on the entry format, i.e. direct addresses can be
entered in any format.

The following address formats are possible:
� Standard format (400001)

The five-character address comes directly after the first digit (the Reference).
� Separator format (4:00001)

The first digit (the Reference) is separated from the following five-character
address by a colon (:).

� Compact format (4:1)
The first digit (the Reference) is separated from the following address by a colon
(:), and the leading zeros of the address are not given.

� IEC format (QW1)
In first place, there is an IEC identifier, followed by the five-character address.
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

Data types The data type of the actual parameter must match the data type of the input/output.
The only exceptions are generic inputs/outputs, of which the data type is determined
by the formal parameter. If all actual parameters consist of literals, a suitable data
type is selected for the Function Block.

Initial values FFBs, which use actual parameters on the inputs that have not yet received any
value assignment, work with the initial values of these actual parameters.
33002204 217

Function Block language FBD
Unconnected
inputs

Text Object

At a Glance Text can be positioned in the form of text objects using FBD Function Block
language. The size of these text objects depends on the length of the text. The size
of the object, depending on the size of the text, can be extended vertically and
horizontally to fill further grid units. Text objects may not overlap with FFBs; however
they can overlap with links.

Memory space Text objects occupy no memory space on the PLC because the text is not
downloaded onto the PLC.

Note: Unconnected FFB inputs are specified as "0" by default.
218 33002204

Function Block language FBD
7.3 Working with the FBD Function Block language

At a Glance

Overview This section describes working with the FBD Function Block object language.

What's in this
Section?

This section contains the following topics:

Topic Page

Positioning Functions and Function Blocks 220

FFB Execution Order 222

Configuring Loops 225
33002204 219

Function Block language FBD
Positioning Functions and Function Blocks

Selecting FFBs Using Objects → Select FFB... you can open a dialog for selecting FFBs. This
dialog is modeless, that is, it is not automatically closed once an FFB is positioned,
but remains open until you close it. If you have several FBD sections open, and
invoke the dialog, only one dialog box is opened that is available for all sections. The
dialog box is not available for any other sections (non-FBD editor). If the FBD
sections are changed into icons (minimize window), the dialog box is closed. If one
of the FBD section icons is called up again, the dialog box is automatically re-
opened.

The first time Concept is started the FFB is displayed oriented to the library. This
means that, when selecting an FFB, the Library command button must first of all be
used to select the corresponding library. Then you can select the corresponding
Group in the list box. Now, you can select the required FFB from the EFB type list.

If you do not know which library/group the FFB required is in, you can invoke an
FFB-oriented dialog with the Sorted by FFB command button. This contains all
FFBs of all libraries and groups in an alphabetical list.

After each subsequent project start, the view you selected appears.

Once the FFB has been selected, its position in the section must be selected. The
cursor becomes a small FFB and the cross shows the position (upper left corner of
the FFB) where the FFB is positioned. The FFB is positioned by clicking on the left-
hand mouse button.

Positioning FFBs
(Functions and
Function Blocks)

In the FBD function block language editor, the window appears with a logic grid.
FFBs (see Functions and Function Blocks (FFBs), p. 213) are aligned in this grid as
they are positioned. If FFBs are positioned outside of the section frame or if there is
overlapping with another FFB, an error warning will appear and the FFB will not be
positioned. Actual parameters may overlap another object when being positioned at
an FFB input/output, but they must not go outside the limits of the section frame. If
a link to another FFB is established, this link is checked. If this link is not permitted,
a message is received, and the link is not established. When links are created,
overlaps and crossing with other links and FFBs are permitted. If an FFB is selected,
the comment relating to it is displayed in the first column of the status line. If an
actual parameter is selected, its name and, if applicable, its direct address, its I/O
map and its comment are displayed in the first column of the status line.
220 33002204

Function Block language FBD
Change FFB
Type

With the Objects → Replace FFBs... menu command the FFBs already positioned
in the section can be replaced with FFBs of another type (e.g. an AND with an OR).
The variables given to the FFB remain if the data type and position of the inputs/
outputs are the same as the "old" and the new FFB.

Note: FFBs with inputs / outputs of the ANY data type (generic FFBs) cannot be
replaced.
33002204 221

Function Block language FBD
FFB Execution Order

Introduction The execution order is first determined by the order when positioning the FFB. If the
FFBs are then linked graphically, the execution order is determined by the data flow.

Display FFB
Execution Order.

The execution order can also be displayed with the Objects → FFB Execution
Order menu command. This is represented by the execution number (number in
brackets behind the instance name or function counter).

Show execution order of the FFBs

Change FFB
Execution Order

The execution order can be specifically changed afterwards with the menu
command Objects → Change FFB Execution Order, but only if the rules regarding
data flow are not broken.

ADD_DINT

VALUE1

.6.5 (1)

MUL_DINT

RESULT

.6.6 (3)
VALUE2

SUB_DINT

VALUE3

.6.7 (2)

VALUE4
222 33002204

Function Block language FBD
Changing the
execution order
of two networks
which are in one
loop

This change can only be made when the two FFBs are linked by the feedback
variable of the loop.

Step 1: Select the two FFBs.

Step 2: Press the menu command Change FFB-execution sequence.

Result: The execution sequence has changed as follows:

AND_BOOL

A

.6.3 (1)

AND_BOOL

B

.6.4 (2)

AND_BOOL

B

.6.7 (3)

AND_BOOL

A

.6.6 (4)

AND_BOOL

A

.6.3 (3)

AND_BOOL

B

.6.4 (4)

AND_BOOL

B

.6.7 (1)

AND_BOOL

A

.6.6 (2)
33002204 223

Function Block language FBD
Changing the
execution order
of FFBs which
are executed
according to the
positioning order

The change operation permits the creation of a different, desired order (sometimes
step by step if several FFBs are involved).

Result: The execution sequence has changed as follows:

AND_BOOL

.2.1 (1) .2.2 (2)

AND_BOOL

.2.3 (3)

AND_BOOL

.2.4 (4)

AND_BOOL

AND_BOOL

.2.1 (1) .2.2 (3)

AND_BOOL

.2.3 (4)

AND_BOOL

.2.4 (2)

AND_BOOL
224 33002204

Function Block language FBD
Configuring Loops

Non-permitted
Loops

Configuring loops exclusively via links is not permitted, as it is not possible to
uniquely set the data flow (the output of one FFB is the input of the next FFB, and
the output of this one is the input of the first).

Non-permitted Loops via Links

Resolution using
an Actual
Parameter

This type of logic must be resolved using actual parameters so that the data flow can
be determined uniquely.

Resolved loop using an actual parameter: Variant 1

Resolved loop using an actual parameter: Variant 2

OR_BOOL

IN1

.6.5

AND_BOOL

.6.6

IN2

OR_BOOL

IN1

.6.5

AND_BOOL

.6.6

IN2OUT1

OUT1

OR_BOOL

IN1

.6.5 (2)

AND_BOOL

.6.6 (1)

IN2

OUT2OUT2
33002204 225

Function Block language FBD
Resolution using
Several Actual
Parameters

Loops using several actual parameters are also allowed. With such loops, the
execution order can later be influenced by executing – possibly several times – the
menu command Objects → Reverse FFB Execution Order (see also FFB
Execution Order, p. 222).

Loop using several actual parameters

OR_BOOL

IN1

.6.5 (1)

AND_BOOL

.6.6 (2)

IN2

OUT2OUT2
OUT1

OUT1
226 33002204

Function Block language FBD
7.4 Code generation with the FBD Function Block
language

Code Generation Options

Introduction Using the Project → Code Generation Options menu command, you can define
options for code generation.

Include
Diagnosis
Information

If the Include Diagnosis information check box is checked, additional information
for the process diagnosis (e.g. Transition Diagnosis (see Transition diagnosis,
p. 314), diagnosis codes for diagnosis function blocks with extended diagnosis,
such as e.g. XACT, XLOCK etc.) will be produced during code generation. This
process diagnosis can be evaluated with MonitorPro or FactoryLink, for example.

Fastest Code
(Restricted
Checking)

If you check the Fastest code (Restricted Checking) check box, a runtime-
optimized code is generated. This runtime optimization is achieved by realizing the
integer arithmetic (e.g. "+" or "-") using simple CPU commands instead of EFB
invocations.

CPU commands are much quicker than EFB invocations, but they do not generate
any error messages, such as, for example, arithmetic or array overflow. This option
should only be used when you have ensured that the program is free of arithmetic
errors.

If Fastest Code (Restricted Checking) was selected, the addition IN1 + 1 is solved
with the "add" CPU command. The code is now quicker than if the ADD_INT EFB
were to be invoked. However, no runtime error is generated if "IN1" is 32767. In this
case, "OUT1" would overrun from 32767 to -32768!
33002204 227

Function Block language FBD
7.5 Online functions of the FBD Function Block
language

Online Functions

Introduction There are two animation modes available in the FBD editor:
� Animation of binary variables and links
� Animation of selected objects

These modes are also available on display of a DFB item (command button
Refine... in the dialog box Function block: xxx).

Animation of
binary variables
and links

The animation of binary variables and links is activated with the menu command
Online → Animate Booleans.

In this mode, the current signal status of binary variables, direct addresses in the 0x
and 1x range and binary links is displayed in the Editor window.

Animation of
selected objects

The animation of the selected objects is activated with the menu command Online
→ Animate selected.

In this mode, the current signal status of the selected links, variables, multi-element
variables and literals are displayed in the Editor window.

If a numerical value is selected on an input/output, the name of the variable, its direct
address and I/O assignment (if available) and its comment will be displayed in the
status bar.

Note: If the animated section is used as a transition section for SFC and the
transition (and therefore also the transition section) is not processed, the status
DISABLED appears in the animated transition section.

Note: If all variables/links of the section need to be animated, the whole section
can be selected with CTRL+A and then Online → Animate selected (CTRL+W)
all variables and links of the section will be animated.

Note: The selected objects remain selected even after "Animate selected" has
been selected again, in order to keep these for a further reading, and/or to be able
to easily modify the list of objects.
228 33002204

Function Block language FBD
Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in the Online help (Tip:
Search the online help for the index reference "Colors").
33002204 229

Function Block language FBD
7.6 Creating a program with the FBD Function Block
language

Creating a Program in the FBD Function Block Language

Introduction The following description contains an example for creating a program in the function
block language (FBD). The creation of a program in the function block language is
divided into 2 main steps:

Creating a
Section

The procedure for creating a section is as follows:

Step Action

1 Creating a Section (see Creating a Section, p. 230)

2 Creating the Logic (see Creating the Logic, p. 231)

Step Action

1 Using the File → New Section... menu command, create a new section and
enter a section name.

Note: The section name (max. 32 characters) is not case-sensitive and must be
unique within the whole project. If the name entered already exists, you will be
warned and you will have to choose a different name. The section name must
comply with the IEC name conventions, otherwise an error message appears.

Note:In compliance with IEC1131-3 only letters are permitted as the first
character of names. However, if you wish to use numbers as the first character,
you can enable this using the Options → Preferences → IEC Extensions... →
Allow Leading Digits in Identifiers menu command.
230 33002204

Function Block language FBD
Creating the
Logic

The procedure for creating the logic is as follows:

Step Action

1 To insert an FFB into the section, select the Objects → Select FFB... menu
command.
Response: The FFB dialog box from the library is opened.

2 In this dialog box you can select a library and an FFB from it by using the
Library... command button. You can, however, also display the DFBs that you
created and select one of them using the DFB command button.

3 Place the selected FFB in the section.

4 When all FFBs have been placed, close the dialog box with Close.

5 Activate the selection mode with Objects → Select Mode, click on the FFB and
move the FFBs to the desired position.

6 Activate the link mode with Objects → Link and connect the FFBs.

7 Then re-activate select mode with Objects → Select Mode and double-click on
one of the unconnected inputs/outputs.
Response: The Connect FFB dialog box opens, where an actual parameter can
be allocated to the input/output.

Close

DFB Type

LIGHTSS
NEST1
NEST2

FFBs in IEC Library

Group

FFB sorted...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB Type

AND_BOOL
AND_BYTE
AND_WORD
NOT_BOOL
NOT_BYTE
NOT_WORD
OR_BOOL
OR_BYTE

Help on Type

Library...

Help

DFB

LampTest1 Lookup…

Connect with

Variable Literal

Name

Connecting FFB: .2.15 (AND_BOOL)

Input: IN1 (BOOL)

Cancel HelpOK

Direct Address

Variable Declaration...

Inverted
33002204 231

Function Block language FBD
8 Depending on the program logic you can allocate the following to the input/
output:
� Variable

� Located variable
You can allocate a hardware input/output signal to the input/output of the
FFB using a located variable.
The name of the variable is shown at the input/output in the editor window.

� Unlocated variable
You can use the unlocated variable allocated to the input/output of the
FFB as a discrete, i.e. when resolving loops, or when transferring values
between different sections.
The name of the variable is shown at the input/output in the editor window.

� Constant
You can allocate a constant to the input of the FFB. The constant can be
transferred to other sections. You determine the value of the constant in
the variable editor.
The name of the constant is shown at the input in the editor window.

� Literal
You can allocate a literal to the input, i.e. directly allocate a value to the input/
output.
The value is shown at the input in the editor window.

� Direct address
You can allocate a hardware input/output signal to the input/output using an
address.
The address is shown at the input/output in the editor window.

Note: For an example for invocation of multi element variables see Calling
Derived Data Types, p. 569.
Note: Unconnected FFB inputs are specified as "0" by default.

9 Save the FBD section with the menu command File → Save Project .

Step Action
232 33002204

33002204
8

Ladder Diagram LD
At a Glance

Overview This Chapter describes the Ladder Diagram LD which conforms to IEC 1131.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

8.1 General information about Ladder Diagram LD 235

8.2 Objects in Ladder Diagram LD 237

8.3 Working with the LD Ladder Diagram 254

8.4 Code generation with LD Ladder Diagram 259

8.5 Online functions with the LD Ladder Diagram 260

8.6 Creating a program withLD Ladder Diagram 262
233

Ladder Diagram LD
234 33002204

Ladder Diagram LD
8.1 General information about Ladder Diagram LD

General Information about the LD Ladder Diagram Language

Introduction This section describes the Ladder Diagram (LD) according to IEC 1131-3.

The structure of a LD section corresponds to a rung for relay switching. The window
in the LD editor is shaded with a logic grid, on the left side of which there is the so-
called left power rail. This left power rail corresponds to the phase (L ladder) of a
rung. With LD programming, in the same way as in a rung, only the LD objects
(contacts, coils) which are linked to a power supply, that is to say connected with the
left power rail, are "processed". The right power rail, which corresponds to the
neutral ladder, is not shown optically. However, all coils and FFB outputs are linked
with it internally and this creates a power flow.

Objects The objects of the programming language LD (Ladder Diagram) help to divide a
section into a number of:
� Contacts (see Contacts, p. 238),
� Coils (see Coils, p. 240) and
� FFBs (Functions and Function Blocks) (see Functions and Function Blocks

(FFBs), p. 243).

These objects can be linked with each other through:
� Links (see Link, p. 250) or
� Actual Parameters (see Actual Parameters, p. 251).

Expansive logic can also be positioned in the LD section in the form of macros
(related topics Macros, p. 501).

Theoretically, each section can contain as many FFBs and also as many inputs and
outputs as required. It is therefore advisable to subdivide a whole program into
logical units, that is to say into different sections.

Comments can be provided for the logic of the section with text objects (related
topics Text object, p. 253).

Processing
Sequence

The process sequence of the individual objects in a LD section is determined by the
data flow within the section. Networks connected to the left power rail are processed
from top to bottom (link with the left power rail). Networks that are independent of
each other within the section are processed in order of positioning (from top to
bottom) (related topics Execution sequence, p. 257).
33002204 235

Ladder Diagram LD
Editing with the
Keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (related topics Shortcut keys in the LD-Editor, p. 819).

In order to make editing with the keyboard easier, you can specify the number of
columns per section in the CONCEPT.INI (see INI Settings for the LD Section,
p. 1098) file, after which an automatic carriage return should appear when you are
expanding a rung. This means that when you reach the last column, the next object
is automatically placed in the second column of the next row. Objects on different
rows are automatically linked, i.e. the objects are generated within a common rung.

IEC Conformity For a description of the IEC conformity of the LD programming language see IEC
conformity, p. 827.
236 33002204

Ladder Diagram LD
8.2 Objects in Ladder Diagram LD

At a Glance

Overview This section describes the objects in LD Ladder Diagram.

What's in this
Section?

This section contains the following topics:

Topic Page

Contacts 238

Coils 240

Functions and Function Blocks (FFBs) 243

Link 250

Actual Parameters 251

Text object 253
33002204 237

Ladder Diagram LD
Contacts

At a Glance A contact is an LD element that transfers a status on the horizontal link to its right
side. This status comes from the boolean AND link of the status of the horizontal link
on the left side, with the status of the relevant variable/direct address.

A contact does not change the value of the relevant variable/direct address.

The following contacts are available:
� Closer (see Closer, p. 238)
� Opener (see Opener, p. 238)
� Contact for detection of positive transitions (see Contact for detection of positive

transitions, p. 238)
� Contact for detection of negative transitions (see Contact for detection of

negative transitions, p. 239)

Closer On closing, the status of the left link is copied onto the right link, if the status of the
relevant boolean variable is ON. Otherwise, the status of the right link is OFF.

Closer

Opener On opening, the status of the left link is copied onto the right link, if the status of the
relevant boolean variable is OFF. Otherwise, the status of the right link is OFF.

Opener

Contact for
detection of
positive
transitions

With contacts for detection of positive transitions, the right link for a program cycle
is ON if a transfer of the relevant boolean variable is made from OFF to ON and the
status of the left link is ON at the same time. Otherwise, the status of the right link is
OFF.

Contact for detection of positive transitions

IN1

IN1

IN1

P

238 33002204

Ladder Diagram LD
Contact for
detection of
negative
transitions

With contacts for detection of negative transitions, the right link for a program cycle
is ON if a transfer of the relevant boolean variable is made from ON to OFF and the
status of the left link is ON at the same time. Otherwise, the status of the right link is
OFF.

Contact for detection of negative transitions

IN1

N

33002204 239

Ladder Diagram LD
Coils

At a Glance A coil is an LD element which transfers the status of the horizontal link on the left
side, unchanged, to the horizontal link on the right side. The status is saved in the
relevant variable/direct address.

Start behavior of
coils

In the start behavior of PLCs there is a distinction between cold starts and warm
starts:
� Cold start

Following a cold start (load the program with Load online → Load) all variables
(independent of type) are set to "0" or, if available, their initial value.

� Warm start
In a warm start (stop and start the program or Online → changes) different start
behaviors are valid for located variables/direct addresses and unlocated
variables:
� Located variables/direct addresses

In a warm start all coils (0x registers) are set to "0" or, if available, their initial
value.

� Unlocated variable
In a warm start all unlocated variables retain their current value (storing
behavior).

This different behavior in a warm start leads to particular characteristics in the warm
start behavior of LD objects "Coil – set" and "Coil – reset". Warm start behavior is
dependent on the variable type used (storing behavior in use of unlocated variables;
non storing behavior in use of located variables/direct addresses)

If a buffered coil is required with a located variable or with direct addresses, the RS
or SR Function Block from the IEC block library should be used.

Available coils The following coils are available:
� Coil (see Coil, p. 241)
� Coil - negated (see Coil - negated, p. 241)
� Coil - set (see Coil - set, p. 242)
� Coil - reset (see Coil - reset, p. 242)
� Coil – positive edge (see Coil – positive edge, p. 241)
� Coil – negative edge (see Coil – negative edge, p. 241)
240 33002204

Ladder Diagram LD
Coil With coils, the status of the left link is copied onto the relevant Boolean variable and
the right link.

Normally, coils follow contacts or EFBs, but they can also be followed by contacts.

Coil

Coil - negated With negated coils, the status of the left link is copied onto the right link. The inverted
status of the left link is copied onto the relevant Boolean variable. If the left link is
OFF, then the right link will also be OFF and the relevant variable will be ON.

Coil - negated

Coil – positive
edge

With coils for detection of positive transfers, the status of the left link is copied onto
the right link. The relevant Boolean variable is ON for a program cycle, if a transfer
of the left link from OFF to ON is made.

Coil – positive edge

Coil – negative
edge

With coils for detection of negative transfers, the status of the left link is copied onto
the right link. The relevant Boolean variable is ON for a program cycle, if a transfer
of the left link from ON to OFF is made.

Coil – negative edge

OUTIN1

OUTIN1

OUTIN1

P

OUTIN1

N

33002204 241

Ladder Diagram LD
Coil - set With "set coils", the status of the left link is copied onto the right link. The relevant
Boolean variable is set to ON status, if the left link is in ON status, otherwise it
remains unchanged. The relevant Boolean variable can only be reset through the
"reset coil".

Coil - set

Coil - reset With "reset coils", the status of the left link is copied onto the right link. The relevant
Boolean variable is set to OFF status, if the left link is in ON status, otherwise it
remains unchanged. The relevant Boolean variable can only be set through the "set
coil".

Coil - reset

OUTIN1

S

OUTIN1

R

242 33002204

Ladder Diagram LD
Functions and Function Blocks (FFBs)

Introduction FFB is the generic term for:
� EFB (Elementary Function and Elementary Function Block) (see EFB, p. 243)
� DFB (Derived Function Block) (see DFB, p. 246)
� UDEFB (Derived Elementary Function and Derived Elementary Function Block)

(see UDEFB, p. 247)

EFB EFB is the generic term for:
� Elementary Function (see Elementary Function, p. 244)
� Elementary Function Block (see Elementary Function Block, p. 245)

EFBs are functions and function blocks that are available in Concept in the form of
libraries. The logic of EFBs is built in C programming language and cannot be
changed in the FBD editor.

Note: The EFBs AND_BOOL, NOT_BOOL, OR_BOOL, R_TRIG and F_TRIG are
not available in LD. Their function is executed with contacts. The MOVE function
cannot be used with the data type BOOL.
33002204 243

Ladder Diagram LD
Elementary
Function

Functions have no internal conditions. If the input values are the same, the value at
the output is the same for all executions of the function. E.g. the addition of two
values gives the same result at every execution.

An Elementary Function is represented graphically as a frame with inputs and
outputs. The inputs are always represented on the left and the outputs always on the
right of the frame. The name of the function, that is the function type, is displayed in
the center of the frame. The function counter is displayed above the frame.

The function counter cannot be changed and always has an .n.m. structure.

.n = current section number

.m = current function number

Functions are only executed if the input EN=1 or if the input EN is grayed out (see
also EN and ENO, p. 249).

Elementary Function

EN

.6.6

ENO

ADD_DINT
244 33002204

Ladder Diagram LD
Elementary
Function Block

Function Blocks have internal conditions. If the inputs have the same values, the
value at the output at every execution is another value. E.g. with a counter, the value
on the output is incremented.

A function block is represented graphically as a frame with inputs and outputs. The
inputs are always represented on the left and the outputs always on the right of the
frame. The name of the function block, that is the function block type, is displayed in
the center of the frame. The instance name is displayed above the frame. The
instance name serves as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m

FBI = Function Block Instance

n = Section number (current number)

m = Number of the FFB object in the section (current number)

The instance name can be edited in the Properties dialog box of the function block.
The instance name must be unique throughout the whole project and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears.

Function blocks are only executed if the input EN=1 or if the input EN is grayed out
(see also EN and ENO, p. 249).

Elementary Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
Options → Preferences → IEC Extensions... → Permit Leading Figures in
Identifiers menu command will enable this.

EN

FBI_3_6

ENO

CTU_DINT

CU

R

PV

Q

CV
33002204 245

Ladder Diagram LD
DFB Derived Function Blocks are function blocks that have been defined in Concept
DFB.

With DFBs, there is no distinction between functions and function blocks. They are
always treated as function blocks regardless of their internal structure.

A DFB is represented graphically as a frame with double vertical lines and with
inputs and outputs. The inputs are always represented on the left and the outputs
always on the right of the frame. The DFB name is displayed centrally within the
frame. The instance name is displayed above the frame. The instance name serves
as a unique identification for the function block in a project.

The instance name is produced automatically with the following structure: FBI_n_m

FBI = Function Block Instance

n = Section number (current number)

m = Number of the FFB object in the section (current number)

The instance name can be edited in the Properties dialog box of the DFB. The
instance name must be unique throughout the whole project and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears.

Derived Function Blocks are only executed if the input EN=1 or if the input EN is
grayed out (see also EN and ENO, p. 249).

Derived Function Block

Note: In compliance with IEC1131-3 only letters are permitted as the first character
of instance names. Should numbers be required as the first character however, the
Options → Preferences → IEC Extensions... → Permit Leading Figures in
Identifiers menu command will enable this.

BEISP

ENO

OUT1

OUT2

EN

IN1

IN2

IN3

FBI_3_7
246 33002204

Ladder Diagram LD
UDEFB UDEFB is the generic term for:
� User-defined Elementary Function
� User-defined Elementary Function Block

UDEFBs are functions and function blocks that have been programmed with
Concept EFB in C++ programming language and are available in Concept in the
form of libraries.

In Concept, there is no functional difference between UDEFBs and EFBs.
33002204 247

Ladder Diagram LD
Editing FFBs FFBs are only edited if at least one Boolean input is linked with the left power rail. If
the FFB has no Boolean input, the EN input of the FFB must be used. If the FFB is
to be conditionally executed, the Boolean input can be pre-linked through contacts
or other FFBs.

Connection to an FFB with the left power rail:

Note: If the EN input is not linked with the left power rail, it must be deactivated in
the Properties dialog box, otherwise the FFB will never be edited.

Note: Each FFB without Boolean link to the left power rail gives rise to an error
message when downloading onto the PLC.

EN

.6.5

ENO

ADD_DINT

EN

.6.6

ENO

ADD_DINTIN1

IN2
248 33002204

Ladder Diagram LD
EN and ENO With all FFBs, an EN input and an ENO output can be configured.

EN and ENO configuration is switched on or off in the FFB properties dialog box.
The dialog box can be invoked with the Objects → Properties... menu command or
by double-clicking on the FFB.

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is automatically set to "0" in this case.

If the value of EN is equal to "1", when the FFB is invoked, the algorithms which are
defined by the FFD will be executed. After successful execution of these algorithms,
the value of ENO is automatically set to "1". If an error occurs during execution of
these algorithms, ENO will be set to "0".

The output behavior of the FFBs does not depend on whether the FFBs are invoked
without EN/ENO or with EN=1.

Note: If the EN input is not linked with the left power rail, it must be deactivated in
the Properties dialog box, otherwise the FFB will never be edited.
33002204 249

Ladder Diagram LD
Link

Description Links are connections between contacts, coils and FFBs.

Several links can be connected with one contact, one coil or one FFB output. The
link points are identified with a filled circle.

Data Types The data types of the inputs/outputs to be linked must be the same.

Editing Links Links can be edited in select mode. An overlap with other objects is permitted.

Configuring
Loops

No loop can be configured with links because in this case, the execution order in the
section cannot be determined uniquely. Loops must be resolved with actual
parameters (related topics Configuring Loops, p. 225).

Horizontal Links Contacts and coils are automatically connected during positioning with a
neighboring, unconnected contact/coil that has the same vertical position. A
connection to the power rail is only established if the contact is placed nearby (also
see Defining the Contact Connection, p. 1098 in the Concept INI-Filechapter). If a
coil or a contact is positioned on an existing horizontal link, the link is automatically
separated and the contact/coil is inserted. When positioned, actual parameters may
overlap another object, but they must not go outside the limits of the section frame.
If a link to another object is established, this link is checked. If this link is not
permitted, you will receive a message and the link will not be generated.

Once objects are positioned, horizontal links with directly adjacent objects are
automatically created.

Vertical Links An exceptional link is the "vertical link". The vertical link serves as a logical OR. With
this form of the OR link, 32 inputs (contacts) and 64 outputs (coils, links) are
possible.

Note: Unconnected contacts, coils and FFB inputs are specified as "0" by default.
250 33002204

Ladder Diagram LD
Actual Parameters

Possible Actual
Parameters

In the program runtime, the values from the process or from other actual parameters
are transferred to the FFB via the actual parameters and then re-emitted after
processing.

Table of possible actual parameters

Element Actual Parameters

Contacts � Direct addresses (see Direct addresses, p. 67)
� Located variables (see Variables, p. 64)
� Unlocated variable (see Variables, p. 64)

Coils � Direct addresses (see Direct addresses, p. 67)
� Located variables (see Variables, p. 64)
� Unlocated variable (see Variables, p. 64)

FFB inputs � Direct addresses (see Direct addresses, p. 67)
� Located variables (see Variables, p. 64)
� Unlocated variable (see Variables, p. 64)
� Constant (see Constant variables, p. 66)
� Literals (see Literals (values), p. 66)

FFB outputs � Direct addresses (see Direct addresses, p. 67)
� Located variables (see Variables, p. 64)
� Unlocated variable (see Variables, p. 64)
33002204 251

Ladder Diagram LD
Direct Addresses The information on/display of direct addresses can be given in various formats. The
display format is set in the Options → Preferences → Common dialog box. Setting
the display format has no impact on the entry format, i.e. direct addresses can be
entered in any format.

The following address formats are possible:
� Standard Format (400001)

The five figure address comes directly after the first digit (the reference).
� Separator Format (4:00001)

The first digit (the reference) is separated from the five figure address that follows
by a colon (:).

� Compact format (4:1)
The first digit (the Reference) is separated from the address that follows by a
colon (:) where the leading zeros are not specified.

� IEC Format (QW1)
There is an IEC type designation in initial position, followed by the five-character
address.
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

Data Types The data type of the actual parameter must be of BOOL type with contacts and coils.
With FFB inputs/outputs, the data type of the actual parameter must match the data
type of the inputs/outputs. The only exceptions are generic FFB inputs/outputs,
whose data type is determined by the formal parameter. If all actual parameters
consist of literals, a suitable data type is selected for the function block.

Initial Values FFBs, which use actual parameters on the inputs and coils that have not yet
received a value assignment, work with the initial values of these actual parameters.

Unconnected
Inputs

Note: Unconnected contacts, coils and FFB inputs/outputs are specified as "0" by
default.
252 33002204

Ladder Diagram LD
Text object

At a Glance Text can be positioned in the form of text objects in the Ladder Diagram (LD). The
size of these text objects depends on the length of the text. The size of the object,
depending on the size of the text, can be extended vertically and horizontally to fill
further grid units. Text objects may not overlap with other objects; however they can
overlap with links.

Memory space Text objects occupy no memory space on the PLC because the text is not
downloaded onto the PLC.
33002204 253

Ladder Diagram LD
8.3 Working with the LD Ladder Diagram

At a Glance

Overview This section describes working with LD Ladder Diagram.

What's in this
Section?

This section contains the following topics:

Topic Page

Positioning Coils, Contacts, Functions and Function Blocks 255

Execution sequence 257

Configuring Loops 257
254 33002204

Ladder Diagram LD
Positioning Coils, Contacts, Functions and Function Blocks

Positioning
Objects

In the LD contact plan editor, the window has a logic grid in the background. The
objects are aligned in the bars of this grid (52 x 230 fields) during positioning. With
the exception of vertical shorts, FFBs and text fields, all elements require exactly
one grid field. Objects can only be positioned within such a field. If an object is
positioned between two fields, the object is automatically placed in the nearest field.

When objects are positioned outside the section frame with another object, an error
message occurs and the object is not positioned.

When being positioned, contacts and coils are automatically linked with a directly
adjacent, unconnected contact/coil, if the contact/ coil has the same vertical
position. A link to the power rail is therefore created even if the contact is positioned
2 fields away. If contacts or coils are positioned on existing contacts or coils, the
existing ones are replaced by the current ones (only applies to same types, i.e. when
replacing coils with coils and contacts with contacts). If a coil or a contact is
positioned on an existing horizontal short, the link is automatically separated and the
contact/coil is inserted.

When positioned, actual parameters may overlap another object, but they must not
go outside the limits of the section frame. If a link to another object is established,
this link is checked. If this link is not permitted, you will receive a message and the
link will not be generated. When producing links, overlaps and crossings with other
links and objects are permitted.

If an FFB is selected, its comment is displayed in the first column of the status line.
If an actual parameter is selected, its name and, if applicable, its direct address and
its comment are displayed in the first column of the status line.

Automatic
Carriage Return

As a keyboard user, you have the possibility of determining the number of columns/
fields in the CONCEPT.INI (see Defining the Number of Columns/Fields, p. 1098)
file after which an automatic carriage return will appear during editing as soon as the
last column/field is reached. The following object is then inserted into the second
column/field and linked to the last object of the previous row. I.e. the objects are
created inside the same rung.
33002204 255

Ladder Diagram LD
Selecting FFBs Using Objects → Select FFB... you can open a dialog for selecting FFBs. This
dialog is modeless, which means it is not automatically closed once an FFB has
been positioned, but remains open until you close it. If you have several LD sections
open and you invoke the dialog, only one dialog box is opened and is available for
all sections. The dialog box is not available for any other sections (not LD editor). If
the LD sections are changed into symbols (Minimize window), the dialog box is
closed. If one of the LD section symbols is invoked again, the dialog box is
automatically re-opened.

The first time Concept is started, the FFB is displayed oriented to the library. This
means that to select an FFB, the corresponding library must first be selected using
the Library command button. Then you can select the corresponding group in the
Group list box. Now, you can select the required FFB from the EFB type list box.

If you do not know which library/group the FFB required is located in, you can invoke
an FFB-oriented dialog with the FFB sorted command button. This contains all
FFBs in all libraries and groups in an alphabetical list.

After each subsequent project start, the view that you select will appear.

Once the FFB has been selected, its position in the section must be selected. The
cursor becomes a small FFB and the cross shows the position (upper left corner of
the FFB) in which the FFB is placed. The FFB is positioned by clicking on the left-
hand mouse button.

Change FFB-
Type

With the Objects → Replace FFBs... menu command, the FFBs already positioned
in the section can be replaced with FFBs of another type (e.g. an AND with an OR).
The variables given to the FFB remain if the data type and position of the inputs/
outputs are the same in the "old" as the new FFB.

Change contact/
coil

Contacts and coils which are already positioned can simply be replaced. In order to
do this, select the new element and click on the one to be replaced.

Note: FFBs with inputs/outputs of the ANY data type (generic FFBs) cannot be
replaced.
256 33002204

Ladder Diagram LD
Execution sequence

Description The execution sequences of contacts, coils and FFBs are determined by the data
flow. This means that the coils and FFBs whose inputs have already received value
assignments will be processed first.

The execution sequence of networks which are only linked by the left power rail, is
determined by the graphic sequence (from top to bottom) in which these are
connected to the left power rail.

Configuring Loops

Non-permitted
Loops

Configuring loops exclusively via links is not permitted, as it is not possible to make
a unique specification of the data flow (the output of one FFB is the input of the next
FFB, and the output of this one is the input of the first).

Non-permitted Loops via Links

Resolution using
an Actual
Parameter

This type of logic must be resolved using actual parameters so that the data flow can
be determined uniquely.

Resolved loop using an actual parameter: Variant 1

AND_WORD

IN1

.6.5

AND_WORD

.6.5

IN2

EN ENO EN ENO

AND_WORD

.6.5

AND_WORD

.6.6

IN2

EN ENO EN ENO

IN1

OUT1

OUT1
33002204 257

Ladder Diagram LD
Resolved loop using an actual parameter: Variant 2

Resolution using
Several Actual
Parameters

Loops using several actual parameters are also allowed.

Loop using several actual parameters

AND_WORD

.6.5

AND_WORD

.6.6

IN2

EN ENO EN ENO

IN1 OUT1 OUT1

AND_WORD

.6.5

IN1

AND_WORD

.6.6

IN2OUT2

OUT2OUT1OUT1
EN ENO EN ENO
258 33002204

Ladder Diagram LD
8.4 Code generation with LD Ladder Diagram

Code Generation Options

Introduction Using the Project → Code Generation Options menu command, you can define
options for code generation.

Include
Diagnosis
Information

If you check the Include Diagnosis Information check box, additional information
for the process diagnosis (e.g. transition diagnosis, diagnosis codes for diagnosis
function blocks with extended diagnosis, such as XACT, XLOCK etc.) will be created
during code generation. This process diagnosis can be evaluated with MonitorPro
or FactoryLink, for example.

Fastest Code
(Restricted
Checking)

If you check the Fastest code (Restricted Checking) check box, a runtime-
optimized code is generated. This runtime optimization is achieved by realizing the
integer arithmetic (e.g. "+" or "-") using simple CPU commands instead of EFB
invocations.

CPU commands are much quicker than EFB invocations, but they do not generate
any error messages, such as, for example, arithmetic or array overflow. This option
should only be used when you have ensured that the program is free of arithmetic
errors.

If Fastest Code (Restricted Checking) was selected, the addition IN1 + 1 is solved
with the "add" CPU command. The code is now quicker than if the ADD_INT EFB
were to be invoked. However, no runtime error is generated if "IN1" is 32767. In this
case, "OUT1" would overrun from 32767 to -32768!
33002204 259

Ladder Diagram LD
8.5 Online functions with the LD Ladder Diagram

Online Functions

Introduction There are two animation modes available in the LD editor:
� Animation of binary variables and links
� Animation of selected objects

These modes are also available when a DFB instance is displayed (command
button Refine... in the Function Block: xxx dialog box).

Animation of
Binary Variables
and Links

The animation of binary variables and links is activated using the Online → Animate
Booleans menu command.

In this mode, the current signal status of binary variables, direct addresses in the 0x
and 1x range and binary links is displayed in the editor window.

Meaning of Colors

Note: If the animated section is used as a transition section for SFC and the
transition (and therefore also the transition section) is not processed, the status
DISABLED appears in the animated transition section.

Color Meaning

Contact, coil, input/output, link red Contact, coil, input/output, link transferring
the value 0

Left power rail, contact, coil, input/output, link
green

Left power rail, contact, coil, input/output, link
transferring the value 1

Variable highlighted in beige Variable forced

Variable highlighted in purple Variable cyclically set

The name of the multi-element variable (e.g.
motor) highlighted in color.

In the editor, a multi-element variable (e.g.
motor) is displayed, in which one or more
elements is forced or cyclically set.

The whole element name of the multi-element
variable (e.g. right.motor.on) is highlighted in
color.

In the editor, an element of a multi-element
variable (e.g. right motor on) that is forced or
cyclically set is displayed.

The name of the multi-element variable (e.g.
right.motor.on) is highlighted in color, but the
name of the element is not.

In the editor, an element of a multi-element
variable (e.g. right motor on) that is not
forced or cyclically set is displayed, but a
different element of this multi-element
variable is cyclically set or forced.
260 33002204

Ladder Diagram LD
Animation of
Selected Objects

The animation of the selected objects is activated with the Online → Animate
Selection menu command.

In this mode, the current signal status of the selected links, variables, multi-element
variables and literals is displayed in the editor window.

If a numerical value is selected on an input/output, the name of the variable, its direct
address and I/O mapping (if existent) and its comment will be displayed in the status
bar.

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in the Online help Tip:
Search the online hlep for the index reference "Colors").

Note: If you want to animate all variables/links in the section, you can select the
whole section using CTRL+A and then animate all variables and links in the section
using Online → Animate Selection (CTRL+W).

Note: The selected objects remain selected even after "animate selection" has
been selected again, to retain these objects for a further reading, and/or to be able
to easily modify the list of objects.
33002204 261

Ladder Diagram LD
8.6 Creating a program withLD Ladder Diagram

Creating a Program in LD

Introduction The following description contains an example for creating a program in Ladder
Diagram (LD). The creation of a program in LD Ladder Diagram is divided into 2
main steps:

Creating a
Section

The procedure for creating a section is as follows:

Step Action

1 Creating a Section (see Creating a Section, p. 262)

2 Creating the Logic (see Creating the Logic, p. 263)

Step Action

1 Using the File → New Section... menu command, create a new section and
enter a section name.

Note: The section name (max. 32 characters) is not case-sensitive and must be
unique within the whole project. If the name entered already exists, you will be
warned and you will have to choose a different name. The section name must
comply with the IEC name conventions, otherwise an error message appears.

Note:In compliance with IEC1131-3 only letters are permitted as the first
character of names. However, if you wish to use numbers as the first character,
you can enable this using the Options → Preferences → IEC Extensions... →
Allow Leading Digits in Identifiers menu command.
262 33002204

Ladder Diagram LD
Creating the
Logic

The procedure for creating the logic is as follows:

Step Action

1 To insert a contact or coil in the section, open the Objects main menu and select
the desired contact or coil. Contacts and coils can also be selected using the tool
bar. Place the contact or coil in the section.

2 To insert an FFB into the section, select the Objects → Select FFB... menu
command.
Response: The FFBs from Library dialog box is opened.

3 In this dialog box you can select a library and an FFB from it by using the
Library... command button. You can, however, also display the DFBs that you
created and select one of them using the DFB command button.

4 Place the selected FFB in the section.

5 When all FFBs have been placed, close the dialog box with Close.

6 Activate select mode using Objects → Select Mode, and move the contacts,
coils and FFBs to the required position.

7 Activate link mode with Objects → Link, and connect the contacts, coils and
FFBs. Connect the contacts, FFBs and the left power rail.

8 Then re-activate select mode with Objects → Select mode, and double-click on
a contact or coil.
Response: The Properties: LD objects dialog box is opened, in which you can
allocate an actual parameter to the contact/coil.

Close

DFB Type

LIGHTSS
NEST1
NEST2

FFBs in IEC Library

Group

FFB sorted...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB Type

AND_BYTE
AND_WORD
NOT_BOOL
NOT_BYTE
NOT_WORD
OR_BYTE

Help on Type

Library...

Help

DFB
33002204 263

Ladder Diagram LD
9 Depending on the program logic you can allocate the following to the contact/
coil:
� Variable

� Located variable
You can allocate a hardware input/output signal to the input/output using
a located variable.
The name of the variable is shown at the input/output in the editor window

� Unlocated variable
You can use the unlocated variable allocated to the input/output as a
discrete, i.e. to resolve loops, or to transfer values between different
sections.
The name of the variable is shown at the input/output in the editor window.

� Direct address
You can allocate a hardware input/output signal to the input/output using an
address.
The address is shown at the input/output in the editor window.

Note: For an example for invocation of multi-element variables see Calling
Derived Data Types, p. 569.
Note: Unconnected FFB inputs are specified as "0" by default.

10 To connect the FFB input/outputs to the actual parameters, double-click on one
of the unconnected input/outputs.
Response: The Connect FFB dialog box is opened, in which you can allocate
an actual parameter to the input/output.

Step Action

LampTest1 Lookup…

Connect with

Variable Literal

Name

Connecting FFB: .2.15 (AND_BOOL)

Input: IN1 (BOOL)

Cancel HelpOK

Direct Address

Variable Declaration...

Inverted
264 33002204

Ladder Diagram LD
11 Depending on the program logic you can allocate the following to the input/
output:
� Variable

� Located variable
You can allocate a hardware input/output signal to the input/output using
a located variable.
The name of the variable is shown at the input/output in the editor window

� Unlocated variable
You can use the unlocated variable allocated to the input/output as a
discrete, i.e. to resolve loops, or to transfer values between different
sections.
The name of the variable is shown at the input/output in the editor window.

� Constant
You can allocate a constant to the input. The constant can be transferred
to other sections. You determine the value of the constant in the variable
editor.
The name of the constant is shown at the input in the editor window.

� Literal
You can allocate a literal to the input, i.e. directly allocate a value to the input/
output.
The value is shown at the input in the editor window.

� Direct address
You can allocate a hardware input/output signal to the input/output using an
address.
The address is shown at the input/output in the editor window.

Note: For an example for invocation of multi-element variables see Calling
Derived Data Types, p. 569.
Note: Unconnected FFB inputs are specified as "0" by default.

12 Save the LD section using the File → Save Project menu command.

Step Action
33002204 265

Ladder Diagram LD
266 33002204

33002204
9

Sequence language SFC
At a Glance

Overview This Chapter describes the sequence language SFC which conforms to IEC 1131.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

9.1 General information about SFC sequence language 269

9.2 SFC sequence language elements 270

9.3 Working with the SFC Sequence Language 288

9.4 Online functions of the SFC sequence language 305
267

Sequence language SFC
268 33002204

Sequence language SFC
9.1 General information about SFC sequence
language

General information about SFC language

At a Glance The sequence language SFC is described in this section according to IEC 1131-3.

In the SFC (Sequential Function Chart) sequence language, a section is split into
single configured sequential steps, through steps and transitions, which alternate in
the sequence plan.

Objects A sequential control uses the following objects when creating a program:
� Step (see Step, p. 271)
� Transition (see Transition, p. 276)
� Jump (see Jump, p. 281)
� Connection (see Link, p. 280)
� Alternative branch (see Alternative Branch, p. 283)
� Simultaneous branch (see Parallel branch, p. 286)
� Alternative connection (see Alternative connection, p. 285)
� Parallel connection (see Parallel connection, p. 287)
� Text object (see Text object, p. 287)

Structure of an
SFC section

Steps and transitions are linked with one another through directional links. Two
steps can never be directly linked, and must always be separated by a transition.
The processes of the active signal status take place along the directional links,
triggered by the connecting of a transition. The direction of the string process follows
the directional links and runs from the under side of the predecessor step to the top
side of the successive step. Branches are processed from left to right.

A jump can be put in the place of a step. Step strings are always concluded with a
jump to another step on the same step string. It is run down cyclically.

Nil or more action belong to every step. Steps without action are known as waiting
steps. A condition for transition belongs to every transition.

Editing with the
keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the FBD and SFC Editor, p. 815)

IEC conformity For a description of the IEC conformity of the SFC programming language see IEC
conformity, p. 827.
33002204 269

Sequence language SFC
9.2 SFC sequence language elements

At a Glance

Overview This section describes the SFC sequence language elements.

What's in this
Section?

This section contains the following topics:

Topic Page

Step 271

Action 274

Transition 276

Transition section 278

Link 280

Jump 281

Alternative Branch 283

Alternative connection 285

Parallel branch 286

Parallel connection 287

Text object 287
270 33002204

Sequence language SFC
Step

Introduction A step is represented using a block that contains a step name. Step names must be
unique within the project.

A step becomes active when the upstream transition is satisfied and is normally
inactive when the downstream transition is satisfied.

Initial Step A special case with steps is the initial step. The initial status of a SFC section is
characterized by the initial step, which is active when initializing the project
containing the section. A step in a SFC section must always be defined as an initial
step. In Concept it is possible to define a step in the middle of a step string as initial.

The initial step is denoted by double lined borders.

Waiting Step Zero or more actions belong to every step. Steps without action are known as
waiting steps.

Step Delay Time A time can be entered, which is the least amount of time the step must be active for.
This is called the step delay time (step duration).

Maximum
Supervision
Time

The maximum supervision time specifies the maximum time in which the step should
normally be active. If the step is still active after this period of time, an error message
occurs, which you can view using the Online → Event Viewer. In animation mode,
the error is additionally identified by a colored outline around the step object.

Note: This time is only applicable to the step, not for the actions allocated to it.
Individual times can be defined for these.

Note: This time supervision applies only to the step, not to the actions allocated to
it. Individual times can be defined for these.
33002204 271

Sequence language SFC
Minimum
Supervision
Time

The minimum supervision time sets the minimum time for which the step should
normally be active. If the step is still active after this period of time, an error message
occurs, which you can view in the Online → Event Viewer. In animation mode, the
error is additionally identified by a colored outline around the step object.

Coordinating the
Times

Step delay time< minimum supervision time< maximum supervision time

Setting the Times In the properties dialog, the time values can be entered directly as time literals or
can be set as multi element variables of data type SFCSTEP_TIMES. The values
can be automatically determined in learn supervision time mode.

The time literals can be modified in animation mode.

’SFCSTEP_
TIMES’ Variable

In ’SFCSTEP_TIMES’ variable usage, the learned times of these variables are
assigned as the initial values. If these initial values are to be used for a long period
of time, corresponding elements (min., max.) of these variables must not be written.
After the supervision times have been learned, the modified initial values must be
downloaded to the PLC using Online → Download Changes.

The ’SFCSTEP_TIMES’ variable can be used everywhere and has the following
structure:

’varname’: SFCSTEP_TIMES
 delay: TIME
 min: TIME
 max: TIME

The elements have the following meaning:
� ’varname’.delay = delay time
� ’varname’.min = minimum supervision time
� varname’.max = maximum supervision time

Note: This time supervision applies only to the step, not to the actions allocated to
it. Individual times can be defined for these.
272 33002204

Sequence language SFC
Step Variable Every step is implicitly allocated a (read only) variable of data type
SFCSTEP_STATE. This step variable has the name of the allocated step. The step
variable can be used everywhere and has the following structure:

’Step name’: SFCSTEP_STATE
 t: TIME
 x: BOOL
 tminErr: BOOL
 tmaxErr: BOOL

The elements have the following meaning:
� ’Step name’.t = current dwell time in step
� ’Step name’.x

� 1: Step active
� 0: Step inactive

� ’Step name’.tminErr
� 1: Underflow of minimum supervision time
� 0: No underflow of minimum supervision time

� ’Step name’.tmaxErr
� 1: Overflow of maximum supervision time
� 0: No overflow of maximum supervision time
33002204 273

Sequence language SFC
Action

At a Glance The actions, which are to be performed, as the step is active must be connected to
the step.

Actions are declared in the properties dialog of the triggering step, see Declaring
actions, p. 295.

A step can be assigned none or several actions. A step which is assigned no action,
has a waiting function, i.e. it waits until the assigned transition is completed.

An action is a variable of BOOL data type.

The control of actions is expressed through the use of identifiers.

Signal
assignment

The following signals can be assigned to an action:
� Direct address

An action can be assigned a hardware output via a direct address. In this case,
the action can be used as an enabling signal for a transition, as an input signal in
another section and as an output signal for the hardware.

� Variable
The action can be used as an input signal with assistance from a variable in
another section. This variable is also called action variable.
� Unlocated variable

With Unlocated variablethe action can be used as an enabling signal for a
transition and as an input signal in an FBD section. Unlocated variables are
declared in the Variable Editor (see Variables editor, p. 525).

� Located variable
With Located variable the action can be used as an enabling signal for a
transition, as an input signal in another section and as an output signal for the
hardware. Located variables are declared in the Variable Editor (see Variables
editor, p. 525).
274 33002204

Sequence language SFC
Direct addresses The information on/display of direct addresses can be given in various formats. The
display format is set in the dialog box Options → Presettings → Joint. Setting the
display format has no impact on the entry format, i.e. direct addresses can be
entered in any format.

The following address formats are possible:
� Standard format (X00001)

The five-character address comes directly after the first digit (the Reference).
� Separator format (X:00001)

The first digit (the Reference) is separated from the following five-character
address by a colon (:).

� Compact format (X:1)
The first digit (the Reference) is separated from the following address by a colon
(:), and the leading zeros of the address are not given.

� IEC format (XW1)
In first place, there is an IEC identifier, followed by the five-character address.
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345
33002204 275

Sequence language SFC
Transition

Introduction A transition specifies the condition through which the check of one or more pre-
transition steps passes on to one or more consecutive steps along the
corresponding link.

Transition
Condition

A transition condition is one of the variables of data type BOOL allocated to the
transition.

Transition conditions are declared in the properties dialog of the transition, see also
Declaring a Transition, p. 300.

The transition condition can be:
� a direct address (input or output),
� a variable (input or output) or
� a Transition Section (see Transition section, p. 278).

Variable name position:

Enabling a
Transition

A transition is enabled if the steps immediately preceding it are active. Transitions
whose immediately preceding steps are not active are not analyzed.

Transition
Switch Time

The transition switch time can theoretically be as short as possible, but can never
be zero. The transition switch time lasts at least the duration of the scan.

Transition
Diagnosis

Transition switching can be supervised by the Transition Diagnosis (see Transition
diagnosis, p. 314).

If... Then...

If you allocate a direct address or a variable to
the transition.

Then the name of the address/variable is
displayed below the transition icon.

If you allocate a transition section to the
transition.

Then the name of the transition section is
displayed above the transition icon.

Note: The variable or address allocated to the transition is only read by the
transition, never written.

Note: If no transition condition is defined, the transition will never be active.
276 33002204

Sequence language SFC
Transition
Trigger Sweep

Transition trigger sweep occurs when the transition is enabled and the associated
transition conditions are satisfied.

Triggering a transition leads to the disabling (resetting) of all immediately preceding
steps that are linked to the transition, followed by the activation of all immediately
following steps.

If triggering a transition leads to the activation of several steps at the same time, then
the sequence belonging to these steps is called Parallel Chain (see Parallel branch,
p. 286). After simultaneous activation, each of these chains is processed
independently of each other. To emphasize this specific type of construction, the
branch and connection of parallel chains are displayed with a double horizontal line.
33002204 277

Sequence language SFC
Transition section

At a Glance For every Transition (see Transition, p. 276) a transition section can be created. This
is a section containing the logic of the transition condition and it is automatically
linked with the transition.

Generating a
transition
section

Transition sections are generated in the properties dialog of the transition, see also
Declaring a Transition, p. 300.

Name of
transition
section

Name of transition section:

Occupying a
transition
section

When first opening the transition section (Edit... key in the Transition properties
dialog) this is automatically generated. The name of the transition section is
displayed above the transition symbol in the SFC editor.

Altering the
transition
conditions

Should another option be selected after the creation of the transition section as
Transition section, a query appears, whether the transition section should be
deleted. If the question is replied in the negative, the transition section remains.

A list can be displayed with the currently unused transition section with help from the
command button Look up... .

If… Then…

If in the dialog Options → Preferences →
Graphical Editors... the option Dynamically
enumerated has been selected.

Then the alias designation of the transition is
displayed in the Transition properties
dialog automatically.

Should a name for the transition section be
entered manually.

Please ensure that the name is unique
throughout the whole project (the name is not
case-sensitive). If the section name entered
already exists, a warning is given, and
another name must be chosen. The name
must correspond to the IEC Name
conventions, otherwise an error message
appears.

Note: Do NOT alter the name of a transition section through Data file → Section
properties, otherwise the link to the transition is will be lost.
278 33002204

Sequence language SFC
Programming
languages for
transition
section

FBD, LD, IL and ST are possible as programming languages for transition sections.

The programming language to be used can be defined in the dialog Options →
Preferences... → Common... with the option Language for transition sections.
Should the FBD programming language be selected, the section is automatically
preallocated with a UND block with 2 inputs whose outputs is preallocated with the
name of the transition section. The proposed block can then be linked or altered. No
such provision is evident for the other programming languages.

Editing function
for transition
section

The editing function for transition sections is restricted as opposed to "normal"
sections in the following ways:
� The transition section only has one single output (transition variable), whose data

type is BOOL. The name of this variable must be identical to the name entered in
the Transition section field.

� The transition variable can only be used once in written form.
� Only functions can be used, Function Blocks cannot.
� There is only one network, i.e. all functions used are linked with each other either

directly or indirectly.
� Transition sections can only be reached via the menu command button Edit... in

the Transition properties dialog. They do not appear in the Open section
dialog.

� In the Delete section dialog transition sections are denoted by a "T" in front of
the section name.

Transition
section
animation

If the transition, and therefore the transition section, is not processed, the status
INHIBITED appears in the animated transition section.
33002204 279

Sequence language SFC
Link

At a Glance Links connect steps and transitions. Links are normally generated automatically
when positioning objects. If objects are positioned in cells which do not immediately
follow each other, a link must explicitly be made.

Simple
sequences

The change of step and transition is consequentially repeated with simple
sequences.

A process of S_5_10 to S_5_11 only takes place, if step 5_10 is in an active state
and the condition for transition a is true.

S_5_10

S_5_11

a

b

280 33002204

Sequence language SFC
Jump

General
information

A jump enables a program to continue in another place. Jumps into a Parallel chain
(see Parallel branch, p. 286) in or out of a parallel chain are not possible.

Differences are made between chain jumps and chain loops with jumps.

Chain jump A chain jump is a special case of alternative branch, with one or more branches
containing no steps.

A process of S_5_10 via S_5_11 and S_5_12 after S_5_13 only occurs, if S_5_10
is active and the condition for transition a is true. A process of S_5_10 directly after
S_5_13 only occurs, if S_5_10 is active and the condition for transition b is true and
a is false.

S_5_10

S_5_11

a

c

S_5_13

b

S_5_12

d

S_5_13
33002204 281

Sequence language SFC
Chain loop A chain loop is a special case of alternative branch, with which one or more
branches lead back to a previous step.

A process of S_5_11 via S_5_10 only occurs if the condition for transition c is false
and b is true.

S_5_10

S_5_12

c

a

S_5_10

b

S_5_11
282 33002204

Sequence language SFC
Alternative Branch

Introduction The alternative branch offers the possibility to program branches conditionally in the
control flow of the SFC structure.

Structure With alternative branches, as many transitions follow a step under the horizontal line
as there are different sequences. Only one of these transitions can ever be
switched. The branch to be solved is determined by the result of the transition
conditions of the transitions, which come after the alternative branch.

Processing
Sequence

Branch transitions are processed from left to right. If a transition condition is
satisfied, the remaining transitions are no longer processed The branch with the
satisfied transition is activated. This gives rise to a left to right priority for branches.

If none of the transitions is switched, the currently set step remains set.

Processing Sequence processing:

Sequence processing:

If... Then...

If S_5_10 is active and the transition condition
a is true.

Then a sequence from S_5_10 to S_5_11
occurs.

If S_5_10 is active and the transition condition
b is true and a is false.

Then a sequence from S_5_10 to S_5_12
occurs.

S_5_10

S_5_11

a

c

b

S_5_12

d

33002204 283

Sequence language SFC
Alternative
Branch after
Parallel Joint

According to IEC 1131-3, alternative branches may not directly follow parallel joints.
The joint and the branch must be separated by a transition step sequence.

Example:

If you want to insert an alternative branch directly after a parallel joint, you can use
the Options → Preferences → Graphic Editors → Allow Alternative Branches
after Parallel Joints to do so.

Example:

Joint All alternative branches must be rejoined to a single branch through Alternative
Joints (see Alternative connection, p. 285) or Jumps (see Jump, p. 281).

S_5_11 S_5_12S_5_10

S_5_14

a b c

e

S_5_15 S_5_16

f g

S_5_13

d

S_5_11 S_5_12S_5_10

S_5_13

a b c

d

S_5_14 S_5_15

e f
284 33002204

Sequence language SFC
Alternative connection

At a Glance In the alternative connection, the various branches of an alternative branch are
again connected to one branch in which additional processing can be performed.
This connection can also be performed with a jump.

Processing Sequence processing:

Sequence processing:

If… Then…

If S_5_10 is active and the transition condition
d is true.

Then a process of S_5_10 to S_5_12 takes
place.

If S_5_8 is active and the transition condition
b is true, and therefore a jump to S_5_12 is
performed.

Then a process of S_5_8 to S_5_12 takes
place.

If S_5_11 is active and the transition condition
e is true.

Then a process of S_5_11 to S_5_12 takes
place.

Note: Only a single one of these branches is active, corresponding to the transition
condition in the alternative branch.

S_5_7

S_5_12

d

a

S_5_12S_5_10

S_5_8

b

S_5_9

e

c

S_5_11
33002204 285

Sequence language SFC
Parallel branch

At a Glance With parallel branches, the edit is split into two or more strings, which will be
processed in parallel Only a joint transition immediately through the horizontal
double synchronization lines is possible.

Processing Processing a sequence:

Processing a sequence:

Definition of
initial steps

If a step is to become an initial step within a parallel branch, a step must be defined
as the initial step in each branch of the parallel branch.

If… Then…

If S_5_10 is active and the transition condition
a, which shares the same transition, is
likewise true.

Then a process of S_5_10 to S_5_11,
S_5_12,… takes place.

Note: After the simultaneous activation of S_5_11, S_5_12 etc., the sequences
run independent of each other.

S_5_10

S_5_11 S_5_12 S_5_13

a

b c d
286 33002204

Sequence language SFC
Parallel connection

At a Glance The parallel connection reconnects two or more parallel branches to a branch. The
transition to a parallel connection is evaluated when all previous steps of the
transition are set. Only a joint transition immediately through the double horizontal
synchronisation lines is possible.

Processing Processing a sequence:

Processing a sequence:

Text object

At a Glance Text can be positioned in the form of text objects using SFC sequence language.
The size of these text objects depends on the length of the text. This text object is
at least the size of a cell and can be vertically and horizontally enlarged to other cells
according to the size of the text. Text objects can only be placed in free cells.

Memory space Text objects occupy no memory space on the PLC because the text is not
downloaded onto the PLC.

If… Then…

If S_5_10, S_5_11 etc. are active at the same
time and the transition condition d, sharing a
joint transition, is true.

Then a process of S_5_10, S_5_11, …to
S_5_13 takes place.

S_5_11 S_5_12S_5_10

S_5_13

a b c

d

33002204 287

Sequence language SFC
9.3 Working with the SFC Sequence Language

Introduction

Overview This section describes working with the SFC sequence language.

What's in this
Section?

This section contains the following topics:

Topic Page

General information on editing objects 289

Declaring step properties 292

Declaring actions 294

Identifier 297

Declaring a Transition 300

Alias Designations for Steps and Transitions 302
288 33002204

Sequence language SFC
General information on editing objects

At a Glance In the SFC editor the background consists of a logical grid. SFC objects can
theoretically be placed in every unoccupied cell. If a link with another object is
established (explicitly or by vertically placing objects in neighboring cells), this link
will be tested. If this link is not permitted, a report of this is given and the object is
not inserted.

Steps, transitions and jumps each require a cell. Parallel branches, parallel
connections, alternative branches and alternative connections do not require a
separate cell each, but are inserted into the corresponding cell of the step or
transition.

Maximum
number of
elements

To prevent step strings being subdivided, 99 linked steps with the transitions are
vertically shown along with a locking jump with its transition. To limit the complexity
and to enable the animation to be performed, the number of objects (Steps +
Transitions + Branches + Connections) in one section is limited to 2000.

Inserting Objects The SFC object (Step, Transition etc.) can be inserted individually via the menu
command in the main menu Objects or in the form of a a group (Step transition
string, structured parallel string etc.) of the required size.

After selection of the object, a position in the step string can be selected, in which
the object should be inserted. If the position selected is already occupied, space is
made before insertion into the step string, if desired, and then the object placed in
it. If the object is placed on a connection, it is separated, the object is inserted and
a link to the newly placed object is generated.

Shifting objects If the object is shifted onto a connection, it is separated, the object is inserted and a
link to the newly placed object is generated.

Copying steps By copying and inserting it is possible to copy steps through projects. Since the
definition of actions displays a reference to a variable, which is defined by the
Variable Editor for the particular project, copying between projects can result in this
reference no longer being valid. In this instance, the action is deleted, the action list
is updated and an error message is displayed.

Deleting steps Steps can only be deleted after an action has been saved if the action(s) were
unconnected before the step was performed.
33002204 289

Sequence language SFC
Selecting an
object

The procedure for selecting an object is as follows:

Selecting several
objects (by
pressing Shift)

The procedure for selecting several objects (by pressing Shift) is as follows:

Selecting several
objects (by using
the rubber band
function)

The procedure for selecting several objects (by using the rubber band function) is as
follows:

Selecting all
objects in a
column/line

The procedure for selecting all objects in a column/line is as follows:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Position the cursor on the object to be selected and left-click.
Reaction: The selected object is displayed in a blue border.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Position the cursor on the object to be selected first and left-click.

3 Press and hold the Shift key, select additional objects and left-click.
Reaction: The selected objects are displayed in a blue border.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Press and hold the left mouse button, and pull a border over the objects to be
selected.
Reaction: On releasing the mouse key, all objects touching the border will be
selected. The selected objects are displayed in a blue border.

Step Action

1 With Objects → Selection mode go to selection mode.

2 In the column ruler/line ruler, click on the column number/line number whose
objects are to be selected.
Note: To select several columns/lines, press and hold the Shift key.
Reaction: The selected objects are displayed in a blue border.
290 33002204

Sequence language SFC
Inserting
additional
columns

The procedure for inserting additional columns within an existing step string is as
follows:

Inserting
additional lines

The procedure for inserting additional lines within an existing step string is as
follows:

Step Action

1 With Objects → Selection mode go to selection mode.

2 In the column ruler, click on the column number in front of which the insertion is
to be performed.
Note: In order to insert several columns, press the Shift key to select several
columns and insert a corresponding number of empty spaces.

3 Use the menu command Edit → Insert.
Reaction:From the selected column, the entire step string is moved one column
to the right. The links (branches) will remain intact.

Step Action

1 With Objects → Selection mode go to selection mode.

2 In the line ruler, click on the line number in front of which the insertion is to take
place.
Note: Should the insertion of several lines be required, several lines are selected
and a corresponding number of empty spaces are inserted by pressing the Shift
key.

3 Use the menu command Edit → Insert.
Reaction: From the selected line, the entire step string is moved one line
downwards. The links (branches) therefore remain even.
33002204 291

Sequence language SFC
Declaring step properties

Introduction The step properties are declared in the properties dialog of the step.

Declaring step properties:

Step properties

Cancel HelpOK

S_3_19 Comment…Initial stepStep name

Action

Time
LiteralVariableQualifier:

None

Action
Variable Direct address

Look up Variable declaration… Section instantiation

Accept action

New action

Delete action

Move up

Move down

Supervision times and delay time
Literals’SCFSTEP_TIMES’ variable

Maximum

Delay

Minimum

Goto selected variable…
292 33002204

Sequence language SFC
Declaring step
properties

The following description contains an example of declaring the step properties:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Result: The dialog Step properties of the step opens.

3 A name can be manually defined for the step, or the proposed name can remain.
If a name is to be assigned, please note that the step name (max. 32 characters)
must be unique for the entire project. If the step name entered already exists, a
warning is given and another name must be chosen. The step name must
correspond to the IEC name conventions, otherwise an error message is
displayed.
Note: In accordance with IEC1131-3, only letters are permitted as the first
character of step names. Should numbers be required as the first character,
however, use the menu command Options → Preferences → IEC Extensions
→ Allow leading digits in identifiers.
Step names may not end in 4 digits (e.g. xxx_1234). This ending is reserved in
case in Options → Preferences → Graphical Editors... the options button
Dynamic numbered is activated.
Instead of the free names an alias designation can also be selected, see also
Alias Designations for Steps and Transitions, p. 302 This is then shown in SFC
and FBD sections and with search functions, application documentation and
analysis.

4 Next, define whether or not the step is the initial step of the sequence. A initial
step must be defined for each sequence.

5 If desired, the Supervision time and delay time can be defined for the step.

The time values can be entered in the properties dialog either directly as time
duration literal (this can be automatically transmitted in the Learn Supervision
time mode, see also Learn monitoring times, p. 311) or as multi-element variable
of SFCSTEP_TIMES data type, see also ’SFCSTEP_TIMES’ Variable, p. 272.

Here:
Delay time< minimum Supervision time< maximum Supervision time

6 Using the button Comment call up the dialog box Enter with comment, in
which a comment on the step may be entered. This comment is shown in the
status bar of the editor window, when the step is selected.
33002204 293

Sequence language SFC
Declaring actions

At a Glance The actions are declared in the properties dialog of the step.

Declaring actions:

Step properties

Cancel HelpOK

S_3_19 Comment…Initial stepStep name

Action

Time
LiteralVariableCdet:

None

Action
Variable Direct address

Look up Variable declaration Instantiate section

Accept

New

Delete

Up

Down

Mon. times and delay time
Literals’SCFSTEP_TIMES’ variable

Maximum

Delay

Minimum

To selected variable…
294 33002204

Sequence language SFC
Declaring
actions

The following description contains an example of declaring the actions:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 From the Cdet list, select an Identifier (see Identifier, p. 297) for the Action. In this
way, the behavior of the action is determined (e.g. saving, non saving, delayed
etc.).
Note: With the identifiers L, D, and DS, in the text box Time duration: an
additional time duration of TIME data type must be defined.

4 Next define the type of action (variable or dirct address) in the zone Type: with
the option buttons.

5 � If the Variable has been selected, it is possible with the button Var.
declaration...to open the Variable Editor and define a new output variable
there.
Also with the command button Look up... a list of all the variables can be
shown and one selected through Select.

� If the Direct address has been selected, in the text box Direct address: the
output address must be entered.

6 After all the definitions for the actions have been met, confirm this with the
command button New
Note: Confirmation with the Enter key is not possible in this case and leads to
an error message
33002204 295

Sequence language SFC
Altering an
action

The procedure for altering an action declaration is as follows:

Deleting an
action
declaration

The procedure for deleting an action declaration is as follows:

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 To alter an action declaration, select an action in the list.
Reaction: All definitions (identifiers, time duration, variable or address and type)
of the action are transferred into the corresponding text boxes and lists.

4 If these definitions are altered, as described in the Declaring actions, p. 295
section.

5 � Should it be necessary to assign these new definitions as a new action in the
step, use the command button New.
Reaction: The action is additionally recorded in the list of actions.

� Should it be necessary to overwrite the current action with the new action, use
the command button Accept
Reaction: The old action is overwritten.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a step.
Reaction: The dialog Step properties of the step is opened.

3 To delete an action declaration, select an action in the list.
Reaction: All definitions (identifiers, time duration, variable or address and type)
of the action are transferred into the corresponding text boxes and lists.

4 Use the command button Delete.
Reaction: The selected action is deleted.
296 33002204

Sequence language SFC
Identifier

At a Glance For every connection of an action to a step, an identifier must be defined for the
action. The identifier must define the control of the action. The identifier can be
introduced as the input of an internal Function Block for the configured link of the
step with the action. If the step is active, the input of this internal Function Block is
set to 1. The Function Block is then processed according to its type. If all conditions
are satisfied, the output Q (action) is set to 1.

The following identifiers are usable in Concept:
� N / none (see Identifier N / none, p. 297)
� S (see Identifier S, p. 297)
� R (see Identifier R, p. 298)
� L (see Identifier L, p. 298)
� D (see Identifier D, p. 298)
� P (see Identifier P, p. 299)
� DS (see Identifier DS, p. 299)

For the identifiers L, D and DS, a time duration of the data type TIME must
additionally be defined.

Identifier N /
none

The identifiers N and none have the same meaning and stand for "Not saved" and/
or "No identifier".

Identifier S The identifier S stands for "set (saved)".

The set action also remains active, when the associated step is inactive. The action
first becomes inactive, when reset is used with the Identifier R (see Identifier R,
p. 298) in another step.

Note: The identifier is automatically declared as unbuffered. This means that the
value is reset to "0" after stop and cold restart, e.g. when voltage is on/off. Should
a buffered output be required, please use the RS or SR Function Block from the
IEC block library.
33002204 297

Sequence language SFC
Identifier R The identifier R stands for "overriding reset".

The action, which is set in another step with the Identifier S (see Identifier S, p. 297),
is reset. The activation of any action can also be prevented.

In the step S_5_10 the action ACT1 becomes and remains active, until the reset in
step S_5_12.

Identifier L The identifier L stands for "Limited".

If the step is active, the action is also active. After the process of the time duration,
defined manually for the action, the action returns to 0, even if the step is still active.
The action also becomes 0 if the step is inactive.

Identifier D The identifier D stands for "delayed".

If the step is active, the internal timer is started and the action becomes 1 after the
process of the time duration, which was defined manually for the action. If the step
becomes inactive after that, the action becomes inactive as well. If the step becomes
inactive before the process of the internal time, the action does not become active.

Note: The identifier is automatically declared as unbuffered. This means that the
value is reset to "0" after stop and cold restart, e.g. when voltage is on/off. Should
a buffered output be required, please use the RS or SR Function Block from the
IEC block library.

Step properties

S_5_10 Comment…Initial stepStep name

Time
LiteralVariableCdet:

S

Action
Variable Direct address

Look up Variable declaration Instantiate section

Accept

ACT1

S ACT1

Action

Step properties

S_5_12 Comment…Initial stepStep name

Time
LiteralVariableCdet:

R

Action
Variable Direct address

Look up Variable declaration Authorize section

Accept

ACT1

R ACT1

Action

S_5_10

S_5_11

a

S_5_12

b

c

298 33002204

Sequence language SFC
Identifier P The identifier P stands for "Pulse".

If the step becomes active, the action becomes 1 and this remains for one program
cycle, independent of whether or not the step remains active.

Identifier DS The identifier DS stands for "delayed and saved". It is a combination of the identifiers
D (see Identifier D, p. 298) and S (see Identifier S, p. 297).

If the step becomes active, the internal timer is started and the action becomes
active after the process of the manually defined time duration. The action first
becomes inactive once again, when reset is used with the IdentifierR (see Identifier
R, p. 298) in another step. If the step becomes inactive before the process of the
internal time, the action does not become active.
33002204 299

Sequence language SFC
Declaring a Transition

Introduction Transitions are declared in the properties dialog of the transition.

Declaring a transition:

TransSection2 Edit...

Type of transition condition

Transition section Literal

Transition section

Transitions properties

Cancel

Direct address

Invert transition condition Comment....

Variable

Look up...

OK Help
300 33002204

Sequence language SFC
Declaring a
transition:

The following example describes the procedure when declaring a transition:

Copying
transition
conditions

By copying and inserting it is possible to copy transitions through projects. Since the
definition of a transition displays a reference to a variable, which is defined by the
Variable Editor for the particular project, copying between projects can result in this
reference no longer being valid. In this instance, the transition condition is deleted
and an error message appears.

Step Action

1 With Objects → Selection mode go to selection mode.

2 Double-click on a transition.
Response: The dialog Transition properties of the transition is opened.

3 Begin by determining Kind of transition condition: determine the type
(Transition section, Variable, Literal, Direct address) of transition condition.

4 � After selecting theTransition section has been selected, enter in the text
box Transition section the name of the transition section to be created. This
is a section containing the logic of the transition condition and it is
automatically linked with the transition. To process this section, press the
command button Process....

� After selecting theVariable has been selected, enter in the text box BOOL
variable the name of the selected unlocated variable, located variable or
constants.
Note: For an example for invocation of multi-element variables see Calling
Derived Data Types, p. 569.

� If the Literal has been selected, select in the field Value the value of the
literal.

� If the Dir. address , enter in the text box Direct addressthe required
address.

5 The transition condition can now be inverted with the Invert trans. cond. check
box.
Response: An inverted transition condition is displayed with a (~) symbol in front
of the name of the variable on the transition.

6 With the command button Comment click on the dialog box Enter with
comment, in which a comment about the transistion can be entered. This
comment is shown in the status bar of the editor window, if the transition is
selected.

7 After all the definitions for the transition have been met, confirm this with the
command button OK.
33002204 301

Sequence language SFC
Alias Designations for Steps and Transitions

Introduction Instead of free names you can also select alias designations for steps and
transitions. These are then displayed in SFC and FBD sections during search
functions, application documentation and analysis.

Import and export functions do not recognize the alias designations, since they are
dynamically generated. The visualization can retrieve the alias designations
dynamically, however they cannot be used for the configuration of fixed references,
since they can change constantly.

The languages ST, IL and LD do not support alias designations and display the free
names.

Name Definition The alias designations are dynamically generated during editing procedures, and
the same applies when the Dynamic Numbered option is switched on.

Alias designations remain empty until numbering can take place i.e. when all objects
are linked to one chain.

The alias designations are made up of the position of the steps and transitions in the
section and the section name.

The length of the section name part displayed in the alias designation is freely
definable in the Options → Preferences → Graphical Editors Preferences dialog.
You can define how many characters from the section name (beginning with the first
character) should go into the alias designations here.

Alias
Designations for
Steps

With steps, the lines and columns occupied by steps are each numbered beginning
with the top left. A four-figure step number is made from the column and line
numbers (ccll). The alias designation for steps is made from S_ string, part of the
section name (nnn), a further underscore (_) and the step number (ccll) (S_nn_ccll).

Note: The settings in this dialog are used in the project description (PRJ.DSK) and
in the Concept installations description (CONCEPT.DSK), i.e. they are valid for the
entire Concept installation.
If a project is opened, which was created using alternative settings (e.g. Settings
from Presentation of Steps and Transitions numbered IEC_like in the project
and Dynamic numbered in the current Concept installation), errors can occur
when opening projects.
302 33002204

Sequence language SFC
Alias
Designations for
Transitions

The alias designations for transitions are derived from the alias designation of the
preceding step cell, even when this is empty. The alias designation for transitions is
made from the T_ string, part of the section name (nnn), a further underscore (_)
and the number of the preceding step cell (ccll) (T_nn_ccll).

Activating the
Alias
Designations

The free name is entered as the default for steps and transitions. If you require alias
designations, you can activate them in the Options → Preferences → Graphical
Editors Preferences dialog using the Dynamic Numbered option.

Danger of loss of data.

The free names (IEC_like) are overwritten by the alias names when this option is
selected. If you want to restore the free names, close the project without saving.

Failure to follow this instruction can result in injury or equipment damage.

Danger of loss of data.

You must not switch between the IEC_like and Dynamic Numbered display
modes if an FBD transition section is already open. Otherwise, this could result in
section and variable names containing spaces. Therefore, close all FBD transition
sections before you change the representation mode.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

CAUTION
33002204 303

Sequence language SFC
Example for
Alias
Designations

Example for alias designations:

Inserting and
Deleting Objects

When inserting and deleting objects (steps and transitions) the alias designations
are renumbered.

S_nnn_0001

S_nnn_0002 S_nnn_0102 S_nnn_0202

S_nnn_0103 S_nnn_0203

S_nnn_0204

S_nnn_0003

S_nnn_0004

S_nnn_0005
304 33002204

Sequence language SFC
9.4 Online functions of the SFC sequence language

At a Glance

Overview This section describes the online functions of the SFC sequence language
elements.

What's in this
Section?

This section contains the following topics:

Topic Page

Animation 306

Controlling a Step String 308

Learn monitoring times 311

Transition diagnosis 314
33002204 305

Sequence language SFC
Animation

Introduction In the animation mode the following are displayed in different colors in the editor
window:
� the active steps,
� the time the steps are or were active for,
� time out errors of the steps and
� the status of the transitions (made, not made).

Activating the
Animation

The animation is activated with the menu command Online → Animation.

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in Online help (Tip:
Search the online help for the index reference "Colors").

Changing Values In this mode the following can be changed:
� With transitions:

� the transition condition, if this is a literal.
� With steps:

� the maximum supervision time,
� the minimum supervision time,
� the delay time and
� the times of the actions.

These changes are sent online to the PLC.

Note: If the transition, and therefore the transition section, is not processed, the
status DISABLED appears in the animated transition section.
306 33002204

Sequence language SFC
Transition
Animation

Normally, only the currently evaluated transitions are animated and their status
(transition condition satisfied/not satisfied) is displayed.

It is also possible to display the status of the transitions not currently being
processed. This will only show the status of the transitions. It has no influence on the
behavior of the sequence. To do this you require the XSFCCNTRL function block of
the SYSTEM block library. Additionally, in the Options → Preferences →
Graphical Editors dialog, you must check the Animate All Conditions of the
Transition Section check box.

Displaying all
Transition
Conditions

The procedure for showing all transition conditions is as follows:

Note: This function leads to a considerable burden on the logic scan. This results
from the fact that all the transitions in the affected section are solved and animated
in one logic scan, whereas this is normally solved sequentially depending on the
process status (preceding step active/inactive).

Step Action

1 Create an FBD section and enter the XSFCCNTRL function block of the
SYSTEM block library.

2 Enter the names of the SFC section to be animated as the instance name (block
name) of the XSFCCNTRL function block.

3 Assign the value "1" to the ALLTRANS input of the XSFCCNTRL function block
(using a literal or, depending on the process, a variable).
Response: By doing this, the calculation of all transition conditions is activated.
Otherwise an old status of the transition condition would be displayed.

4 With the menu command Project → Execution Order... (or the project browser)
ensure that the FBD section is executed before the SFC section to be animated

5 Check the Animate All Conditions of the Transition Section check box in the
Options → Preferences → Graphical Editors dialog.

6 Download the program to the PLC and start the animation of the SFC section.
Response: All transition conditions are then displayed.
33002204 307

Sequence language SFC
Controlling a Step String

Introduction There are 3 ways of controlling a string:
� with the animation control
� with the menu commands in the main menu Online
� with the SFCCNTRL or XSFCCNTRL function block (SYSTEM block library)

If controlling a string through the different options simultaneously, these control
operations have equal priority.

The control operations triggered using the menu commands in the Online main
menu and using the animation panel can be locked by the function blocks
SFCCNTRL and XSFCCNTRL.

A control operation in one of the methods is also displayed in the other two methods.

Requirements It is only possible to control the step string when the animation mode for the section
is active.

Animation Panel The animation panel is activated with the menu command Online → Show
Animation Panel.

The animation panel contains all the possibilities that are also available as menu
commands.

Mode of
Functioning

You can test the processing of an SFC section with the animation panel and the
menu commands. For example, steps can be relayed, the processing of the string
can be controlled (whether or not transitions and/or actions are to be processed),
time errors can be reset or the string can be reset to initialization status.

Danger of unsafe, dangerous and destructive tool operations.

Set/Reset flag, Disable Transitions, Disable Actions, Step Unconditional,
Step/Trans. dependant and Force Selected Steps should not be used for
debugging on controllers of machine tools, processes or material maintenance
systems when they are running. This can lead to unsafe, dangerous and
destructive operation of tools or processes linked to the controller.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING
308 33002204

Sequence language SFC
Set/Reset Flag The Set/Reset flag resets the string and starts it as standard.
� Reset chain

To reset the string, activate Set/Reset Flag. This stops the chain and all actions
are reset. No operator interventions are possible.

� Starting the chain in a standardized way
For a standardized start of the string, Set/Reset Flag must first be activated and
then deactivated. With the 1 → 0 slope the chain is reset i.e. the initial step is
activated.

Disable Time
Check

If Disable Time Check is activated, there is no longer any time supervision of the
steps. The step delay time, however, still remains active.

Disable
Transitions

If Disable Transitions is activated, the transition conditions are no longer utilized.
The string remains in its current state, independent of the signals on the transitions.
The string can still only be used via the control commands (Set/Reset Flag, Step
Unconditional, Step/Trans. Dependant).

Disable Actions If Disable Actions is activated, the step actions are no longer processed.

Step
Unconditional

The next step is activated independently of the transition status, but not until the step
delay time of the active step has elapsed.

With Step Unconditional, all branches are activated in parallel branches, and the
left branch is always activated in alternate branches.

Step/Trans. dependent is used for activating process-dependent branches.

Step/Trans.
Dependent

The next step is activated when the transition conditions are satisfied.

Step/Trans. Dependent is advisable only when Disable Transitions is active.

By freezing the transitions (Disable Transitions) it is possible, with Step/Trans.
Dependent to process the string elements manually step by step. In this way the
transitions commutate depending on the transition condition.

Danger of unsafe, dangerous and destructive tool operations.

Step Unconditional activates the next step, even if the transition is not satisfied.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING
33002204 309

Sequence language SFC
Reset Time Error If Reset Time Error is activated, the error message display for time supervision in
the SFC section is reset.

Force Selected
Steps

The selected step(s) are activated independent of the status of the transitions and
steps.

In alternative branches, only one single step and one single branch can be activated.

In parallel branches, steps can only be set, if the process is already located in the
parallel branch and one step in every branch is active. If one step is set in a parallel
branch, all other parallel branches remain unaffected by it.

This functionality is not available via the function blocks SFCCNTRL or
XSFCCNTRL (SYSTEM block library).

Select Active
Steps

The active step of the step string is searched for and selected.

Danger of unsafe, dangerous and destructive tool operations.

Force Selected Steps activates the selected steps, even if the transition is not
satisfied.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING
310 33002204

Sequence language SFC
Learn monitoring times

At a Glance In this mode, the minimum and maximum times, for which the steps were active, are
determined. After mode deactivation, the determined times for the single steps are
shown in the Learn step monitoring times dialog box. From there, the minimum
(see Minimum Supervision Time, p. 272) and maximum monitoring time (see
Maximum Supervision Time, p. 271) are accepted in the step properties. During the
transfer, a factor can be specified for the minimum and maximum time.

Note on
determining
values

Please ensure that at least 2 cycles typical for the process were gathered.

The determined values are first saved after the single step becomes inactive, i.e. if
a step was never active during the "Learn monitoring times" mode, no value is
determined for this step.

The storage of all determined step cells of a cycle can take some time. Because of
this, very long step sequence times and very short individual step durations may be
indeterminable, due to internal time overlaps.

Use of
’SFCSTEP_
TIMES’ variable
or constants

Should the step have been assigned a ’SFCSTEP_TIMES’ variable or constant in
the Step properties dialog, the times learned for these variables/constants are
shown as the initial value. Should these initial values be used for a long period of
time, do not allow corresponding elements (min., max.) of these variables/constants
to be written.

After learning the monitoring times, the altered initial values must be loaded into the
PLC.
� This is performed for variables with the menu command Online → Load.
� This is performed for constants with the menu command Online → Load

changes.

Calculating
"learned" times

A factor can be defined for the determined values, which are multiplied when
calculating the monitoring times.
� Minimum monitoring time = minimum determined time x Minimum [%]
� Maximum monitoring time = maximum determined time x Maximum [%]

Note: This functionality is not available via the Function Blocks SFCCNTRL or
XSFCCNTRL (Block library SYSTEM).
33002204 311

Sequence language SFC
Calculating
"learned" times "
Example 1

Calculating "learned" times
� The determined times for one step are: 1 s, 2 s, 2 s
� Minimum [%]: 50
� Maximum [%]: 200

Following the above formula, this results in a minimum monitoring time of 500 ms
and a maximum monitoring time of 4 s.

Calculating
"learned" times "
Example 2

If a delay time is given for the step, this is considered when calculating the minimum
monitoring time. I.e. if the delay time is larger than the calculated value for the
minimum monitoring time, the calculated value for the minimum monitoring time is
ignored and set to 0 ms (i.e. there is no monitoring of the minimum time).

Calculating "learned" times
� The determined times for one step are: 1 s, 2 s, 2 s
� Delay time: 2 s
� Minimum [%]: 50
� Maximum [%]: 200

This results in a minimum monitoring time of 0 ms and a maximum monitoring time
of 4 s.
312 33002204

Sequence language SFC
Calculating
"learned" times "
Example 3

If a delay time is given for the step, this is likewise considered when calculating the
maximum monitoring time. I.e. if the delay time is larger than the calculated value for
the maximum monitoring time, the calculated value for the maximum monitoring time
is ignored and in its place, a suitable value is calculated.

In such a case 2 cases are considered:
� A value for the minimum monitoring time is available.

Then the value for the maximum monitoring time is calculated according to the
following formula: Minimum monitoring time + 20 ms

Example:
� The determined times for one step are: 2 s, 2 s, 2 s
� Delay time: 3 s
� Minimum [%]: 200
� Maximum [%]: 100

Following the above formula, this results in a minimum monitoring time of 4 s and
a maximum monitoring time of 4s20ms.

� No value for the minimum monitoring time is available, see example 2.
Then the value for the maximum monitoring time is calculated according to the
following formula: Delay time + 20 ms

Example:
� The determined times for one step are: 1 s, 2 s, 2 s
� Delay time: 1 s
� Minimum [%]: 50
� Maximum [%]: 100

Following the above formula, this results in a minimum monitoring time of 0 s and
a maximum monitoring time of 1s20ms.
33002204 313

Sequence language SFC
Transition diagnosis

Preview The transition diagnosis monitors that the immediately preceding step was active
following the transition, commutated within a certain time in the step sequence (with
parallel branches in the step sequences). Should this not be the case, the
associated transition network (with alternative branches, the transition network of all
associated transitions) is analysed, and the error, including the analysed signal, is
entered in the signal buffer. This can now be evaluated using visualization software
(e.g. MonitorPro, Factory Link).

Transition
diagnosis vs.
Reaction
diagnosis

The performance of the transition diagnosis is about equal to that of the reaction
diagnosis (see Function Block REA_DIA from the block library DIAGNO). Contrary
to the reaction diagnosis the re-registration of all the actions started and possible
additional conditions are monitored here.

Activating the
transition
diagnosis

Activating the transition diagnosis:

Note: The transition diagnosis only runs when the string is active.

Step Action

1 Activate the transition diagnosis by entering a Mon. time in the field Maximum
step properties of the immediately preceding step (see also Learn monitoring
times, p. 311).
If the field remains empty or the time 0 is entered the transition monitoring is
inactive.

2 Aktivate in the dialog Project → Code generation options... → Code
generation options... the option Include diagnosis information to make
memory available in the PLC for the error buffer.

3 Load the altered configuration into the PLC.
314 33002204

33002204
10

Instruction list IL
At a Glance

Overview This Chapter describes the programming language instruction list IL which conforms
to IEC 1131.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

10.1 General information about the IL instruction list 317

10.2 Instructions 318

10.3 IL instruction list operators 332

10.4 Call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs)

360

10.5 Syntax check and Code generation 371

10.6 Online functions of the IL instruction list 375

10.7 Creating a program with the IL instruction list 380
315

Instruction list IL
316 33002204

Instruction list IL
10.1 General information about the IL instruction list

General Information about the IL Instruction List

Introduction With assistance from the programming language (IL) instruction list e.g. Function
Blocks and functions can be called up conditionally or unconditionally, assignments
can be performed, and jumps can be performed conditionally or unconditionally
within a section.

Spell Check Spelling is immediately checked when key words, separators and comments are
entered. If a key word, separator or comment is recognized, it is identified with a
color surround. If unauthorized key words (instructions or operators) are entered, it
is likewise identified in color.

IEC Conventions The IEC 1131 does not permit the input of direct addresses in the usual Concept
form. To input direct addresses see Operands, p. 321.

In accordance with IEC 113-3, key words must be entered in upper case. Should the
use of lower case letters be required, they can be enabled in the dialog box Options
→ Preferences → IEC Extensions... → IEC expansions with the option Allow
case insensitive keywords.

Blank spaces and tabs have no influence upon the syntax and can be used freely.

Context help With the right mouse button an object can be selected and at the same time a
context sensitive menu called up. Therefore, for example, with FFBs the right mouse
button can call up the associated block description.

Syntax Check A syntax check can be performed during the program/DFB creation with Project →
Analyze section, see also Syntax Check, p. 372.

Codegeneration Using the Project → Code Generation Options menu command, you can define
options for code generation, see also Code generation, p. 374.

Editing with the
Keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the IL, ST and Data Type Editor,
p. 812).

IEC Conformity For a description of the IEC conformity of the IL programming language see IEC
conformity, p. 827.
33002204 317

Instruction list IL
10.2 Instructions

At a Glance

Overview This section contains an overview of the instructions for the programming language
instruction list.(IL)

What's in this
Section?

This section contains the following topics:

Topic Page

General information about instructions 319

Operands 321

Modifier 323

Operators 325

Tag 328

Declaration (VAR...END_VAR) 330

Comment 331
318 33002204

Instruction list IL
General information about instructions

At a Glance An instruction list is composed of a series of instructions.

Each instruction begins on a new line and consists of:
� an Operator (see Operands, p. 321),
� if necessary with modifier (see Modifier, p. 323) and
� if necessary one or more operands (see IL instruction list operators, p. 332).

Should several operands be used, they are separated by commas. It is possible for
a mark (see Tag, p. 328)to be in front of the instruction, which is followed by a colon.
A comment (see Comment, p. 331) can follow the instruction.

Example:

START:

Tag

LD
ANDN
ST

A
B
C

(* Keyboard 1 *)
(* AND keyboard 2 *)
(* Ventilator on *)

Operators Operands

Modifier Comments
33002204 319

Instruction list IL
Structure of the
programming
language

IL is a so-called battery orientated language, i.e. each instruction uses or alters the
current content of the battery (a form of internal cache). The IEC 1131 refers to this
battery as the "result".

For this reason, an instruction list should always begin with the LD operand ("Load
in battery command").

Example of an addition:

Comparative operations likewise always refer to the battery. The Boolean result of
the comparison is stored in the battery and is therefore the current battery content.

Example of a comparison:

Command Meaning

LD 10 The value "10" is loaded into the battery.

ADD 25 "25" is added to the battery content.

ST A The result is stored in the "A" variable.
The content of the "A" variable and the battery is now "35". A
possible ensuing instruction would be worked with the battery
content "35", should it not begin with LD.

Command Meaning

LD B The value "B" is loaded into the battery.

GT 10 "10" is compared with the battery content.

ST A The result of the comparison is stored in the "A" variable.
If "B" is less than or equal to "10", the value of both the "A"
variable, and the battery content is "0" (FALSE). If "B" is
greater than or equal to "10", the value of both the "A"
variable, and the battery content is "1" (TRUE).
320 33002204

Instruction list IL
Operands

At a Glance An operand can be:
� a literal,
� a variable,
� a multi-element variable,
� an element of a multi-element variable,
� a FB/DFB output or
� a direct address.

Access to the
field variables

When accessing the field variable (ARRAY), only literals and variables of ANY_INT
type are permitted in the index entry.

Example: Saving a field variable

LD var1[i]
ST var2.otto[4]

Type conversion The operand and the current accu content must be of the same type. Should
operands of various types be processed, a type conversion must be performed
beforehand.

An exception is the data type TIME in conjunction with the arithmetic operators MUL
and DIV. With both these operators, an operand of TIME data type can be
processed together with an operand of ANY_NUM data type. The result of this
instruction has in this instance the data type TIME.

Example: Integer
variable and real
variable

In the example the integer variable "i1" is converted into a real variable, before being
added to the real variable "r4".

LD i1
INT_TO_REAL
ADD r4
ST r3
33002204 321

Instruction list IL
Example: Integer
variable and time
variable

In the example the time variable "t2" is multiplied by the integer variable "i4" and the
result is stored in the time variable "t1".

LD t2
MUL i4
ST t1

Default data
types of direct
addresses

The following table shows the default data types of direct addresses:

Using other data
types

Should other data types be assigned as default data types of a direct address, this
must be done through an explicit declaration (VAR…END_VAR (see Declaration
(VAR...END_VAR), p. 330)). VAR…END_VAR cannot be used in Concept for the
declaration of variables. The variable declaration conveniently follows the Variable
Editor (see Variables editor, p. 525).

Input Output Default data type possible data type

%IX,%I %QX,%Q BOOL BOOL

%IB %QB BYTE BYTE

%IW %QW INT INT, UINT, WORD

%ID %QD REAL REAL, DINT, UDINT, TIME
322 33002204

Instruction list IL
Modifier

At a Glance Modifiers influence the implementation of the preceding operators (see Operators,
p. 325).

Modifier N The Modifier N is used to invert the value of the operands bit by bit.

The modifier can only be used on operands with the ANY_BIT data type.

Example: N In the example C will be "1", when A is "1" and B is "0".

LD A
ANDN B
ST C

Modifier C The modifier C is used to carry out the associated instruction, should the value of
the battery be "1" (TRUE).

The modifier can only be used on operands with the BOOL data type.

Example: C In the example the jump after START is only performed, when A is "1" (TRUE) and
B is "1" (TRUE).

LD AAND BJMPC START

Modifier CN If the modifiers C and N are combined, the associated instruction is only performed,
should the value of the battery be a Boolean "0" (FALSE).

Example: CN In the example, the jump after START is only performed, when A is "0" (FALSE) and/
or B is "0" (FALSE).

LD A
AND B
JMPCN START

Left bracket
modifier "("

The left bracket modifier "(" is used to move back the evaluation of the operand, until
the right bracket operator appears. The number of right bracket operations must be
equal to the number of left bracket modifiers. Brackets can be nested.
33002204 323

Instruction list IL
Example: Left
bracket "("

In the example E will be "1", if C and/or D is "1", just as A and B are "1".

LD A
AND B
AND(C
OR D
)
ST E

The example can also be programmed in the following manner:

LD A
AND B
AND(
LD C
OR D
)
ST E
324 33002204

Instruction list IL
Operators

At a Glance An operator is a symbol for:
� an arithmetic operation to be executed,
� a configured operation to be executed or
� the function call up.

Operators are generic, i.e. they are automatically suited to the operands data type.

Table of
operators

IL programming language operators:

Note: Operators can be either entered by hand or generated with assistance from
the menu Objects.

Operator Operator key possible
modifier

possible operand see also

LD Loads the operands
value into the battery

N Literal, variable,
direct address of
ANY data type

Load (LD and
LDN), p. 333

ST Saves the battery
value in the operand

N Variable, direct
address of ANY data
type

Store (ST and
STN), p. 334

S Sets the operand to 1,
when the battery
content is 1

Variable, direct
address of BOOL
data type

Set (S), p. 335

R Sets the operand to 0,
when the battery
content is 1

Variable, direct
address of BOOL
data type

Reset (R),
p. 336

AND Configured AND N, N(, (Literal, variable,
direct address of
ANY_BIT data type

Boolean AND
(AND, AND (),
ANDN, ANDN
()), p. 337

OR Configured OR N, N(, (Literal, variable,
direct address of
ANY_BIT data type

Boolean OR
(OR, OR (),
ORN, ORN ()),
p. 339

XOR Configured exclusive
OR

N, N(, (Literal, variable,
direct address of
ANY_BIT data type

Boolean
exclusive OR
(XOR, XOR (),
XORN, XORN
()), p. 341
33002204 325

Instruction list IL
ADD Addition (Literal, variable,
direct address of
ANY_NUM data type
or TIME data type

Addition (ADD
and ADD ()),
p. 344

SUB Subtraction (Literal, variable,
direct address of
ANY_NUM data type
or TIME data type

Subtraction
(SUB and SUB
()), p. 345

MUL Multiplication (Literal, variable,
direct address of
ANY_NUM data type
or TIME data type

Multiplication (*),
p. 393

DIV Division (Literal, variable,
direct address of
ANY_NUM data type
or TIME data type

Division (DIV
and DIV ()),
p. 348

GT Comparison: > (Literal, variable,
direct address of
ANY_ELEM data
type

Compare on
"Greater Than"
(GT and GT ()),
p. 350

GE Comparison: >= (Literal, variable,
direct address of
ANY_ELEM data
type

Compare to
"Greater than/
Equal to" (GE
and GE ()),
p. 351

EQ Comparison: = (Literal, variable,
direct address of
ANY_ELEM data
type

Compare to
"EQual to"(EQ
and EQ ()),
p. 352

NE Comparison: <> (Literal, variable,
direct address of
ANY_ELEM data
type

Compare to "Not
Equal to" (NE
and NE ()),
p. 353

LE Comparison: <= (Literal, variable,
direct address of
ANY_ELEM data
type

Compare to
"Less than/
Equal to" (LE
and LE ()),
p. 354

Operator Operator key possible
modifier

possible operand see also
326 33002204

Instruction list IL
LT Comparison: < (Literal, variable,
direct address of
ANY_ELEM data
type

Compare to
"Less Than"(LT
and LT ()),
p. 355

JMP Jump to tag C, CN TAG Jump to label
(JMP, JMPC
and JMPCN),
p. 356

CAL Calling up a Function
Block or DFB

C, CN FBNAME (item
name)

Call Function
Block/DFB
(CAL, CALC and
CALCN), p. 359

FUNC-
NAME

Performing a function Literal, variable,
direct address (data
type is dependent on
function)

Function call,
p. 369

) Editing on-hold
operations

Right
parenthesis ")",
p. 359

Operator Operator key possible
modifier

possible operand see also
33002204 327

Instruction list IL
Tag

At a Glance Tags serve as destinations for Jumps (see Jump to label (JMP, JMPC and JMPCN),
p. 356).

Properties Tag properties:
� Tags must always be the first element in a line.
� Tags must be unique throughout the project/DFB, and are not case-sensitive.
� Tags can be 32 characters long (max.).
� Tags must conform to the IEC name conventions.
� Tags are separated by a colon ":" from the following instruction.
� Tags are only permitted at the beginning of "Expressions", otherwise an

undefined value can be found in the battery.

Destinations Possible destinations are:
� the first LD instruction of a FB/DFB call up with assignment of input parameters

(see start2),
� a normal LD instruction (see start1),
� a CAL instruction, which does not work with assignment of input parameters

(seestart3),
� a JMP instruction (see start4),
� the end of an instruction list (see start5).
328 33002204

Instruction list IL
Example start2: LD A
 ST counter.CU
 LD B
 ST counter.R
 LD C
 ST counter.PV
 CAL counter
 JMPCN start4
start1: LD A
 AND B
 OR C
 ST D
 JMPC start3
 LD A
 ADD E
 JMP start5
start3: CAL counter (
 CU:=A
 R:=B
 PV:=C)
 JMP start1
start4: JMPC start1
start5:
33002204 329

Instruction list IL
Declaration (VAR...END_VAR)

At a Glance The VAR instruction is used to declare the function blocks and DFBs used, and
direct addresses if they are not to be used with the default data type. VAR cannot
be used for declaring a variable in Concept. Declaring the variables may
conveniently be done via the Variables editor.

The END_VAR instruction marks the end of the declaration.

Declaration of
function blocks
and DFBs

During declaration for each FB/DFB example, a unique example name is assigned.
The example name is used to mark the function block uniquely in a project. The
example name must be unique in the whole project; no distinction is made between
upper/lower case. The example name must correspond to the IEC Name
conventions, otherwise an error message will be displayed.

After specifying the example name, the function block type, e.g.CTD_DINT is
specified.

In the case of function block types no data type is specified. It is determined by the
data type of the actual parameters. If all actual parameters consist of literals, a
suitable data type will be selected.

Any number of example names may be declared for an FB/DFB.

Note: The declaration of the FBs/DFBs and direct addresses applies only to the
current section. If the same FFB type or the same address are also used in another
section, the FFB type or the address must be declared again in this section.

Note: The dialog Objects → Insert FFB provides you with a form for creating the
FB-/DFB declaration in a simple and speedy manner.

Note: In contrast to grafic programming languages (FBD, LD), it is possible to call
up multiple calls in FB/DFB examples within IL.
330 33002204

Instruction list IL
Example Declaration of function blocks and DFBs

Declaration of
direct addresses

In the case of this declaration, every direct address used whose data type does not
correspond to the default data type will be assigned the required data type (see also
Default data types of direct addresses (see Default data types of direct addresses,
p. 322)).

Example Declaration of direct addresses

VAR
AT %QW1 : WORD ;
AT %IW15 : UINT ;
AT %ID45 : DINT ;
AT %QD4 : TIME ;

END_VAR

Comment

Description Within the IL Editor, comments always start with the string (* and end in the string
*). Any comments may be entered between these two strings. Comments are shown
in colors.

VAR
RAMP_UP, RAMP_DOWN, RAMP_X : TON ;
COUNT : CTU_DINT ;
CLOCK : SYSCLOCK ;
Pulse : TON ;

END_VAR

Item names

Function block Types

Note: In accordance with IEC 1131-1, comments are only permissible at the end
of a line. However, if you wish to place theses elsewhere, you can do this by using
Options → Preferences → IEC Extensions → Allow comments anywhere in
text (IL).

Note: In accordance with IEC 1131-1, nested comments are not permissible.
However, if you wish to place theses elsewhere, you can do this by using Options
→ Preferences → IEC Extensions → Allow nested comments.
33002204 331

Instruction list IL
10.3 IL instruction list operators

At a Glance

Overview This section describes the IL instruction list operators.

What's in this
Section?

This section contains the following topics:

Topic Page

Load (LD and LDN) 333

Store (ST and STN) 334

Set (S) 335

Reset (R) 336

Boolean AND (AND, AND (), ANDN, ANDN ()) 337

Boolean OR (OR, OR (), ORN, ORN ()) 339

Boolean exclusive OR (XOR, XOR (), XORN, XORN ()) 341

Invert (NOT) 343

Addition (ADD and ADD ()) 344

Subtraction (SUB and SUB ()) 345

Multiplication (MUL and MUL()) 346

Division (DIV and DIV ()) 348

Compare on "Greater Than" (GT and GT ()) 350

Compare to "Greater than/Equal to" (GE and GE ()) 351

Compare to "EQual to"(EQ and EQ ()) 352

Compare to "Not Equal to" (NE and NE ()) 353

Compare to "Less than/Equal to" (LE and LE ()) 354

Compare to "Less Than"(LT and LT ()) 355

Jump to label (JMP, JMPC and JMPCN) 356

Call Function Block/DFB (CAL, CALC and CALCN) 359

FUNCNAME 359

Right parenthesis ")" 359
332 33002204

Instruction list IL
Load (LD and LDN)

LD Description With LD the value of the Operands is downloaded into the accumulator. The data
width of the accumulator adapts itself automatically to the data type of the operand.
This also applies to derived datatypes.

Example LD Example LD

LDN Description The downloaded operand can be negated with the Modifier N (only if the Operand
is of data type ANY_BIT).

LDN Example LDN Example

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ST E The result is saved in "E".

Operation Description

LDN A The value of "A" is inverted and downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ST E The result is saved in "E".
33002204 333

Instruction list IL
Store (ST and STN)

ST Description With ST the current value of the accu is saved in the operand. The data type of the
operand must therefore agree with the "data type" of the accu.

Depending on whether an LD follows after ST or not, calculation proceeds with the
"old" result.

ST Example ST Example

STN Description The operand to be saved can be negated with the N modifier (only if the operand is
on the ANY_BIT data type).

STN Example ST Example

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ST E The result is saved in "E".

ADD B Afterwards the value of "E" (current accu contents) is added to the value
of "B" again

ST F The result is saved in "F".

LD X The value of "X" is now downloaded onto the accu.

SUB 3 3 is subtracted from the accu contents.

ST Y The result is saved in "Y".

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

STN E The result is inverted and saved in "E".
334 33002204

Instruction list IL
Set (S)

Description S sets the operand to "1" when the current content of the accu is a Boolean "1".

Example S Example S

Use Usually this operator is used together with the Reset operator R (flip flop) as a pair.

Example RS flip
flop

The example shows an RS flip flop (Reset dominant).

Start behavior The start behavior of PLC’s is divided into cold and warm starts.
� Cold Start

Following a cold start (loading the program with Online → Download) all
variables are set (independently of their type) to "0" or, if available, to their initial
value.

� Warm Start
On a warm start (stopping and starting of the program or Online → Download
changes) different start behavior applies for located variables/direct addresses
and unlocated variables:
� Located variables/direct addresses

During a warm start the located variable/direct address, is set to "0", or to its
initial value if present, via the set instruction.

� Unlocated variables
On a warm start the unlocated variable, set via the set instruction, maintains
its present value (storing behavior).

Command Description

LD A The value of "A" is loaded into the accu.

S OUT If the content of the accu (the value of A) is "1", "OUT" is set to "1".

Command Description

LD A The value of "A" is loaded into the accu.

S OUT If the content of the accu (the value of "A") is "1", "OUT" is set to "1".

LD C The value of "C" is loaded into the accu.

R OUT If the content of the accu (the value of "C") is "1", "OUT" is set to "0".

Note: Should a buffered located variable/direct address be required, please use
the RS or SR function blocks from the block library IEC.
33002204 335

Instruction list IL
Reset (R)

Description R sets the operand to "0" when the current content of the accu is a Boolean "1".

Example R Example R

Use Usually this operator is used together with the Set operator S (flip flop) as a pair.

Example SR flip
flop

The example shows an SR flip flop (Set dominant).

Start behavior PLC start behavior is divided into cold and warm starts:
� Cold Start

Following a cold start (loading the program with Online → Download) all
variables are set (independently of their type) to "0" or, if available, to their initial
value.

� Warm Start
On a warm start (stopping and starting of the program or Online → Download
changes) different start behavior applies for located variables/direct addresses
and unlocated variables:
� Located variables/direct addresses

On a warm start the located variable/direct address, is set to "0", or to its initial
value if present, via the reset instruction.

� Unlocated variables
On a warm start the unlocated variable, set via the reset instruction, maintains
its present value (storing behavior).

Command Description

LD A The value of "A" is loaded into the accu.

R OUT If the content of the accu (the value of "A") is "1", "OUT" is set to "0".

Command Description

LD A The value of "A" is loaded into the accu.

R OUT If the content of the accu (the value of "A") is "1", "OUT" is set to "0".

LD C The value of "C" is loaded into the accu.

S OUT If the content of the accu (the value of "C") is "1", "OUT" is set to "1".

Note: Should a buffered located variable/direct address be required, please use
the RS or SR function blocks from the block library IEC.
336 33002204

Instruction list IL
Boolean AND (AND, AND (), ANDN, ANDN ())

AND Description With AND a logical AND link occurs between the accu contents and the operand.

For the data types BYTE and WORD the link is made by bit.

AND Example In the example D is "1", if A, B and C are "1".

AND ()
Description

AND can be used with the "(" left bracket modifier.

AND () Example In the example D is "1", if A is "1" and B or C are "1".

ANDN
Description

AND can be used with the N modifier.

Operation Description

LD A The contents of "A" are downloaded onto the accu.

AND B The accu contents are AND-linked with the contents of "B".

AND C The accu contents (result of the AND link from "A" and "B") are AND-
linked with the contents of "C".

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

AND (The AND link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

OR C The contents of "C" are OR-linked with the accu contents.

) The deferred AND link is solved. The accu contents (result of the OR
link from "B" and "C") are AND-linked with the contents of "A".

ST D The link result is saved in "D".
33002204 337

Instruction list IL
ANDN Example In the example D is "1", if A is "1" and B and C are "0".

ANDN ()
Description

AND can be used with the N modifier and the "(" left bracket modifier.

ANDN () Example In the example D is "1", if A is "1", B is "0" and C is "1".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ANDN B The contents of "B" are inverted and AND-linked with the accu contents.

ANDN C The contents of "C" are inverted and AND-linked with the accu contents
(Result of the AND link from "A" and "B").

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ANDN (The AND link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

ORN C The contents of "C" are inverted and OR-linked with the accu contents.

) The deferred AND link is solved. The contents of "A" are inverted and
AND-linked with the accu contents (Result of the OR link from "B" and
"C").

ST D The link result is saved in "D".
338 33002204

Instruction list IL
Boolean OR (OR, OR (), ORN, ORN ())

OR Description With OR a logical OR link occurs between the accu contents and the operand.

For the data types BYTE and WORD the link is made by bit.

OR Example In the example D is "1", if A or B is "1" and C is "1".

OR () Description OR can be used with the "(" left bracket modifier.

OR () Example In the example D is "1", if A is "1" or B and C are "1".

ORN Description ORN can be used with the N modifier.

Operation Description

LD A The contents of "A" are downloaded onto the accu.

OR B The accu contents are OR-linked with the contents of "B".

AND C The accu contents (result of the AND link from "A" and "B") are AND-
linked.

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

OR (The OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The deferred OR link is solved. The accu contents (Result of the AND
link from "B" and "C") are OR linked with the contents of "A".

ST D The link result is saved in "D".
33002204 339

Instruction list IL
ORN Example In the example D is "1", if A is "1" or B is "0" and C is "1".

ORN ()
Description

ORN can be used with the N modifier and the "(" left bracket modifier.

ORN () Example In the example D is "1", if A is "1" or B or C are "0".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ORN B The contents of "B" are inverted and OR linked with the accu contents.

AND C The contents of "C" are AND linked with the accu contents (result of the
OR link from "A" and "B").

ST D The link result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

ORN (The OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The deferred OR link is solved. The accu contents (result of the AND
link from "B" and "C") are OR linked with the contents of "A".

ST D The link result is saved in "D".
340 33002204

Instruction list IL
Boolean exclusive OR (XOR, XOR (), XORN, XORN ())

XOR description With XOR, a logical exclusive OR link is made between the accu contents and the
operand.

If more than two operands are linked the result is "1" for an odd number of 1
conditions and "0" for an even number of 1 conditions.

For the data types BYTE and WORD the link is made by bit.

XOR example In the example, D is "1" if A or B is "1". If A and B have the same status (both "0" or
both "1"), D is "0".

XOR ()
description

XOR can be used with the "(" left bracket modifier.

XOR () example In the example, D is "1" if A or the AND link from B and C is "1". If A and the result
of the AND link have the same status (both "0" or both "1"), D is "0".

XORN
description

XOR can be used with the N modifier.

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XOR B The accu contents are linked with the contents of the "B" exclusive OR.

ST D The equation result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XOR (The exclusive OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The reset exclusive OR link is performed. The accu contents (result of
the AND link from "B" and "C") are exclusive OR-linked with the
contents of "A".

ST D The equation result is saved in "D".
33002204 341

Instruction list IL
XORN example In the example, D is "1" if A and B have the same contents (both "1" or both "0'). If
A and B do not have the same status, D is "0".

XORN ()
description

XORN can be used with the "(" left bracket and N modifiers.

XORN () example In the example, D is "1" if A and the AND link from B and C have the same contents
(both "1" or both "0'). If A and B and the AND link from B and C do not have the same
status, D is "0".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XORN B The contents of "B" are inverted and exclusive OR-linked with the accu
contents.

ST D The equation result is saved in "D".

Operation Description

LD A The contents of "A" are downloaded onto the accu.

XORN (The exclusive OR link is deferred until the right bracket is reached.

LD B The contents of "B" are downloaded onto the accu.

AND C The contents of "C" are AND-linked with the accu contents.

) The reset exclusive OR link is performed. The accu contents (result of
the AND link from "B" and "C") are exclusive OR-linked with the
contents of "A".

ST D The equation result is saved in "D".
342 33002204

Instruction list IL
Invert (NOT)

NOT Description The accumulator content is inverted with NOT.

NOT can only be used with Boolean data types (BIT, BYTE, WORD).

Example NOT Example NOT

Note: This operator does not conform to IEC 61131-1.

Operation Description

LD A The contents of "A" are downloaded onto the accumulator.

NOT The accumulator content is inverted.

ST B The result is saved in "B".
33002204 343

Instruction list IL
Addition (ADD and ADD ())

ADD Description With ADD the value of the operand is added to the accu contents.

ADD Example The example corresponds to the formula D = A + B + C

ADD ()
Description

ADD can be used with the "(" left bracket modifier.

ADD () Example The example corresponds to the formula D = A + (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD B The accu contents are added to the value of "B".

ADD C The accu contents (sum of "A"+"B") are added to the value of "C".

ST D The result is saved in "D".

Operation Description

LD A The value of "A" is downloaded onto the accu.

ADD (The addition is deferred until the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The deferred addition is solved. The accu contents (result of "B"-"C")
are added to the value of "A".

ST D The result is saved in "D".
344 33002204

Instruction list IL
Subtraction (SUB and SUB ())

SUB Description With SUB the value of an operand is subtracted from the accu contents.

SUB Example The example corresponds to the formula D = A - B - C

Description SUB
()

SUB can be used with the "(" left bracket modifier.

Example SUB () The example corresponds to the formula D = A - (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

SUB B The value of "B" is subtracted from the accu contents.

SUB C The value of "C" is subtracted from the accu contents (result of "A"-"B").

ST D The result is saved in "D".

Operation Description

LD A The value of "A" is downloaded onto the accu.

SUB (The subtraction is reset until the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The reset subtraction is performed. The accu contents (result of "B"-
"C") are subtracted from the value of "A".

ST D The result is saved in "D".
33002204 345

Instruction list IL
Multiplication (MUL and MUL())

MUL Description With MUL the accu contents are multiplied by the value of an operand.

MUL Example The example corresponds to the formula D = A x B x C

Multiplication of
TIME values

Normally the operand and the current accu contents must be of the same data type.
The TIME data type in relation to MUL is an exception. In this case the accu content
of data type TIME can be used together with an operand of data type ANY_NUM.
After the execution of this instruction list the accu contents have, in this case, the
data type TIME.

Example MUL
with TIME values

The example corresponds to the formula t1 = t2 x i4.

Description MUL
()

MUL can be used with the "(" left bracket modifier.

Operation Description

LD A The value of "A" is downloaded onto the accu.

MUL B The accu contents are multiplied by the value of "B".

MUL C The accu contents (Result of "A"x"B") are multiplied by the value of "C".

ST D The result is saved in "D".

Operation Description

LD t2 The value of the time variables "t2" are downloaded onto the accu.

MUL i4 The accu contents are multiplied by the value of the integer variable
"i4".

ST t1 The result is saved in the time variable "t1".
346 33002204

Instruction list IL
Example MUL () The example corresponds to the formula D = A x (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

MUL (The multiplication is reset until the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The reset multiplication is performed. The accu contents (result of "B"-
"C") are multiplied by the value of "A".

ST D The result is saved in "D".
33002204 347

Instruction list IL
Division (DIV and DIV ())

DIV Description With DIV the accu contents are divided by the value of an operand.

DIV example The example corresponds to the formula D = A / B / C.

Division of TIME
values

Normally the operand and the current accu contents must be of the same data type.
One exception is the data type TIME in connection with DIV. In this case the accu
contents of data type TIME can be processed with an operand of data type
ANY_NUM. After the execution of this instruction list the accu contents have, in this
case, the data type TIME.

Example MUL
with TIME values

The example corresponds to the formula t1 = t2 / i4.

DIV ()
Description

DIV can be used with the "(" left bracket modifier.

Operation Description

LD A The value of "A" is downloaded onto the accu.

DIV B The accu contents are divided by the value of "B".

DIV C The accu contents (result of "A"/"B") are divided by the value of "C".

ST D The result is saved in "D".

Operation Description

LD t2 The value of the time variables "t2" is downloaded onto the accu.

DIV i4 The accu contents are divided by the value of the integer variable "i4".

ST t1 The result is saved in the time variable "t1".
348 33002204

Instruction list IL
DIV () Example The example corresponds to the formula D = A / (B - C)

Operation Description

LD A The value of "A" is downloaded onto the accu.

DIV (The division is reset until it the right bracket is reached.

LD B The value of "B" is downloaded onto the accu.

SUB C The value of "C" is subtracted from the accu contents.

) The reset division is performed. The value of "A" is divided by the accu
contents (result of "B"-"C").

ST D The result is saved in "D".
33002204 349

Instruction list IL
Compare on "Greater Than" (GT and GT ())

Description GT With GT the accu contents is compared with the operand contents. If the accu
contents is greater than the operand contents, the result is a boolean "1". If the accu
contents is less than or equal to the operand contents, the result is a boolean "0".

Example GT Example GT

Description GT () GT can be used witht the modifier left bracket "(".

Examplel GT () Example GT ()

Command Description

LD A The value of "A" is loaded into the accu.

GT 10 The accu content is compared with the value ‘’0’’.

ST D If the value of ‘’A’’ was less than ‘’10’’ (or equal ‘’10’’), the value ‘’0’’ is
saved in ‘’D’’.
If the value of ‘’A’’ was greater than ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

GT (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of "A" was less than "B"-"C" (or equal "B"-"C"), the value "0"
is saved in "D".
If the value of ‘’A’’ was greater than "B"-"C", the value ‘’1’’ is saved in
‘’D’’.
350 33002204

Instruction list IL
Compare to "Greater than/Equal to" (GE and GE ())

Description GE With GE the accu contents is compared with the operand contents. If the accu
contents is greater than or equal to the operand contents, the result is a Boolean "1".
If the accu contents is less than the operand contents, the result is a Boolean "0".

GE example E.g. GE

Description GT () GE can be used with the modifier left bracket "(".

GE () example GE () example

Command Description

LD A The value of "A" is loaded into the accu.

GE 10 The accu content is compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was less than ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was equal to or greater than ‘’10’’, the value ‘’1’’ is
saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

GE (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was less than "B"-"C", the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was equal to or greater than ‘’B’’ – "C", the value ‘’1’’
is saved in ‘’D’’.
33002204 351

Instruction list IL
Compare to "EQual to"(EQ and EQ ())

EQ description With EQ the accu contents are compared with the operand contents. If the accu
contents are equal to the operand contents, the result is a Boolean "1". If the accu
contents are not equal to the operand contents, the result is a Boolean "0".

EQ example EQ example

Description EQ () EQ can be used with the modifier left bracket "(".

EQ () example EQ () example

Command Description

LD A The value of "A" is loaded into the accu.

EQ 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was not equal to ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was equal to ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

EQ (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was not equal to "B"-"C", the value ‘’0’’ is saved in
‘’D’’.
If the value of ‘’A’’ was equal to "B"-"C", the value ‘’1’’ is saved in ‘’D’’.
352 33002204

Instruction list IL
Compare to "Not Equal to" (NE and NE ())

NE description With NE the accu contents are compared with the operand contents. If the accu
contents are not equal to the operand contents, the result is a Boolean "1". If the
accu contents are equal to the operand contents, the result is a Boolean "0".

NE example NE example

Description NE () NE can be used with the modifier left bracket "(".

NE () example NE () example

Command Description

LD A The value of "A" is loaded into the accu.

NE 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was equal to ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was not equal to ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

NE (The comparison is deferred until the right bracket has been reached..

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was equal to "B"-"C", the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was not equal to "B"-"C", the value ‘’1’’ is saved in
‘’D’’.
33002204 353

Instruction list IL
Compare to "Less than/Equal to" (LE and LE ())

Description With LE the accu contents are compared with the operand contents. If the accu
contents are less than or equal to the operand contents, the result is a Boolean "1".
If the accu contents are greater than the operand contents, the result is a Boolean
"0".

LE example LE example

Description LE () LE can be used with the modifier left bracket "(".

LE () example LE () example

Command Description

LD A The value of "A" is loaded into the accu.

LE 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was greater than ‘’10’’, the value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was less than or equal to ‘’10’’, the value ‘’1’’ is saved
in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

LE (The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was greater than "B"-"C", the value ‘’0’’ is saved in
‘’D’’.
If the value of "A" was less than "B"-"C" (or equal to "B"-"C"), the value
"1" is saved in "D".
354 33002204

Instruction list IL
Compare to "Less Than"(LT and LT ())

LT description With LT the accu contents are compared with the operand contents. If the accu
contents are less than the operand contents, the result is a Boolean "1". If the accu
contents are greater than or equal to the operand contents, the result is a Boolean
"0".

LT example LT example

Description LT () LT can be used with the modifier left bracket "(".

LT () example LT () example

Command Description

LD A The value of "A" is loaded into the accu.

LT 10 The accu contents are compared with the value ‘’10’’.

ST D If the value of ‘’A’’ was greater than ‘’10’’ (or equal to ‘’10’’), the value
‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was less than ‘’10’’, the value ‘’1’’ is saved in ‘’D’’.

Command Description

LD A The value of "A" is loaded into the accu.

LT(The comparison is deferred until the right bracket has been reached.

LD B The value of "B" is loaded into the accu.

SUB C The value of "C" is subtracted from the accu content.

) The deferred comparison is now carried out. The value of "A" is
compared with the accu contents (result of "B"-"C").

ST D If the value of ‘’A’’ was greater than ‘’B’’-"C" (or equal to ‘’B’’-"C"), the
value ‘’0’’ is saved in ‘’D’’.
If the value of ‘’A’’ was less than "B"-"C", the value ‘’1’’ is saved in ‘’D’’.
33002204 355

Instruction list IL
Jump to label (JMP, JMPC and JMPCN)

JMP Description With JMP a conditional or unconditional jump to a label is solved.

The label is used as an address and identifies the destination instruction. The
destination instruction can be above or below the jump instruction. A label must
always be the first element of a line. The label (max. 32 characters) must not be
duplicated anywhere else in the project and there is no case sensitivity. The labels
are separated by a colon ":" from the following instruction. Labels should only be at
the beginning of "expressions", since otherwise an undefined value can be in the
accu.

JMP Example In the example an unconditional jump to the label "start" is solved.

JMPC and
JMPCN
Description

JMP can be used with the modifiers C and CN (only if the operand is of data type
ANY_BIT).

Operation Description

start: LD A The value of "A" is downloaded onto the accu.

 AND B Logical AND link between the accu contents and the
contents of "B".

 OR C Logical OR link between the accu contents and the contents
of "C".

 ST D The result of the links is saved in "D".

 JMP start Independent of the accu contents (value of "D") a jump to
label "start" is solved.
356 33002204

Instruction list IL
JMPC Example In the example a conditional jump (with "1") to label "start" is solved.

JMPCN Example In the example a conditional jump (by "0") to label "start" is solved.

Operation Description

start: LD A The value of "A" is downloaded onto the accu.

 AND B Logical AND link between the accu contents and the
contents of "B".

 OR C Logical OR link between the accu contents and the contents
of "C".

 ST D The result of the links is saved in "D".

 JMPC start The jump is only solved if the accu contents (value of "D")
has the value "1".

Operation Description

start: LD A The value of "A" is downloaded onto the accu.

 AND B Logical AND link between the accu contents and the
contents of "B".

 OR C Logical OR link between the accu contents and the contents
of "C".

 ST D The result of the links is saved in "D".

 JMPCN start The jump is only solved if the accu contents (value of "D")
has the value "0".
33002204 357

Instruction list IL
Addresses Possible addresses are:
� each LD instruction (see start1)
� each CAL instruction (see start2)
� the end of an instruction list (see start3)

Jumps cannot be made into other sections.

Example for possible addresses:

Operation Description

VAR

Timer_1 : TON;

END_VAR

Declaration of the
function blocks TON.

 LD IN1_BOOL

 ST OT1_BOOL

 JMPC start1 Jump to start1, if
OT1_BOOL = 1

 LD IN1_BOOL

 AND IN2_BOOL

 JMPCN start2 Jump to start2, if
OT1_BOOL = 0

 ST OT2_BOOL

start1: LD IN1_INT

 ADD IN2_INT

 ST OT1_INT

 JMP start3 Unconditional jump after
start3, JMPC/JMPCN is
not allowed here as the
accu contents are not of
type BOOL.

start2: CAL Timer_1 (IN:=IN3_BOOL, PT:=t#6s)

 LD Timer_1.ET

 ST OT1_TIME

 LD Timer_1.Q

 ST OT3_BOOL

start3
358 33002204

Instruction list IL
Call Function Block/DFB (CAL, CALC and CALCN)

CAL Description With CAL a function block or a DFB is conditionally or unconditionally called.

CALC and
CALCN
Description

CAL can be used with the Modifiers C and CN (only if the operand is of data type
ANY_BIT).

Use of Function
Blocks and DFBs

Use of Function Blocks and DFBs, p. 361

FUNCNAME

Description A function is performed with the function name (see Function call, p. 369).

Right parenthesis ")"

At a Glance With the right parenthesis ")" the editing of the reset operator is started. The number
of right parenthesis operations must be equal to the number of left bracket modifiers.
Brackets can be nested.

Example In the example E will be "1", if C and/or D is "1", just as A and B are "1".

LD A
AND B
AND(C
OR D
)
ST E
33002204 359

Instruction list IL
10.4 Call up of functions, Function Blocks (EFBs) and
Derived Function Blocks (DFBs)

At a Glance

Overview This section describes the call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs).

What's in this
Section?

This section contains the following topics:

Topic Page

Use of Function Blocks and DFBs 361

Invoking a Function Block/DFB 363

Function call 369
360 33002204

Instruction list IL
Use of Function Blocks and DFBs

Use of Function
Blocks and DFBs

Function blocks are provided by Concept in the form of libraries. The function block
logic is created in C++ programming language and cannot be altered in the IL Editor.
The names of the available function blocks can be taken from the block libraries.

DFBs are function blocks, which have been defined in Concept-DFB. There is no
difference between functions and function blocks for DFBs. They are always
handled as function blocks regardless of their internal structure.

The use of function blocks and DFBs consists of three parts in IL:
� the declaration (see Declaration, p. 362),
� the function block/DFB invocation (see Invoking a Function Block/DFB, p. 363),
� the use of the function block/DFB outputs (see Use of the Function Block/DFB

Outputs, p. 362).

Function Blocks
with Limited Use

Use of the following EFBs from the DIAGNO block library is limited in IL (the function
blocks can be used, but the expanded diagnostic information cannot be evaluated):
� XACT, XACT_DIA,
� XDYN_DIA,
� XGRP_DIA,
� XLOCK,
� XPRE_DIA,
� XLOCK_DIA,
� XREA_DIA

Function Blocks
with Limited
Invocation

For EFBs which have one or more outputs with data type ANY but no inputs with
data type ANY (generic outputs/inputs), the block invocation can only take place in
compact form (see CAL with a list of the input/output parameters (compact form),
p. 365). e.g. in the block library LIB984:
� GET_3X
� GET_4X

Note: The declaration of the function block/DFB invocation can take place
manually or you can create the block end and the assignment of the parameters
using the menu command Objects → Insert FFB.
33002204 361

Instruction list IL
Unusable
Function Blocks

Unusable Function Blocks:
� EFBs which use several registers with only the entry for the first register on the

input/output (e.g. MBP_MSTR from the COMM block library) cannot be used.
� EFBs, which contain outputs with input information (e.g. GET_BIT, R2T from the

LIB984 block library) cannot be used
� The following EFBs from the COMM block library cannot be used for the technical

reasons listed above:
� CREADREG
� CREAD_REG
� CWRITREG
� CWRITE_REG
� READREG
� READ_REG
� WRITEREG
� WRITE_REG
� MBP_MSTR

� The following EFBs from the LIB984 block library cannot be used for the technical
reasons listed above:
� FIFO
� GET_BIT
� IEC_BMDI
� LIFO
� R2T
� SET_BIT
� SRCH
� T2T

Declaration Before invoking the function block/DFBs, they must be declared using VAR and
END_VAR (see Declaration (VAR...END_VAR), p. 330).

Function Block/
DFB Invocation

Invoking a Function Block/DFB, p. 363

Use of the
Function Block/
DFB Outputs

The outputs of the function block/DFBs can always be used when a variable (read
only) can also be used.

Formal parameter

Instance name

LD COUNT.Q
ST %QX1
362 33002204

Instruction list IL
Invoking a Function Block/DFB

At a Glance The invocation can be made in 4 forms:
� using CAL with a list of the input parameters (see CAL with a list of the input

parameters, p. 363),
� using CAL with a list of the input/output parameters (compact form) (see CAL with

a list of the input/output parameters (compact form), p. 365),
� using CAL and Load/Save the input parameters (see CAL with Loading/Saving of

Input Parameters, p. 365),
� when using the input operators (see Using the Input Operators, p. 367).

CAL with a list of
the input
parameters

Function blocks/DFBs can be invoked using an instruction consisting of the CAL
instruction followed by the instance names for the FBs/DFBs and a list, in brackets,
of value assignments (current parameters) to formal parameters. The order of the
formal parameters in a function block invocation is not significant. The list of the
current parameters can be broken straight after a comma. It is not necessary for all
formal parameters to be assigned a value. If a formal parameter is not assigned a
value, the initial value defined in the variable editor is used when executing the
function block. If an initial value is not defined, the default value (0) is used.

Using the CAL (..) instruction, setting the parameters for the function blocks/DFBs is
ended. Then no more values can be sent to the FB/DFB. Only the output values can
be read.

Note: Even if the function block has no inputs or the input parameters are not to be
defined, the function block should be invoked (CAL EFB_XY ()) before the
outputs can be used. Otherwise the initial values for the outputs are given, i.e. "0".

Note: In IL, unlike the graphic programming languages (FBD, LD), FB/DFB
instances can be invoked multiple times.

Note: Inputs of type VARINOUT (See also Use of the DFB in IL, p. 471) always
have to be assigned a value.
33002204 363

Instruction list IL
Example CAL with a list of the input parameters

or

Invocation of the function block in FBD.

CAL CLOCK ()

:
LD COUNT.Q
ST out

CAL COUNT (CU:=CLOCK.CLK3, R:=%IX10, PV:=100)

Instance name
Formal parameter

Current parameter

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CAL CLOCK ()
CAL COUNT(

CU:=CLOCK.CLK3,
R:=reset,
PV:=100)

:

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;
Pulse : TP ;

END_VAR

LD COUNT.Q
ST out

SYSCLOCK

CLOCK

CLK1
CLK2
CLK3
CLK4
CLK5

TIMER

CTU_DINT

COUNT

Q

CV

CU
R
PV

out
%1:00010

100
364 33002204

Instruction list IL
CAL with a list of
the input/output
parameters
(compact form)

Block invocation and the assignments for the inputs/outputs are also possible in a
more compact form, which saves runtime:

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CAL CLOCK () ;
CAL COUNT (CU:=CLOCK.CLK3, R:=%IX10, PV:=100, Q=>out)

CAL with
Loading/Saving
of Input
Parameters

Function blocks/DFBs can be invoked using an instruction list, which consists of
loading the current parameters, followed by saving them in the formal parameters,
followed by the CAL instruction. The order in which the parameters are loaded and
saved is not significant. The list of the current parameters can be broken directly
after a comma. It is not necessary for all formal parameters to be assigned a value.
If a formal parameter is not assigned a value, the initial value defined in the variable
editor is used when executing the function block. If an initial value is not defined, the
default value (0) is used.

Using the CAL FBNAME instruction, setting the parameters for the function blocks/
DFBs is ended. Then no more values can be sent to the FB/DFB. Only the output
values can be read.

Only load and save instructions for the current FB/DFBs to be configured are
allowed to be between the first load instruction for the current parameters and
invocation of the function block/DFBs. All other instructions are not allowed in this
position.

Note: Inputs of type VARINOUT (See also Use of the DFB in IL, p. 471) always
have to be assigned a value.
33002204 365

Instruction list IL
Example CAL with Loading/Saving of Input Parameters

CAL CLOCK

LD CLOCK.CLK3
ST COUNT.CU
LD %IX10
ST COUNT.R
LD 100
ST COUNT.PV
CAL COUNT
:
:
LD COUNT.Q
:

Current parameter

Formal parameter

Instance name
366 33002204

Instruction list IL
Using the Input
Operators

Function blocks can be called using an instruction list which consists of loading the
current parameters, followed by saving them in the formal parameters, followed by
an input operator. The order in which the parameters are loaded and saved is not
significant. The list of the current parameters can be broken directly after a comma.
It is not necessary for all formal parameters to be assigned a value. If a formal
parameter is not assigned a value, the initial value defined in the variable editor is
used when executing the function block. If an initial value is not defined, the default
value (0) is used.

The possible input operators for the different function blocks can be taken from the
table. Other input operators are not available.

Using input operator invocation, setting the parameters for the function blocks is
ended. Then no more values can be sent to the FB. Only the output values can be
read.

Only load and save instructions for the current FB being configured are allowed to
be between the first load instruction for the current parameters and the input
operator for the function block. All other instructions are not allowed in this position.

Note: Inputs of type VARINOUT (See also Use of the DFB in IL, p. 471) always
have to be assigned a value.

Input operator FB Type

S1, R SR

S, R1 RS

CLK R_TRIG

CLK F_TRIG

CU, R, PV CTU_INT, CTU_DINT, CTU_UINT, CTU_UDINT

CD, LD, PV CTD_INT, CTD_DINT, CTD_UINT, CTD_UDINT

CU, CD, R, LD, PV CTUD_INT, CTUD_DINT, CTUD_UINT, CTUD_UDINT

IN, PT TP

IN, PT TON

IN, PT TOF
33002204 367

Instruction list IL
Example Using the Input Operators

Instance name
Input operator

CAL CLOCK

LD CLOCK.CLK3
ST COUNT.CU
LD %IX10
ST COUNT.R
LD 100
PV COUNT

Current parameter

Formal parameter
368 33002204

Instruction list IL
Function call

Use of functions Functions are provided by Concept in the form of libraries. The logic of the functions
is created in the programming language C++ and cannot be changed in the IL editor.
You will find the names of the available functions in the block libraries.

Functions are called using an instruction list consisting of loading the first actual
parameter into the battery and the name of the function. If necessary, this will be
followed by a list of further actual parameters. The sequence in which the formal
parameters in a function call are enumerated is not significant. Immediately following
a comma, the list of the actual parameters may be wrapped. The result of the
function becomes the battery content after the function has been executed, and can
be saved using ST (see Store (ST and STN), p. 334) in an operand, or may directly
be processed further.

The picture shows calling a function in IL.

The picture shows calling a function in FDP.

Functions which
cannot be used

Functions having one or more outputs of data type ANY but no inputs of data type
ANY (generic outputs/inputs) cannot be used in IL.

Note: The declaration of function calls may either be generated manually, or you
may generate the block rump and the allocation of the parameters using the menu
command Objects → Insert FFB.

LD A
LIMIT_REAL B,C
ST OUT

LIMIT_REAL

.1.2

MN
IN
MX

OUT
B
C

A

33002204 369

Instruction list IL
Calling a
function with an
input

If the function to be executed has only got one input, the name of the function is not
followed by a list of actual parameters.

Calling a
function with
multiple inputs

If the function to be executed has several inputs, there are two possibilities for
assigning the actual parameters.
� The name of the function is followed by a list of the actual parameters

� The name of the function is followed by a list of the value assignments (actual
parameters) to the formal parameters.

Function calls
including
processing of the
battery value

If the value to be processed is already in the battery, it is not necessary to use the
loading instruction.

LIMIT_REAL B,C
ST result

Function calls
including further
direct
processing of the
result

If the result is immediately to be processed further it is not necessary to include the
memory instruction.

LD A
LIMIT_REAL B,C
MUL E

Result of the function

Set of parameters

Function NameLD A
SIN_REAL
ST result

LIMIT_REAL B,C

Set of parameters

Function Name
LD A

ST result Set of parameters

Set of parameters Formal parameters

LD A

ST result

Set of parameters

LIMIT_REAL IN:=C, MX:=B
370 33002204

Instruction list IL
10.5 Syntax check and Code generation

At a Glance

Overview This section describes the syntax check and the code generation with the IL
instruction list.

What's in this
Section?

This section contains the following topics:

Topic Page

Syntax Check 372

Code generation 374
33002204 371

Instruction list IL
Syntax Check

Introduction A syntax check can be performed during the program/DFB creation with Project →
Analyze section.

Syntax Check
Options

With the menu command Options → Preferences → IEC extensions... → IEC-
extensions the syntax check options can be defined.

Allow Case
Insensitive
Keywords

If the check box Allow case insensitive keywords is checked, upper and lower
case for all keywords is enabled.

Allow nested
comments

If the check box Nested comments authorized is checked, nested comments can
be entered. There are no limits to the nesting depths.

Comments
everywhere in
the text
permitted (IL)

If the check box Comments everywhere in the text permitted (IL) is checked,
comments can be placed anywhere in the IL section.

Additional
Variable Names
Permitted (IL)

If the check box Additional variable names permitted (IL) is checked, the use of
additional variable names (e.g. "S1" or "IN") is possible in IL. (These variables can
always be used in FBD, LD and ST.)

Allow Leading
Digits in
Identifiers

If the check box Allow leading digits in identifiers is checked, figures as the first
character of identifiers (i.e. variable names, step names, EFB names) are possible.
Identifiers, which consist solely of figures are, however, not authorized, they must
contain at least one letter.

Note: The settings in this dialog are used in the project description (PRJ.DSK) and
in the Concept installations description (CONCEPT.DSK), i.e. they are valid for the
entire Concept installation.
If a project is opened, that was created using different settings (e.g. Allow nested
comments in the project and not in the actual Concept Installation), errors can
occur when opening the project.
372 33002204

Instruction list IL
Unused
Parameters
Cause Warnings

The IEC 1131-3 permits functions and Function Blocks to be called up without
calling up the assignment of all the input parameters. These unused parameters are
implicitly assigned a 0, or they retain the value from the last call up (Function Blocks
only).

If in the menu command Options → Preferences → Analysis... → Analysis the
check box Unused parameters lead to warnings is checked, a list of these unused
parameters is displayed in the message window when generating the code.
33002204 373

Instruction list IL
Code generation

At a Glance The menu command Project → Options for code generation is used to define
options for code generation.

Fastest code
(restricted
check)

If the check box Fastest Code (restricted check) is activated, a runtime-optimized
code will be generated.

This runtime optimization is achieved with integer arithmetic (e.g. "+" or "-") with
simple process commands instead of EFB calls.

Process commands are much faster than EFB calls, but they generate no error
messages, such as e.g. Arithmetic or Array overrun. This option should only be used
if it has been ensured that the program is free of arithmetic errors.

Example: Fastest
Code

LD in1
ADD 1
ST out1

If Fastest Code (restricted check) is selected, the addition "in1 + 1" is executed
with the process command "add". The code is now faster than if EFB ADD_INT had
been called up. However, no runtime error is generated if "in1" is 32767. In this case,
"out1" would overrun from 32767 to -32768!

Activate loop
control

This check box activates a software watchdog for continuous loops.

If this check box is checked, with loops within IL and ST sections, it is tested whether
these loops are again exited within a certain time. The time authorized depends on
the manually defined watchdog time. The authorized time for all loops combined
constitutes 80% of the Hardware watchdog time. In this way triggering of the
hardware watchdog by endless loops is disabled. If a time consuming loop or an
endless loop is detected, processing of the affected section will stop, an entry in the
Event display will be generated and processing of the next section will begin. In the
next cycle, the segment will be re-processed until a time consuming loop or an
endless loop is detected once again, or until the segment is completed correctly.

Note: If the hardware watchdog stops the PLC when a time consuming loop or an
endless loop is detected, this option should not be activated. The hardware
watchdog itself is not switched off by this function.
374 33002204

Instruction list IL
10.6 Online functions of the IL instruction list

At a Glance

Overview This section describes the online functions of the IL instruction list.

What's in this
Section?

This section contains the following topics:

Topic Page

Animation 376

Monitoring field 379
33002204 375

Instruction list IL
Animation

At a Glance There are two animation modes available in the IL and ST editor:
� Animation of binary variables
� Animation of selected variables

Animation of
binary variables

The animation of the selected objects is activated with the menu command Online
→ Animate selection.

In this mode, the current signal status of binary values is shown in the editor window.

The animation of direct addresses and direct FB input/outputs is not possible.

Animation of
selected
variables

The dialog box for the display of the current signal status of selected variables is
activated with the menu command Online → View selected.

Furthermore, at least one variable, which can be animated, must be selected.

Variables and multi-element variables that can be selected are denoted by red,
green or yellow script.

Properties of the
dialog box

The name of the selected variables or multi-element variables are shown in the
dialog box, with the data type and current value.

The dialog box is modeless, i.e. it remains open until it is closed or the animation is
terminated. If several text language sections are open and clicked on in this dialog
box, a dialog box is opened for each section. The name of the section is displayed
in the dialog box heading.

Color key There are 12 different color schemes available for animation. An overview of the
color scheme and the meaning of each color can be found in the Online help (Tip:
Search the online help for the index reference "Colors").

Inserting several
variables

The procedure for inserting several variables is as follows:

Step Action

1 Select the desired variables or multi-element variables.

2 Accept this with Online → Animate selected in the dialog box.
376 33002204

Instruction list IL
Inserting all
variables

The procedure for inserting all the variables is as follows:

Altering column
width

The procedure for altering the column width is as follows:

Multi-element
variables

With multi-element variables the display of the elements can be switched on or off.

Step Action

1 Select the whole section with CTRL+A.

2 Migrate all variables and multi-element variables of the dialog section with
Online → Animate selcted to the dialog box.

Step Action

1 Position the mouse pointer on the right margin button.

Reaction: The mouse pointer changes its shape to .

2 Alter the column width by dragging with the left mouse button depressed.

Action Function Condition

Click on symbol + or
key +

The next component level
for the current line is shown.

When using the keyboard, the cursor
must remain on a + symbol.

Key x (number lock) All component levels for the
current line are shown.

The cursor must remain on a + symbol.

Click on symbol - or
key -

All component levels for the
current line, which are
shown, are grayed out.

When using the keyboard, the cursor
must remain on a - symbol.

CTRL++ The display of the
components of the current
line is restored (Restoration
of display before the last
activation of -

The cursor must remain on a + symbol.

CTRL+x (number
lock)

All component levels of the
current multi-element
variables are shown.

The cursor must remain on an element
of a multi-element variable.

CTRL+- All component levels of the
current multi-element
variables are grayed out.

The cursor must remain on an element
of a multi-element variable.

CTRL+end to go to the end of the table

CTRL+Pos1 to go to the start of the table
33002204 377

Instruction list IL
Saving and
restoring
animation

With the menu command Save animation the settings (e.g. Position of monitoring
fields) of the current animation can be saved. After terminating this animation, the
animation can be restored with the same settings via the menu command Restore
animation.

Note: To avoid inconsistencies between the program on the PC and the PLC and
to also have the animation available in the next Concept sitting, the project must
be saved when quitting Concept
378 33002204

Instruction list IL
Monitoring field

At a Glance With the menu command Online → Selected in Inspect field a monitoring field can
be entered in the section. The current value of the assigned variables is shown in
this monitoring field.

Limitations The generation of monitoring fields for direct addresses and direct FB input/outputs
(INST.Q) is not possible.

Display of multi-
element
variables

With multi-element variables, the value of the first element is shown.

If a view of more elements is desired, this can be defined in the dialog Settings for
monitoring field, which is called up by double clicking on the monitoring field.

Minimum and
maximum values

In the dialog Settings for monitoring field, which can be called up with a double
click on the monitoring field, a minimum and maximum value can be defined for the
monitored variable. If the variable violates one of these thresholds, this will be
displayed in color in the monitoring field.

An overview of the color scheme and the meaning of each color can be found in the
Online help (Tip: Search the online help for the index reference "Colors").

Generating a
monitoring field

The procedure for generating a monitoring field is as follows:

Step Action

1 Select a variable (e.g. double-click on variable).

2 Execute the menu command Online → Selected in Inspect field.
Reaction: The section animation is started (gray section background) and the
cursor symbol changes into box symbol.

3 Position the cursor to any position in the section and click with the left mouse
button.
Reaction: A monitoring field, consisting of variable name and value, is
generated for the selected variable on the chosen position.
33002204 379

Instruction list IL
10.7 Creating a program with the IL instruction list

Creating a program in the IL instruction list.

At a Glance The following description contains an example of creating a program in IL instruction
list. The creation of a program in IL instruction list is organized into 2 main steps:

Generating a
section

The procedure for generating a section is as follows:

Step Action

1 Generating a section (see Generating a section, p. 380)

2 Creating the logic (see Creating the logic, p. 381)

Step Action

1 Using the menu command File → New section... and enter a section name.

Note: The section name (max. 32 characters) must be clear throughout the
project, so that there is no difference regarding case sensitivity. If the name
entered already exists, a warning is given and another name must be chosen.
The section name must correspond to the IEC name conventions, otherwise an
error message arises.

Note: In accordance with IEC1131-3, only letters are permitted as the first
character of names. Should numbers be required as the first character, however,
the menu command Options → Presettings → IEC expansions... → Enable
leading figures in identifiers .
380 33002204

Instruction list IL
Creating the
logic

The procedure for creating the logic is as follows:

Step Action

1 Declare the Function Block and DFBs, which are to be used, with assistance
from VAR…END_VAR.

Example:
VAR

 RAMP_UP, RAMP_DOWN, RAMP_X : TON ;

 COUNT : CTU_DINT ;

END_VAR

2 Declare the variables and their initial value in the Variable Editor.

3 Create the logic of the program.

Example:
 LD A

 SIN_REAL

 MUL_REAL B,C

 ST D

 LD Y

 AND X

 JMPC endl

 LD M

 SIN_REAL

 MUL_REAL N,O

 ST P

 JMP end2

end1: LD D

 ST %QD4

end2: LD P

 ST %QD5

4 save the section with the menu command Data file → Save project .
33002204 381

Instruction list IL
382 33002204

33002204
11

Structured text ST
At a Glance

Overview This Chapter describes the programming language structured text ST which
conforms to IEC 1131.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

11.1 General information about structured Text ST 385

11.2 Expressions 386

11.3 Operators of the programming language of structured ST text 391

11.4 Assign instructions 399

11.5 Call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs)

415

11.6 Syntax check and code generation 422

11.7 Online functions of the ST programming language 425

11.8 Creating a program with the structured ST text 426
383

Structured text ST
384 33002204

Structured text ST
11.1 General information about structured Text ST

General Information about the ST Structured Text

Introduction With the programming language of structured text (ST), it is possible, for example,
to call up Function Blocks, perform functions and assignments, conditionally perform
instructions and repeat tasks.

Spell Check Spelling is immediately checked when key words, separators and comments are
entered. If a key word, separator or comment is recognized, it is identified with a
color surround. If unauthorized key words (instructions or operators) are entered, it
is likewise identified in color.

IEC Conventions The IEC 1131 does not permit the input of direct addresses in the usual Concept
form. To input direct addresses see Operands, p. 387.

In accordance with IEC 113-3, key words must be entered in upper case. Should the
use of lower case letters be required, they can be enabled in the dialog box Options
→ Preferences → IEC Extensions... → IEC expansions with the option Allow
case insensitive keywords.

Blank spaces and tabs have no influence upon the syntax and can be used freely.

Context help With the right mouse button an object can be selected and at the same time a
context sensitive menu called up. Therefore, for example, with FFBs the right mouse
button can call up the associated block description.

Syntax Check A syntax check can be performed during the program/DFB creation with Project →
Analyze section, see also Syntax Check, p. 423.

Codegeneration Using the Project → Code Generation Options menu command, you can define
options for code generation, see also Code generation, p. 424.

Editing with the
Keyboard

Normally editing in Concept is performed with the mouse, however it is also possible
with the keyboard (see also Short Cut Keys in the IL, ST and Data Type Editor,
p. 812).

IEC Conformity For a description of the IEC conformity of the ST programming language see IEC
conformity, p. 827.
33002204 385

Structured text ST
11.2 Expressions

At a Glance

Overview This section contains an overview of the expressions in the programming language
of structured text ST.

expressions consists of operands and operators.

What's in this
Section?

This section contains the following topics:

Topic Page

Operands 387

Operators 388
386 33002204

Structured text ST
Operands

At a Glance An operand can be:
� a literal,
� a variable,
� a multi-element variable,
� an element of a multi-element variable,
� a function call up,
� a FB/DFB output or
� a direct address.

Access to the
field variables

When accessing field variables (ARRAY), only literals and variables of ANY_INT
type are permitted in the index entry.

Example: Using field variables

var1[i] := 8 ;
var2.otto[4] := var3 ;
var4[1+i+j*5] := 4 ;

Type conversion Data types, which are in an instruction of processing operands, must be identical.
Should operands of various types be processed, a type conversion must be
performed beforehand.

An exception is the data type TIME in conjunction with the arithmetic operators "*"
(multiplication) and "/" (division). With both these operators, an operand of TIME
data type can be processed together with an operand of ANY_NUM data type. The
result of this instruction has in this instance the data type TIME.

Example: Integer
variable and real
variable

In the example the integer variable i1 is converted into a real variable before being
added to the real variable r4.

r3 := r4 + SIN_REAL(INT_TO_REAL(i1)) ;

Example: Integer
variable and time
variable

In the example the time variable t2 is multiplied by the integer variable i4 and the
result is stored in the time variable t1.

t1 := t2 * i4 ;
33002204 387

Structured text ST
Default data
types of direct
addresses

The following table shows the default data types of direct addresses:

Using other data
types

Should other data types be assigned as default data types of a direct address, this
must be done through an explicit declaration (VAR…END_VAR (see Declaration
(VAR...END_VAR), p. 403)). VAR…END_VAR cannot be used in Concept for the
declaration of variables. The variable declaration is performed conveniently by using
the Variable Editor (see Variables editor, p. 525).

Operators

Introduction An operator is a symbol for:
� an arithmetic operation to be executed or
� a configured operation to be executed or
� the function call up.

Operators are generic, i.e. they are automatically matched with the operands data
type.

Expression
Evaluation

The evaluation of an expression consists of applying the operators to the operands,
in the sequence, which is defined by the order of the operators rank (see table). The
operator with the highest rank in an expression is performed first, followed by the
operator with the next highest rank etc. until the evaluation is complete. Operators
with the same rank are performed from left to right, as they are written in the
expression. This sequence can be altered with the use of parentheses.

Input Output Default data type possible data type

%IX,%I %QX,%Q BOOL BOOL

%IB %QB BYTE BYTE

%IW %QW INT INT, UINT, WORD

%ID %QD REAL REAL, DINT, UDINT, TIME

Note: Operators can be either entered manually or generated with assistance from
the menu Objects → Operators.
388 33002204

Structured text ST
Table of
Operators

ST programming language operators:

Operator Meaning possible operand Order of
rank

see also

() Use of
parentheses:

Expression 1
(highest)

Use of
parentheses "()",
p. 392

FUNC-
NAME
(current
parameter
list)

Function editing
(call up)

Expression, literal, variable,
direct address of ANY data
type

2 Function
Invocation, p. 420

- Negation Expression, literal, variable,
direct address of
ANY_NUM data type

3 Negation (-),
p. 392

NOT Complement Expression, literal, variable,
direct address of ANY_BIT
data type

3 Complement
formation (NOT),
p. 393

** Exponentiation Expression, literal, variable,
direct address of REAL data
type (basis), ANY_NUM
(exponent)

4 Exponentiation
(**), p. 392

* Multiplication Expression, literal, variable,
direct address of
ANY_NUM data type or
TIME data type

5 Multiplication (*),
p. 393

/ Division Expression, literal, variable,
direct address of
ANY_NUM data type

5 Division (/), p. 394

MOD Modulo Expression, literal, variable,
direct address of ANY_INT
data type

5 Modulo (MOD),
p. 394

+ Addition Expression, literal, variable,
direct address of
ANY_NUM data type or
TIME data type

6 Addition (+),
p. 394

- Subtraction Expression, literal, variable,
direct address of
ANY_NUM data type or
TIME data type

6 Subtraction (-),
p. 395
33002204 389

Structured text ST
< Less-than
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison with
"Less Than"(<),
p. 396

 > Greater-than
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison on
"Greater Than"
(>), p. 395

<= Less or equal to
comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison with
"Less than or
Equal to" (<=),
p. 396

>= Greater or equal
to comparison

Expression, literal, variable,
direct address of
ANY_ELEM data type

7 Comparison on
"Greater than/
Equal to" (>=),
p. 395

= Equality Expression, literal, variable,
direct address of
ANY_ELEM data type

8 Comparison with
"EQual to" (=),
p. 395

<> Inequality Expression, literal, variable,
direct address of
ANY_ELEM data type

8 Comparison with
"Not Equal to"
(<>), p. 396

&, AND configured AND Expression, literal, variable,
direct address of ANY_BIT
data type

9 Boolean AND
(AND or &), p. 397

XOR Configured
exclusive OR

Expression, literal, variable,
direct address of ANY_BIT
data type

10 Boolean Exclusive
OR (XOR), p. 398

OR Configured OR Expression, literal, variable,
direct address of ANY_BIT
data type

11
(lowest)

Boolean OR (OR),
p. 397

Operator Meaning possible operand Order of
rank

see also
390 33002204

Structured text ST
11.3 Operators of the programming language of
structured ST text

At a Glance

Overview This section describes the operators of the programming language of structured ST
text.

What's in this
Section?

This section contains the following topics:

Topic Page

Use of parentheses "()" 392

FUNCNAME 392

Exponentiation (**) 392

Negation (-) 392

Complement formation (NOT) 393

Multiplication (*) 393

Division (/) 394

Modulo (MOD) 394

Addition (+) 394

Subtraction (-) 395

Comparison on "Greater Than" (>) 395

Comparison on "Greater than/Equal to" (>=) 395

Comparison with "EQual to" (=) 395

Comparison with "Not Equal to" (<>) 396

Comparison with "Less Than"(<) 396

Comparison with "Less than or Equal to" (<=) 396

Boolean AND (AND or &) 397

Boolean OR (OR) 397

Boolean Exclusive OR (XOR) 398
33002204 391

Structured text ST
Use of parentheses "()"

Description Brackets are used to alter the execution sequence of the operators.

Example of
parentheses "()"

If the operands A, B, C, and D have the values "1", "2", "3", "and -4",

A+B-C*D

has the result 15 and

(A+B-C)*D

has the result 0.

FUNCNAME

Description The function processing is used to perform functions (see Function Invocation,
p. 420).

Exponentiation (**)

Description For exponentiation "**" the value of the first operand (basis) is potentiated with that
of the second operand (exponent).

Example:
Exponentiation
"**"

In the example OUT will be"625.0", when IN1 is "5.0" and IN2 is "4.0".

OUT := IN1 ** IN2 ;

Negation (-)

Description During negation "-" a sign reversal for the value of the operand takes place.

Example:
Negation "-"

In the example OUT will be "-4", when IN1 is "4".

OUT := - IN1 ;

Note: Exponentiation operates in the ST programming languageand with a
resolution of 23 bits. For the graphic languages the exponentiation operates with a
resolution of 24 bits..
392 33002204

Structured text ST
Complement formation (NOT)

Description In NOT a bit by bit inversion of the operands takes place.

Example: NOT In the example OUT will be"0011001100", when IN1 is "1100110011".

OUT := NOT IN1 ;

Multiplication (*)

Description For multiplication "**" the value of the first operand is multiplied with that of the
second operand (exponent).

Example:
Multiplication "*"

OUT := IN1 * IN2 ;

Multiplication of
TIME values

Normally the data types of the operands to be processed must be identical to an
instruction. However, the multiplication forms an exception when combined with
data type TIME. In this case an operand with the datentype TIME combined with an
operanden of data type ANY_NUM can be processed. In this case the result of this
instruction has the data type TIME.

Example:
Multiplication of
TIME values

In the example the Time variable t2 is multiplied by the integer variables i4 and the
result is deposited in the t1 Time variables.

t1 := t2 * i4 ;
33002204 393

Structured text ST
Division (/)

Description For division "/" the value of the first operand is divided by that of the second operand
(exponent).

Example:
Division "/"

OUT := IN1 / IN2 ;

Division of TIME
values

Normally the data types of the operands to be processed must be identical to an
instruction. However the division forms an exception when combined with data type
TIME. In this case an operand with the data type TIME combined with an operand
of data type ANY_NUM can be processed. In this case the result of this instruction
has the data type TIME.

Example division
of TIME values

In the example the Time variable t2 is divided by the integer variables i4 and the
result is deposited in the t1 Time variables.

t1 := t2 / i4 ;

Modulo (MOD)

Description For MOD the value of the first operandis divided by that of the second operand and
the remainder of thedivision (Modulo) is displayed as the result.

Example: MOD OUT := IN1 MOD IN2 ;

Addition (+)

Description For the addition "+" the value of the first operand is added to that of the second
operand.

Example:
Addition "+"

OUT := IN1 + IN2 ;
394 33002204

Structured text ST
Subtraction (-)

Description For the subtraction "-" the value of the second operand is subracted from that of the
first operand.

Example:
Subtraction "-"

OUT := IN1 - IN2 ;

Comparison on "Greater Than" (>)

Description With ">" the value of the first operand is compared with that of the second operand.
If the first operand is greater than the second, the result is a boolean "1". If the first
operand is less than or equal to the second, the result is a Boolean "0".

Example:
Greater Than ">"

In the example "OUT" will be "1" if "IN1" is greater than "10" and "0", if "IN1" is less
than "0".

OUT := IN1 > 10 ;

Comparison on "Greater than/Equal to" (>=)

Description With ">=" the value of the first operand is compared to that of the second operand.
If the first operation is greater than or equal to the second, the result is a Boolean
"1". If the first operand is less than the second, the result is a Boolean "0".

Example:
Greater Than/
Equal ">="

In the example "OUT"will be "1"if "IN1" is greater than/equal to "10" and otherwise
"0".

OUT := IN1 >= 10 ;

Comparison with "EQual to" (=)

Description The value of the first operation is compared with the value of the second with "=". If
the first operation is equal to the second, the result is a Boolean "1". If the first
operation is not equal to the second, the result is a Boolean "0".

Example: Equal
"="

In the example, "OUT" will be "1", if "IN1" is equal to "10" – otherwise it will be "0".

OUT := IN1 = 10 ;
33002204 395

Structured text ST
Comparison with "Not Equal to" (<>)

Description The value of the first operation is compared with the value of the second with "<>".
If the first operation is not equal to the second, the result is a Boolean "1". If the first
operation is equal to the second, the result is a Boolean "0".

Example: Not
Equal "<>"

In the example, "OUT" will be "1", if "IN1" is not equal to "10" – otherwise it will be "0".

OUT := IN1 <> 10 ;

Comparison with "Less Than"(<)

Description The value of the first operation is compared with the value of the second with "<". If
the first operation is smaller than the second, the result is a Boolean "1". If the first
operation is bigger than or the same size as the second, the result is a Boolean "0".

Example: Less
Than "<"

In the example, "OUT" will be "1", if "IN1" is less than "10" – otherwise it will be "0".

OUT := IN1 < 10 ;

Comparison with "Less than or Equal to" (<=)

Description The value of the first operation is compared with the value of the second with "<=".
If the first operation is less than or equal to the second, the result is a Boolean "1".
If the first operation is greater than the second, the result is a Boolean "0".

Example: Less
Than or Equal
"<="

In the example, "OUT" will be "1", if "IN1" is less than or equal to "10" – otherwise it
will be "0".

OUT := IN1 <= 10 ;
396 33002204

Structured text ST
Boolean AND (AND or &)

Description With "AND" or "&" a configured AND link occurs between the operations.

With the BYTE and WORD data types, the link is performed bit by bit.

Example:
Boolean "AND or
&"

In the examples, "OUT" will be "1" if "IN1", "IN2" and "IN3" are "1".

OUT := IN1 AND IN2 AND IN3 ;

or

OUT := IN1 AND IN2 AND IN3 ;

Boolean OR (OR)

Description With OR, a configured OR link occurs between the operations.

With the BYTE and WORD data types, the link is performed bit by bit.

Example
Boolean OR
"OR"

In the example, "OUT" will be "1" if "IN1", "IN2" or "IN3" is "1".

OUT := IN1 OR IN2 OR IN3 ;
33002204 397

Structured text ST
Boolean Exclusive OR (XOR)

Description With XOR, a configured Exclusive OR link occurs between the operations.

With the BYTE and WORD data types, the link is performed bit by bit.

Example:
Boolean
Exclusive OR
"XOR"

In the example "OUT" will be "1", if "IN1" and "IN2" are not equal. If "IN1" and "IN2"
have the same state (both "0" or "1"), "OUT" is "0".

OUT := IN1 XOR IN2 ;

Linking more
than 2 operations

If more than two operations are linked, the result is "1" with an odd number of 1-
states and "0" with an even number of 1-states.

Example:
Linking more
than 2 operations

In the example, "OUT" will be "1" if 1, 3 or 5 operations are "1". "OUT" will be "0" if
0, 2 or 4 operations are "1".

OUT := IN1 XOR IN2 XOR IN3 XOR IN4 XOR IN5;
398 33002204

Structured text ST
11.4 Assign instructions

At a Glance

Overview This section describes the instructions for the programming language of structured
ST text.

What's in this
Section?

This section contains the following topics:

Topic Page

Instructions 400

Assignment 401

Declaration (VAR...END_VAR) 403

IF...THEN...END_IF 405

ELSE 406

ELSIF...THEN 407

CASE...OF...END_CASE 408

FOR...TO...BY...DO...END_FOR 409

WHILE...DO...END_WHILE 412

REPEAT...UNTIL...END_REPEAT 413

EXIT 414

Empty instruction 414

Comment 414
33002204 399

Structured text ST
Instructions

Description Instructions are the "commands" of the ST programming language.

Instructions must be completed by semicolons. Several instructions can be entered
in one line (separated by semicolons).

Note: Instructions can be either entered manually or generated using the menu
Objects.
400 33002204

Structured text ST
Assignment

At a Glance When an assignment is performed, the current value of a single or multi-element
variable is replaced by the result of the evaluation of the expression

An assignment consists of a variable specification on the left side, followed by the
assignment operator ":=", followed by the expression to be evaluated. Both variables
must be of the same data type.

Assigning the
value of a
variable to
another variable

Assignments are used to assign the value of a variable to another variable.

The instruction

A := B ;

is for instance used to replace the value of the variable "A" by the current value of
the variable "B". If "A" and "B" are of an elementary data type, the individual value
"B" is passed to "A". If "A" and "B" are of a derived data type, the values of all
elements are passed from "B" to "A".

Assigning the
value of a literal
to a variable

Assignments are used to assign a literal to variables.

The instruction

C := 25 ;

is for instance used to assign the value "25" to the variable "C".

Assigning the
value of an FFB
to a variable

Assignments are used to assign a value to a variable which is returned by a function
or a function block.

The instruction

B := MOD_INT(C,A) ;

is for instance used to assign the modulo of the variables "C" and "A" to the variable
"B".

The instruction

A := TON1.Q ;

is for instance used to assign to the variable "A" the value of the output "Q" of the
function block TONI.
33002204 401

Structured text ST
Assigning the
value of an
operation to a
variable

Assignments are used to assign to a variable a value which is the result of an
operation.

The instruction

X := (A+B-C)*D ;

is for instance used to assign to the variable "X" the result of the operation "(A+B-
C)*D".
402 33002204

Structured text ST
Declaration (VAR...END_VAR)

At a Glance The VAR instruction is utilized for declaring the function blocks used and DFBs and
declaring direct addresses if they are not to be used with the default data type. VAR
cannot be used for declaring a variable in Concept. Declaring the variables may
conveniently be done via the Variables editor.

The END_VAR instruction marks the end of the declaration.

Declaration of
function blocks
and DFBs

Every time a FB/DFB example is used, a unique example name is assigned when it
is declared. The example name is used to mark the function block uniquely in a
project. The example name must be unique in the whole project; no distinction is
made between upper/lower case. The example name must correspond to the IEC
Name conventions, otherwise an error message will be displayed.

After specifying the example name, the function block type, e.g.CTD_DINT is
specified.

In the case of function block types no data type is specified. It is determined by the
data type of the actual parameters. If all actual parameters consist of literals, a
suitable data type will be selected.

Any number of example names may be declared for an FB/DFB.

Note: The declaration of the FBs/DFBs and direct addresses applies only to the
current section. If the same FFB type or the same address are also used in another
section, the FFB type or the address must be declared again in this section.

Note: The dialog Objects → Insert FFB provides you with a form for creating the
FB-/DFB declaration in a simple and speedy manner.

Note: In contrast to grafic programming languages (FBD, LD), it is possible to
execute multiple calls in FB/DFB examples within ST.
33002204 403

Structured text ST
Example Declaration of function blocks and DFBs

Declaration of
direct addresses

In the case of this declaration, every direct address used whose data type does not
correspond to the default data type will be assigned the required data type (see also
Default data types of direct addresses (see Default data types of direct addresses,
p. 322)).

Example Declaration of direct addresses

VAR
AT %QW1 : WORD ;
AT %IW15 : UINT ;
AT %ID45 : DINT ;
AT %QD4 : TIME ;

END_VAR

VAR
RAMP_UP, RAMP_DOWN, RAMP_X : TON ;
COUNT : CTU_DINT ;
CLOCK : SYSCLOCK ;
Pulse : TON ;

END_VAR

Example names

Function block types
404 33002204

Structured text ST
IF...THEN...END_IF

Description The IF instruction determines that an instruction or a group of instructions will only
be executed if its related Boolean expression has the value 1 (true). If the condition
is 0 (false), the instruction or the instruction group will not be executed.

The THEN-command identifies the end of the condition and the beginning of the
command(s).

The END_IF instruction marks the end of the instruction(s).

Example
IF...THEN...
END_IF

If FLAG is 1, the instructions will be executed; if FLAG is 0, they will not be executed.

IF FLAG THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
END_IF ;

Example IF
NOT...THEN...
END_IF

Using NOT, the condition may be inverted (execution of both instructions at 0).

IF NOT FLAG THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
END_IF ;

Related topic(s) ELSE (see ELSE, p. 406)

ELSEIF (see ELSIF...THEN, p. 407)

Note: Any number of IF…THEN…ELSE…END_IF commands may be nested to
generate complex selection commands.
33002204 405

Structured text ST
ELSE

Description The ELSE command always comes after an IF…THEN-, ELSIF…THEN- or CASE-
command.

If the ELSE command comes after IF or ELSIF, the command or group of commands
will only be executed if the associated Boolean expressions of the IF and ELSIF
command have the 0 value (false). If the condition of the IF or ELSIF command is 1
(true), the command or group of commands will not be executed.

If the ELSE command comes after CASE, the command or group of commands will
only be executed if no identification contains the value of the selector. If an identifi-
cation contains the value of the selector, the command or group of commands will
not be executed.

Example ELSE IF A>B THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=C - A ;
ELSE
 C:=A + B ;
 B:=C - A ;
END_IF ;

Related topic(s) IF (see IF...THEN...END_IF, p. 405)

ELSIF (see ELSIF...THEN, p. 407)

CASE (see CASE...OF...END_CASE, p. 408)

Note: As many IF…THEN…ELSE…END_IF-commands as required can be
encapsulated to create complex selection commands.
406 33002204

Structured text ST
ELSIF...THEN

Description The ELSIF-command always comes after an IF…THEN-command. The ELSIF-
command establishes that a command or group of commands will only be executed
if the associated Boolean expression of the IF-command has the 0 value (false) and
the associated Boolean expression of the ELSIF command has the 1 value (true). If
the condition of the IF-command is 1 (true) or the condition of the ELSIF-command
is 0 (false), the command or group of commands will not be executed.

The THEN-command identifies the end of the ELSIF-condition(s) and the beginning
of the command(s).

Example
ELSIF…THEN

IF A>B THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 B:=SUB_REAL(C,A) ;
ELSIF A=B THEN
 C:=ADD_REAL(A,B) ;
 B:=MUL_REAL(C,A) ;
END_IF ;

Example
encapsulated
commands

IF A>B THEN
 IF B=C THEN
 C:=SIN_REAL(A) * COS_REAL(B) ;
 ELSE
 B:=SUB_REAL(C,A) ;
 END_IF ;
ELSIF A=B THEN
 C:=ADD_REAL(A,B) ;
 B:=MUL_REAL(C,A) ;
ELSE
 C:= DIV_REAL (A,B) ;
END_IF ;

Related topic(s) IF (see IF...THEN...END_IF, p. 405)

ELSE (see ELSE, p. 406)

Note: As many IF…THEN…ELSIF…THEN…END_IF-commands as required can
be encapsulated to create complex selection commands.
33002204 407

Structured text ST
CASE...OF...END_CASE

Description The CASE instruction consists of an INT data type expression (the "selector") and a
list of instruction groups. Each group is provided with a marke which consists of one
or several whole numbers (ANY_INT) or zones of whole number values. The first
group is executed by instructions, whose marke contains the calculated value of the
selector. Otherwise none of the instructions will be executed.

The OF instruction indicates the start of the mark.

An ELSE instruction may be carried out within the CASE instruction, whose
instructions are executed if no mark contains the selector value.

The END_CASE instruction marks the end of the instruction(s).

Example
CASE...OF...
END_CASE

Example CASE...OF...END_CASE

Related topic(s) ELSE (see ELSE, p. 406)

Selector

Mark

2: B:=C - A ;
CASE SELECT OF 1,5: C:=SIN_REAL(A) * COS_REAL(B) ;

6..10: C:=C * A ;
ELSE B:=C * A ;

C:=A / B ;
END_CASE ;
408 33002204

Structured text ST
FOR...TO...BY...DO...END_FOR

Description The FOR instruction is used when the number of occurrences can be determined in
advance. Otherwise WHILE (see WHILE...DO...END_WHILE, p. 412) or REPEAT
(see REPEAT...UNTIL...END_REPEAT, p. 413) are used

The FOR instruction repeats an instruction sequence until the END_FOR
instruction. The number of occurrences is determined by start value, end value and
control variable. Start value, end value and the control variable must be the same
type of data (DINT or INT) and may not be modified by one of the repeated
instructions. The FOR instruction increments the control variable value of one start
value to an end value. The increment value has the default value 1. If a different
value is to be used, it is possible to specify an explicit increment value (variable or
constant). The control variable value is checked before each renewed loop running.
If it is outside the start value and end value range, the loop will be left.

Before running the loop for the first time a check is made to determine whether
incrementation of the control variables, starting from the initial value, is moving
towards the end value. If this is not the case (e.g. initial value ≤ end value and
negative increment), the loop will not be processed.

Using this ruler, continuous loops will be prevented.

The DO command identifies the end of the repeat definition and the beginning of the
instruction(s).

Repetition may be terminated early by using the EXIT instruction. The END_FOR
instruction marks the end of the instruction(s).

Example: FOR
with increment
"1"

FOR with increment "1"

Note: For the end value of the data type DINT the range of values -2 147 483 646
to 2 147 483 645 will apply.

C:= C * COS_REAL(B) ;

Control variable

END_FOR ;

FOR i:= 1 TO 50 DO

Start value End value
33002204 409

Structured text ST
FOR with
increment not
equal to "1"

If an increment other than "1" is to be used, this can be defined by BY. The
increment, the initial value, the end value, and the control variable must be of the
same data type (DINT or INT). The criterion for the processing direction (forward,
backward) is the sign of the BY expression. If this expression is positive, the loop will
run forward; if it is negative, the loop will run backward.

Example:
Counting
forward in two
steps

Counting forward in two steps

Example:
Counting
backward

Counting backward

FOR i:= 10 TO 1 BY -1 DO (* BY < 0 : Backward loop *)
C:= C * COS_REAL(B) ; (* Application will be executed 10

x *)
END_FOR ;

Example:
"Unique" loops

The loops in the example are run once precisely, as the initial value = end value. In
this context it does not matter whether the increment is positive or negarive.

FOR i:= 10 TO 10 DO (* Unique Loop *)
C:= C * COS_REAL(B) ;

END_FOR ;

or

FOR i:= 10 TO 10 BY -1 DO (* Unique Loop *)
C:= C * COS_REAL(B) ;

END_FOR ;

C:= C * COS_REAL(B) ; (* instruction will be 5 x executed *

Control variable

END_FOR ;

Start value End value Increment

FOR i:= 1 TO 10 BY 2 DO (* BY > 0 : Forward loop *)
410 33002204

Structured text ST
Example: Critical
loops

If in the example there is the increment j > 0, the instructions will not be executed,
as the situation initial value > end value only permits an increment ≤ 0. A continuous
loop can only arise if the increment is 0. If this situation is identified during the section
analysis, an error message will be generated. If the error is identified during running
time, an error message will be generated in the event viewer.

FOR i:= 10 TO 1 BY j DO (* Backward loop *)
C:= C * COS_REAL(B) ;

END_FOR ;

If in the example there is the increment j < 0, the instructions will not be executed,
as the situation initial value < end value only permits an increment ≥ 0. A continuous
loop can only arise if the increment is 0. If this situation is identified during the section
analysis, an error message will be generated. If the error is identified during running
time, an error message will be generated in the event viewer.

FOR i:= 1 TO 10 BY j DO (* Forward loop *)
C:= C * COS_REAL(B) ;

END_FOR ;

Example: Illegal
loops

Illegal loops

FOR i:= 1 TO 10 BY 0 DO (* Error with Section- *)
C:= C * COS_REAL(B) ; (* Analysis, as continous loop *)

END_FOR ;

or

FOR i:= 1 TO 10 BY j DO (* at j=0, Error message *)
C:= C * COS_REAL(B) ; (* in of Event indicator *)

END_FOR ;
33002204 411

Structured text ST
WHILE...DO...END_WHILE

Description The WHILE instruction has the effect that a sequence of instructions will be
executed repeatedly until its related Boolean expression is 0 (false). If the
expression is false right from the start, the group of instructions will not be executed
at all.

The DO command identifies the end of the repeat definition and the beginning of the
command(s).

The occurrence may be terminated early using the EXIT.

The END_WHILE instruction marks the end of the instruction(s).

Example
WHILE...DO...
END_WHILE

 var := 1
WHILE var <= 100 DO
 var := var + 4;
END_WHILE ;

Related topic(s) EXIT (see EXIT, p. 414)

Risk of program crashing

WHILE must not be used to carry out synchronization between processes, e.g. as
a "waiting loop" with an externally determined end condition. This means that a
continous loop must not be created, unless you prevent this using the function
Project → Code generation options... → Enable Loop Control.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

Risk of program crashing

WHILE must not be used in an algorithm for which fullfilling the loop end condition
or the execution of an EXIT instruction can not be guaranteed. This means that a
continuous loop must not be created, as this may result in crashing the program,
unless you prevent this by using the function Project → Code generation
options... → Enable Loop Control.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING

WARNING
412 33002204

Structured text ST
REPEAT...UNTIL...END_REPEAT

Description The REPEAT instruction has the effect that a sequence of instructions is executed
repeatedly (at least once), until its related Boolean condition is 1 (true).

The UNTIL instruction marks the end condition.

The occurrence may be terminated early using the EXIT.

The END_REPEAT instruction marks the end of the instruction(s).

Example
REPEAT...UNTIL.
..END_REPEAT

 var := -1
REPEAT
 var := var + 2
 UNTIL var >= 101
END_REPEAT ;

Related topic(s) EXIT (see EXIT, p. 414)

Risk of program crashing

REPEAT must not be used to carry out synchronization between processes, e.g.
as a "waiting loop" with an externally determined end condition. This means that a
continous loop must not be created, unless you prevent this using the function
Project → Code generation options... → Enable Loop Control.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

Risk of program crashing

REPEAT must not be used in an algorithm for which fullfilling the loop end
condition or the execution of an EXIT instruction can not be guaranteed. This
means that a continuous loop must not be created, as this may result in crashing
the program, unless you prevent this by using the function Project → Code
generation options... → Enable Loop Control.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING

WARNING
33002204 413

Structured text ST
EXIT

Description The EXIT command is used to terminate repeat instructions (FOR, WHILE,
REPEAT) before the end condition has been met.

If the EXIT instruction is within a nested occurrence, the innermost loop (in which
EXIT is situated) is left. Next, the first instruction following the loop end (END_FOR,
END_WHILE or END_REPEAT) is executed.

Example EXIT If FLAG has the value 0, SUM will be 15 following execution of the instructions.

If FLAG has the value 1, SUM will be 6 following execution of the instructions.

SUM : = 0 ;
FOR I := 1 TO 3 DO
 FOR I := 1 TO 2 DO
 IF FLAG=1 THEN EXIT;
 END_IF;
 SUM := SUM + J ;
 END_FOR ;
 SUM := SUM + I ;
END_FOR

Related topic(s) CASE (see CASE...OF...END_CASE, p. 408)

WHILE (see WHILE...DO...END_WHILE, p. 412)

REPEAT (see REPEAT...UNTIL...END_REPEAT, p. 413)

Empty instruction

Description Empty instructions are generated by a semicolon (;).

Comment

Description Within the ST editor, comments start with the string (* and end in the string *). Any
comments may be entered between these two strings. Comments may be entered
in any position in the ST editor. Comments are shown in colour.

Note: In accordance with IEC 1131-1, nested comments are not permissible.
However, if you wish to place theses elsewhere, you can release them by using
Options → Preferences → IEC Extensions → Allow nested comments.
414 33002204

Structured text ST
11.5 Call up of functions, Function Blocks (EFBs) and
Derived Function Blocks (DFBs)

At a Glance

Overview This section describes the call up of functions, Function Blocks (EFBs) and Derived
Function Blocks (DFBs).

What's in this
Section?

This section contains the following topics:

Topic Page

Function Block/DFB Invocation 416

Function Invocation 420
33002204 415

Structured text ST
Function Block/DFB Invocation

Use of Function
Blocks and DFBs

Function blocks are provided by Concept in the form of libraries. The logic of the
function blocks is created in C++ programming language and cannot be altered in
the ST Editor. The names of the available function blocks can be taken from the
block libraries.

DFBs are function blocks which can be defined in Concept-DFB. There is no
difference between functions and function blocks for DFBs. They are always
handled as function blocks regardless of their internal structure.

The use of function blocks and DFBs consists of three parts in ST:
� the declaration (see Declaration, p. 417),
� the function block/DFB invocation (see Function Block/DFB Invocation, p. 418),
� the use of the function block/DFB outputs (see Use of the Function Block/DFB

Outputs, p. 419).

Function Blocks
with Limited Use

Use of the following EFBs from the DIAGNO block library is limited in ST (function
blocks can be used, but the expanded diagnostic information cannot be evaluated):
� XACT, XACT_DIA
� XDYN_DIA
� XGRP_DIA
� XLOCK,
� XPRE_DIA
� XLOCK_DIA
� XREA_DIA

Function Blocks
with Limited
Invocation

For EFBs which have one or more outputs with data type ANY but no inputs with
data type ANY (generic outputs/inputs), the block invocation can only take place in
compact form (see Function Block/DFB Invocation in Compact Form, p. 419). e.g.
in the block library LIB984:
� GET_3X
� GET_4X

Note: The declaration of the function block/DFB invocation can take place
manually or you can create the block end and the assignment of the parameters
using the menu command Objects → Insert FFB.
416 33002204

Structured text ST
Unusable
Function Blocks

Unusable Function Blocks:
� EFBs which use several registers with only the entry for the first register on the

input/output (e.g. MBP_MSTR from the COMM block library) cannot be used.
� EFBs which contain outputs with input information (e.g. GET_BIT, R2T from the

LIB984 block library) cannot be used
� The following EFBs from the COMM block library cannot be used for the technical

reasons listed above:
� CREADREG
� CREAD_REG
� CWRITREG
� CWRITE_REG
� READREG
� READ_REG
� WRITEREG
� WRITE_REG
� MBP_MSTR

� The following EFBs from the LIB984 block library cannot be used for the technical
reasons listed above:
� FIFO
� GET_BIT
� IEC_BMDI
� LIFO
� R2T
� SET_BIT
� SRCH
� T2T

Declaration Before invoking the function block/DFBs, they must be declared using VAR and
END_VAR (see Declaration (VAR...END_VAR), p. 403).
33002204 417

Structured text ST
Function Block/
DFB Invocation

Function blocks/DFBs are invoked using an instruction consisting of the instance
name for the FB/DFB, which is followed by a list, in brackets, of value assignments
(current parameters) to formal parameters. The order of the formal parameters in a
function block invocation is not significant. It is not necessary for all formal
parameters to be assigned a value. If a formal parameter is not assigned a value,
the initial value defined in the variable editor is used when executing the function
block. If an initial value is not defined, the default value (0) is used.

Function block/DFB invocation:

Declaration and invocation of a function block in ST:

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CLOCK () ;
COUNT (CU:=CLOCK.CLK3, R:=reset, PV:=100) ;
out:=COUNT.Q ;
current:=COUNT.CV ;

Note: Inputs of type VARINOUT (See also Use of the DFB in FBD/LD, p. 468)
always have to be assigned a value.

Note: In ST, unlike the graphic programming languages (FBD, LD), FB/DFB
instances can be called multiple times.

Note: Even if the function block has no inputs or the input parameters are not to be
defined, the function block should be invoked before the outputs can be used.
Otherwise the initial values for the outputs are given, i.e. "0".

Instance name
Formal parameter

Current parameter

CLOCK () ;

Pulse (IN:=COUNT.Q, PT:=t#1s) ;
COUNT (CU:=CLOCK.CLK3, R:=reset, PV:=100 + value) ;
418 33002204

Structured text ST
Invocation of the function block in FBD.

Function Block/
DFB Invocation
in Compact Form

The block invocation and the assignments for the inputs/outputs are also possible in
a more compact form, which saves runtime:

VAR
CLOCK : SYSCLOCK ;
COUNT : CTU_DINT ;

END_VAR

CLOCK () ;
COUNT (CU:=CLOCK.CLK3, R:=reset, PV:=100,

Q=>out, CV=>current) ;

Use of the
Function Block/
DFB Outputs

The outputs of the function block/DFBs can always be used when a variable (read
only) can also be used.

SYSCLOCK

CLOCK

CLK1
CLK2
CLK3
CLK4
CLK5

TIMER

CTU_DINT

COUNT

Q

CV

CU
R
PV

out
reset
100 current

out := COUNT.Q ;
current := COUNT.CV ;

Instance name Formal parameter

Current parameter
33002204 419

Structured text ST
Function Invocation

Using Functions Functions are provided by Concept in the form of libraries. The logic of the function
is created in C++ and cannot be edited in the ST Editor. The names of the available
function can be taken from the block libraries.

Invoking a function in ST:

out := LIMIT_INT (MN:=0, IN:=in1, MX:=5 + var) ;

Invoking the function FBD:

Unusable
Functions

Functions which have one or more outputs with data type ANY but no inputs with
data type ANY (generic outputs/inputs) cannot be used in ST.

Invoking a
Function:
Variant 1

The function can also be invoked using an instruction consisting of a current
parameter (variable) followed by the instruction assignment ":=" followed by the
name of the function followed by a list of value assignments (current parameters) for
the formal parameters in brackets. The order of the formal parameters in a function
block invocation is not significant.

Note: The declaration of the function invocation can take place manually or you
can create the block end and the assignment of the parameters using the menu
command Objects → Insert FFB.

ADD_INT

.1.1

5

var

LIMIT_INT

.1.2

MN

IN

MX

in1

0 out

Current parameter (output)

Current parameter (inputs)
Name of the function

out:=LIMIT_INT (MN:=0, IN:=in1, MX:=5 + var) ;

Formal parameter
420 33002204

Structured text ST
Invoking a
Function:
Variant 2

Functions are invoked using an instruction. The instruction consists of the current
parameter (variable) for the output followed by the instruction assignment ":="
followed by the name of the function followed by a list of current input parameters in
brackets. The order of the current parameters in a function invocation is significant.

Current parameter (output)

Current parameter (inputs)
Name of the function

out:=LIMIT_INT (0, in1, 5 + var) ;
33002204 421

Structured text ST
11.6 Syntax check and code generation

At a Glance

Overview This section describes the syntax check and the code generation of the structured
ST text.

What's in this
Section?

This section contains the following topics:

Topic Page

Syntax Check 423

Code generation 424
422 33002204

Structured text ST
Syntax Check

Introduction A syntax check can be performed during the program/DFB creation with Project →
Analyze section.

Syntax Check
Options

With the menu command Options → Preferences → IEC extensions... → IEC-
extensions the syntax check options can be defined.

Allow Case
Insensitive
Keywords

If the check box Allow case insensitive keywords is checked, upper and lower
case for all keywords is enabled.

Allow nested
comments

If the check box Nested comments authorized is checked, nested comments can
be entered. There are no limits to the nesting depths.

Allow Leading
Digits in
Identifiers

If the check box Allow leading digits in identifiers is checked, figures as the first
character of identifiers (i.e. variable names, step names, EFB names) are possible.
Identifiers, which consist solely of figures are, however, not authorized, they must
contain at least one letter.

Unused
Parameters
Cause Warnings

The IEC 1131-3 permits functions and Function Blocks to be called up without
calling up the assignment of all the input parameters. These unused parameters are
implicitly assigned a 0, or they retain the value from the last call up (Function Blocks
only).

If in the menu command Options → Preferences → Analysis... → Analysis the
check box Unused parameters lead to warnings is checked, a list of these unused
parameters is displayed in the message window when generating the code.

Note: The settings in this dialog are used in the project description (PRJ.DSK) and
in the Concept installations description (CONCEPT.DSK), i.e. they are valid for the
entire Concept installation.
If a project is opened, that was created using different settings (e.g. Allow nested
comments in the project and not in the actual Concept Installation), errors can
occur when opening the project.
33002204 423

Structured text ST
Code generation

At a Glance The menu command Project → Options for code generation is used to define
options for code generation.

Fastest code
(restricted
check)

If the check box Fastest Code (restricted check) is activated, a runtime-optimized
code will be generated.

This runtime optimization is achieved with integer arithmetic (e.g. "+" or "-") with
simple process commands instead of EFB calls.

Process commands are much faster than EFB calls, but they generate no error
messages, such as e.g. Arithmetic or Array overrun. This option should only be used
if it has been ensured that the program is free of arithmetic errors.

Example: Fastest
code

IF i <= max THEN (*i and max are of INT type*)
 i := i +1 ;
END_IF;

If Fastest Code (restricted check) is selected, the addition "i1 + 1" is executed with
the process command "add". The code is now faster than if EFB ADD_INT had been
called up. However, no runtime error is generated if "max" is 32767. In this case, "i"
would overrun from 32767 to -32768!

Activate loop
control

This check box activates a software watchdog for continuous loops.

If this check box is checked, with loops within IL and ST sections, it is tested whether
these loops are again exited within a certain time. The time authorized depends on
the manually defined watchdog time. The authorized time for all loops combined
constitutes 80% of the Hardware watchdog time. In this way triggering of the
hardware watchdog by endless loops is disabled. If a time consuming loop or an
endless loop is detected, processing of the affected section will stop, an entry in the
Event display will be generated and processing of the next section will begin. In the
next cycle, the segment will be re-processed until a time consuming loop or an
endless loop is detected once again, or until the segment is finished correctly.

Note: If the hardware watchdog stops the PLC when a time consuming loop or an
endless loop is detected, this option should not be activated. The hardware
watchdog itself is not switched off by this function.
424 33002204

Structured text ST
11.7 Online functions of the ST programming language

Online functions

Description The online functions available in the programming language Instruction List (IL) are
available here (see Online functions of the IL instruction list , p. 375).
33002204 425

Structured text ST
11.8 Creating a program with the structured ST text

Creating a program in structured ST text

At a Glance The following description contains an example of the creation of a program in the
programming language of structured ST text. This creation is divided into 2 main
steps:

Generating a
section

The procedure for generating a section is as follows:

Step Action

1 Generating a section (see Generating a section, p. 426)

2 Creating the logic (see Creating the logic, p. 427)

Step Action

1 Using the menu command File → New section... and enter a section name.

Note: The section name (max. 32 characters) is not case-sensitive and must be
unique throughout the project. If the name entered already exists, a warning is
given and another name must be chosen. The section name must correspond to
the IEC name conventions, otherwise an error message is displayed.

Note: In accordance with IEC1131-3, only letters are permitted as the first
character of names. Should numbers be required as the first character, however,
the menu command Options → Presettings → IEC expansions... → Enable
leading figures in identifiers .
426 33002204

Structured text ST
Creating the
logic

The procedure for creating the logic is as follows:

Step Action

1 Declare the Function Block and DFBs, which are to be used, with assistance
from VAR…END_VAR.

Example:
VAR

 RAMP_UP, RAMP_DOWN, RAMP_X : TON

 COUNT : CTU_DINT ;

END_VAR

2 Declare the variables and their initial value in the Variable Editor.

3 Create the logic of the program.

Example:
SUM : = 0 ;

FOR I = 1 TO 3 DO

 FOR J = 1 TO 2 DO

 IF FLAG = 1 THEN EXIT;

 END_IF;

 SUM := SUM + J ;

 END_FOR ;

 SUM = SUM + I ;

END_FOR

4 Save the section with the menu command Data file → Save project .
33002204 427

Structured text ST
428 33002204

33002204
12

Ladder Logic 984
At a Glance

Introduction This chapter describes the programming language Ladder Logic 984.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

12.1 General about Ladder Logic 984 431

12.2 Working with Ladder Logic 984 433

12.3 Subroutines 444

12.4 Equation Network Editor 446

12.5 LL984 Programming Modes 455
429

Ladder Logic 984
430 33002204

Ladder Logic 984
12.1 General about Ladder Logic 984

General about Ladder Logic 984

Introduction Ladder logic is displayed in a graphic window. Each window contains exactly one
ladder logic section. One or more different ladder sections can be viewed or edited
(multiple windows of the same section is not supported).

If you are adding a new section the section number is posted for your reference.

Correlation
between
Sections and
Segments

Each ladder logic section becomes tied to a PLC ladder logic segment (e.g., one
section equals one segment) by a segment number entry in the Section Properties
dialog.

One network at a time is visible in each section.

Using the
Keyboard

Editing in Concept is ordinarily done with the mouse, but it is also possible with the
keyboard (see also Short Cut Keys in the LL984-Editor, p. 825).
33002204 431

Ladder Logic 984
Project
Analyzation

Ladder logic is analyzed before the program is downloaded to the controller.

The editor permits only valid Ladder Logic to be entered in the editor, e.g.:
� Only those logic elements supported by the current PLC configuration are visible

for selection. You must configure the controller before entering logic.
� The analyzer does not allow references outside the range of the current

configuration.
� The analyzer does not allow duplicate coils unless supported by the current

configuration.
� The analyzer does not allow loadables that are not in the current configuration.
� All subroutines must exist in a single section.
� The section containing subroutines cannot be scheduled.
� All jumptosubroutine instructions must reference the same section.
� Multiple variables per reference are supported. A user preference is available to

enable or disable this feature. When multiple variables are declared for a given
reference either a warning or error is generated, depending on this preference.

Capacity and
Limitations

Capacity and Limitations:
� Editor cannot permit more sections than number of segments
� Editor cannot permit more networks than can fit in controller memory

Note: Your changes to configuration may cause the program to become
incompatible with the configuration.

Note: Contacts or coils may be entered without references. This not allowed, but
not covered by the project analyzation.
432 33002204

Ladder Logic 984
12.2 Working with Ladder Logic 984

At a Glance

Introduction This section describes how to work with Ladder Logic 984.

What's in this
Section?

This section contains the following topics:

Topic Page

Entering and Editing Logic Objects 434

Entering and Editing Variables 436

Ladder and Network Editing 439

Reference Zoom and DX Zoom 441

Search and Replace 443
33002204 433

Ladder Logic 984
Entering and Editing Logic Objects

Prerequisite
Requirements

Only those logic objects supported by the current PLC configuration are visible for
your selection. You must configure the controller before entering logic.

For Loadables that require settings in Project → Configurator → Configure →
Config. extensions, provisions must be made before inclusion in a Ladder
program.

Navigation When you are in the middle of a section, the next or previous network can be viewed
by scrolling with PgUp and PgDn keys.

When you are at the top or bottom of a section, the next or previous section can be
viewed by scrolling with PgUp and PgDn keys, if the section exists.

For instance if you are at the end of networks in the last section (and it is not section
32), you are prompted with a dialog to allow appending a new section. Each network
is compared against the database on PgUp/PgDn (in Combo-Mode).

You can go to a network within a section by using the Go to Network dialog. You
can select the first or last network within the current section, or go to a network by
entering a network name or number. A sortable list of networks (with names) is
provided.
434 33002204

Ladder Logic 984
Dialog
Interaction

Your actions for entering and editing Ladder Logic follow the standards of MS-
Windows and conventions of major MS-Windows applications. When an element is
selected with the mouse, the mouse cursor changes to a graphical picture that
represents the logic item. The application programmer places the logic item in the
edit area by clicking or pressing the Enter key.

A keyboard cursor is shown as a high lighted cell (block) within the Ladder Logic
network. For each editing mouse action there is a corresponding keyboard action
(see also Short Cut Keys in the LL984-Editor, p. 825). When the keyboard is used
to enter a logic item, there is no initial selection step the logic item is immediately
placed in the network at the keyboard cursor.

Ladder Logic sample network:

Placing Objects The entire range of programming objects is available from the Object main menu
and selected sub menu items.

Occupied nodes of equivalent height can be overwritten.

Instructions can be entered by typing the name in a dialog.

Online
Restriction

Online restrictions:
� Online deletes require user confirmation.
� Concept does not support drag/drop of programmed elements when online.

Example

1 2 3 4 5 6

1

2

3

4

5

6

7

7 8 9 10 11

000003

000002400001

10

T0.1

400002

60

UCTR

000001

000002

400003

60

UCTR
000003

400004

24

UCTR
000004

000001

000004

Column and row indicator Logic composition area

Note: When possible, Concept uses Ctrl key in place of the Modsoft Alt key (see
also Modsoft Keys with Concept Equivalents, p. 986).
33002204 435

Ladder Logic 984
Entering and Editing Variables

Introduction References of nodes in logic items can be viewed or edited by double clicking an
item in a network or by pressing the Enter key on an item that has the focus. An
Object Properties dialog is presented when you double click on a highlighted object
or by pressing the Enter key on an item that has the focus.

You can view the already created variables by clicking on the Lookup button.

You can create new variables by clicking on the Variable declarations button.
436 33002204

Ladder Logic 984
Editing
References

References of each node of the logic element (e.g., multi-node) can be edited. When
applicable, you can enter the sub-function name (from a drop-down list). If both a
constant and a reference can be entered, the # sign must be entered before a
constant beginning with 0, 1, 3, or 4. You may enter a variable name for references.

Object properties with Lookup Variables dialog:

Entry Format of
Reference
Values

When entering references, the first digit is always the reference type (e.g., 0x) and
the following digits are the reference number. You may change the format of the
displayed references by setting Options → Preferences → Common.

Example

1 2 3 4 5 6

1

2

3

4

5

6

7

7 8 9 10 11

000003

000002400001

10

T0.1

400002

60

UCTR

000001

000002

400003

60

UCTR
000003

400004

24

UCTR
000004

000001

000004

CLSD

Normally closed contact

Cancel HelpOK

Lookup... 0x 1x000001

Variable declarations...

Lookup Variables

Cancel HelpComponents...

Data Type

Elementary
Structured

OK

IN1
IN2
IN3
IN4
IN5
OUT1
OUT2
OUT3
OUT4
OUT5

ANY

Constant
Unlocated Variable

none

Filter Kind Filter Name

Located Variable

begins with
contains

Rescan

10 Entrie(s) found
33002204 437

Ladder Logic 984
Status Bar The variable name (if applicable) is shown on the display status line, for the element
in focus. When online, the value of the reference is also shown. The initial display
format of the reference value depends on the instruction in the program. You can
change the display format using the following keys in combination to define the data
precision and then format.

Table of display formats:

Reference
Offsetting

Program references can be offset using Edit → Offset References. Multiple
references can be offset in the same step (while offline). Sections/networks that are
being offset are selectable. You are asked to put in the first and last reference to be
affected and put in the number you want the offset to be.

Precision Format

L (32bit) D (signed decimal)

U (unsigned)

A (ascii)

H (hex)

S (16bit) D (signed decimal)

U (unsigned)

A (ascii)

H (hex)
438 33002204

Ladder Logic 984
Ladder and Network Editing

Introduction Ladder and network edit functions are available from the main menus Edit and
Networks.

Undo Delete The Edit → Undo delete function, is an ofline mode function that allows up to the
most current 5 deletes to be undone. The Undo delete is provided for each ladder
logic section and includes element and network cut/delete events.

Insert, Append or Reorder network operations cause a reset of the delete-save
area therby assuring the network numbers are not contaminated.

Select/De-select
All, Cut, Copy
and Paste

Select all, Cut, Copy, and Paste operations on individual language elements occur
within a single network (at a time). Your can select-all or unselect-all elements in a
single network. You can also select, cut, copy, and paste language elements within
and between ladder logic networks or sections.

In an online paste operation, the item being pasted is done in increments of scans
until complete.

Selecting
Elements

You cannot select multiple language elements (e.g., accumulate selections) across
networks or sections.

Setting focus to an element is done by moving the cursor (either with mouse or arrow
key) to the element.

Selection of elements is done by clicking or pressing the Spacebar key on the
element which has the focus.

Multiple elements can be selected by using mouse-rubber-band actions. Multiple
elements can also be selected by holding down the Shift key and then clicking on
the elements or pressing the Spacebar key on the elements.

An entire row or column can be selected by clicking on the rung or column header
in the network.

The mouse provides a finer level of selection than the keyboard. If two or more
elements appear in a cell (e.g., both a vertical short and a contact), pressing the
Spacebar key selects all items in that cell. Clicking the mouse selects the element
closest to the mouse pointer.

Note: Menu items in diminished brightness are not selectable given the current
configuration, status, etc,.
33002204 439

Ladder Logic 984
Open Row A new row is opened at the current cursor position. This command is executed only
if there is enough free space (i.e., the last row is empty). The rest of the network is
shifted down accordingly. Function boxes and other objects with a height of more
than one node are not split by this command.

Open Column If the rightmost node column is free, the rest of the network is shifted right, and an
empty column is opened at the current cursor position.

Close Row If the node row on which the cursor is positioned is empty, all node elements below
are shifted up one row, and an empty bottom row remains.

Close Column If the node column on which the cursor is positioned is empty, all node elements to
the right are shifted left one column and an empty right column remains.

Network By using the Networks main menu and it’s subcommands, you can insert (before)
or append (after) a single empty network or delete one or more networks.

In addition, within a single section, you can cut/copy a network then you can copy/
paste networks in any section. You are provided with a list of networks to consider
for the cut/copy operation

Reorder
Networks

Network execution reordering is an offline function. You may change the execution
order of networks within a single section. Networks are solved in the order they
appear in the section.

The execution order of networks is changed by using the Network Execution Order
dialog. i.e. select Network → Reorder....

Network
Comments

A section description can be included. Each network can be individually commented
using network comments and online comments.

A network name can be entered in the Network Comment dialog.
440 33002204

Ladder Logic 984
Reference Zoom and DX Zoom

Introduction Concept offers you two different zoom types:
� the Reference Zoom
� the DX Zoom

Reference Zoom Some programming elements allow parameters to be set which in effect customize
a network implementation for this specific element. Such features as ranges and
limits etc., are input using this zoom edit capability.

Information on individual references can be viewed or edited.

The Reference Zoom dialog shows the following information about a reference:
� State-ram value
� The drop/rack/slot if the reference is in I/O map
� If reference is 0x or 1x, then the disable/enable state is shown

The initial display format of 3x and 4x reference values depends on the instruction
in the program. The display format can be changed. The state ram value or disable/
enable state (if applicable) can also be changed. Constants cannot be zoomed. You
cannot zoom on variables without a reference. Reference Zoom dialogs can be used
for 4x references and for 0x references that are disabled.
33002204 441

Ladder Logic 984
DX Zoom The DX Zoom editor allows you to edit registers for DX functions. These registers
used by the DX function also have text descriptions associated with them to aid with
DX programming. There is both keyboard and mouse access to DX zoom from the
Ladder Logic editor.

The DX Zoom dialog allows you to edit registers for given DX functions. The DX
zoom screen contains text for each register, bit, or group of bits.

The allowed data types are:

The allowed complex data types are:

Absolute addressing is the only addressing method allowed. There is no support for
indirect addressing

In addition to data entry, DX zoom has the capability to display textual information
associated with a particular register. Each register entry will have an associated
descriptor as well as context sensitive help.

Data Type Length

Unsigned Integer 16 bit

Signed Integer 16 bit

Unsigned Long Integer 32 bit

Signed Long Integer 32 bit

float 32 bit

bit (flag) 1 bit

bitfield 1-16 bits

Complex Data Types Length

equation 1-16 bits

ASCII String up to 80 characters
442 33002204

Ladder Logic 984
Search and Replace

Trace The Online → Trace function finds coils from 0x references in the program. You can
trace a coil by first setting focus to a 0x reference and then running the trace
function. The result of trace is to position the network with the found coil on the edit
area. After a successful trace, with Online → ReTrace you can go back to the initial
0x reference.

Online Search A separate dialog is available for Project → Search in direct mode. The Online
Search dialog. On each find, the choice to search previous or next is provided.
Search can be canceled at any time.

There is no support for searching variable names if in Ladder Logic direct mode.

Replace
References

Search and replace of references occur throughout an entire program. You can
select which sections/networks are being searched.

The Edit → Replace References dialog is modal. Request may be prompted for
each individual replace, or request to replace all with no prompting. Replaced
references are listed in the Project → Search → Search History list.

You may exclude DX functions with discrete references from the search. DX
functions require 0x and 1x references to be on a 16 bit boundary.
33002204 443

Ladder Logic 984
12.3 Subroutines

Subroutines

Example The example below shows a series of three user logic networks, the last of which is
used for an up-counting subroutine. Segment 32 has been removed from the order-
of-solve table in the segment scheduler.

Scheduled Logic Flow

Segment 001
Network 00001

Network 00002

Segment 002
Network 00001

00001

00001
JSR10001

40256

40256

00001
ADD

40256

40256

40256
SUB

40256

40999

00010
SUB

00001

00001
JSR

00001
RET

00001
LAB

Segment 032
Network 00001

Subroutine Segment
444 33002204

Ladder Logic 984
Description of
Example

Description of example:

Stage Description

1 When input 10001 to the JSR block in network 2 of segment 1 transitions from
OFF to ON, the logic scan jumps to subroutine #1 in network 1 of segment 32.
Result: The subroutine will internally loop on itself ten times, counted by the
ADD block.

2 The first nine loops end with the JSR block in the subroutine (network 1 of
segment 32) sending the scan back to the LAB block.

3 Upon completion of the tenth loop, the RET block sends the logic scan back to
the scheduled logic at the JSR node in network 2 of segment 1.
33002204 445

Ladder Logic 984
12.4 Equation Network Editor

At a Glance

Introduction This section describes the LL984 equation network editor.

What's in this
Section?

This section contains the following topics:

Topic Page

Introduction 447

Equation Editing 449

Syntax and Semantics 451
446 33002204

Ladder Logic 984
Introduction

Overview The equation network is a combination of both Ladder Logic and an algebraic
equation. This network type allows a control designer to incorporate an algebraic
equation into a Ladder Logic program The Equation Network Editor dialog has no
row/column numbers since they have no significance. The grid display option is not
available for the equation network because the row/column concept does not apply
to this new network type. You have the ability, using Ladder Logic notation, to
indicate when the equation will be solved.

Equation network is a special type of Ladder Logic network that allows you to specify
the value of a result register in algebraic notation. If your PLC has an floating point
processor, equation network will take advantage of this feature for faster processing.
It uses a full Ladder Logic network to compose the equation, with a contact or
horizontal short as the enabling input and up to five output coils to describe the state
of the result.

Available Menu
Items

The Networks main menu includes two submenu entries to support equation
networks: Insert Equation and Append Equation. If you page through the
networks and reach the start/end of the section, you have the opportunity to insert/
append a new equation network, in addition to the other choices available (insert/
append ladder network, cancel, etc.).
33002204 447

Ladder Logic 984
Representation The Ladder Logic network display changes to accommodate an initialized equation
network. The row and column numbers are removed and also the grid lines are
removed if they are currently being displayed.

The initial display is replaced by the figure below when you double click on the
default equation body.

Equation Network Editor

Cancel HelpOK Variables

Equation Enable

: =

< 0

= 0

> 0

!

Equation Result
448 33002204

Ladder Logic 984
Equation Editing

Equation Entries In the first column of the network, row 1 column 1, the legal equation enable entries
are:
� Normally open contact (-| |-)

When a normally open contact is entered as the first node of the network the
equation is solved when the contact’s referenced coil or input is ON.

� Normally closed contact (-|/|-)
When a normally closed contact is entered as the first node of the network the
equation is solved when the contact’s referenced coil is OFF.

� Horizontal short (-----)
When a horizontal short is entered as the first node of the network the equation
to be solved on every scan.
The horizontal short is used for display purposes only and is not sent to the PLC
as part of the network; the absence of an enabling contact node in the network
sent to the PLC indicates that the network should always be solved.

� Horizontal open (- ---)
When a horizontal open is entered as the first node of the network the execution
of the equation network is prevented.

Equation Results Equation network can produce five possible outputs from the top five rows of the
network to describe the result of the equation. You choose the outputs you want to
use by assigning 0x reference numbers to them.

The outputs are displayed as coils in the last column of the equation network.

The row in which the output coils are placed determines their meanings:
� Done without error (-(√))

When the equation passes power to the output from the top row, the equation has
completed successfully without an error.

� Result < 0 (-(< 0))
When the equation passes power to the output from the second row, the equation
has completed successfully and the result is less than zero.

� Result = 0 (-(= 0))
When the equation passes power to the output from the third row, the equation
has completed successfully and the result is equal to zero.

� Result > 0 (-(> 0))
When the equation passes power to the output from the fourth row, the equation
has completed successfully and the result is greater than zero.

� Done with error (-(!))
When the equation passes power to the output from the fifth row, the data in the
equation has caused a calculation error.
33002204 449

Ladder Logic 984
Cut, Copy and
Paste

Text may be pasted into the edit box of an Equation Network Editor dialog. These
are standard Windows text operations, and are the only cut/copy/paste operations
allowed within equation networks. No validation is performed at the time of a cut or
paste; the equation is validated when the user decides to terminate the dialog with
the OK button.

You can cut/copy/paste equation networks using Network → Cut/Copy... in which
a netwotk is manipulated in its entirety.

When a network is cut or copied it may be pasted as a new equation network. In this
case, "paste" means "insert new network". This is the same operation as is used with
ladder networks.

Validity Check When OK is selected in the Equation Network Editor dialog, the equation is
checked for validity. If an error is detected the cursor is placed as near to the error
as possible and an error message is displayed.
450 33002204

Ladder Logic 984
Syntax and Semantics

Operators The operators are listed below in order of precedence highest to lowest. If required
competing operators are evaluated left to right.

Operator Group Operators Description

Unary - Negation

~ Ones complement

Exponentiation ** Exponentiation

Multiply/divide * Multiply

/ Divide

Add/subtract + Addition

- Subtraction

Bitwise & And

- Or

< < Left shift

> > Right shift

^ Xor

Relations < Less than

< = Less than or equal

= Equal

< > Not equal

= > Greater than or equal

> Greater than

Conditional ?: Test
33002204 451

Ladder Logic 984
Functions Additionally the following functions are recognized (and predefined) in an equation:

Equation Syntax Equation syntax conventions:

Function Description

ABS Absolute value

ARCCOS Arc Cosine

ARCSIN Arc Sine

ARCTAN Arc Tangent

COS Cosine of Radians

COSD Cosine of Degrees

EXPE Exponential function, e** argument

FIX Convert float to integer, presumes floating point argument

FLOAT Convert Integer to Floating point

LN Natural Logarithm (base e)

LOG Common Loagarithm (base 10)

SIN Sine of Radians

SIND Sine of Degrees

SQRT Square Root

TAN Tangent of Radians

TAND Rangent of Degrees

Command Description

[abc] Any one of a b c

[a-z] Any characters in the range a trough z

expr* Zero or more expr

expr+ One or more expr
452 33002204

Ladder Logic 984
Lexical Classes Table of lexical classes

Constants Constants consist of:
� binary_const 2# bit binary_const_body
� decimal_const digit decimal_const_body
� octal_const 8# octal_digit octal_const_body
� hex_const 16# hex_digit hex_const_body
� float_const mantissa exponent

letter a-z A-Z

bit 0-1

octal_digit 0-7

digit 0-9

hex_digit 0-9 a-f A-F

letter_or_digit letter | digit

identifier letter letter_or_digit*

assignment_op :=

relational_op > < >= <= = <>

bitwise_op & | ^ >> <<

add_sub_op + -

Mul_div_op * /

exp_op **

unary_op - ~

optional_sign + - /*nothing*/
33002204 453

Ladder Logic 984
Register
References

reg_rvalue consists of:

reg_lvalue consists of:

Note Because of Concept IEC standards, placement of lexical identifiers differ between
Modsoft and Concept. However, an existing Modsoft Equation is properly
transformed using the Modsoft program converter.

For example a Modsoft equation

400100F := 400001UL + 400002U + 400003L + #23

becomes a Concept equation

%F400100 := %UL400001 + %U400002 + %L400003 +23

discrete_rvalue 0 digit+ 1 digit+

int_reg_rvalue 3 digit+ 4 digit+ 6 digit+

uint_reg_rvalue U3 digit+ U4 digit+ U6 digit+

long_reg_rvalue L3 digit+ L4 digit+ L6 digit+

ulong_reg_rvalue UL3 digit+ UL4 digit+ UL6 digit+

float_reg_rvalue F3 digit+ F4 digit+ F6 dgit+

int_reg_lvalue 4 digit+ 6 digit+

uint_reg_lvalue U4 digit+ U6 digit+

long_reg_lvalue L4 digit+ L6 digit+

ulong_reg_lvalue UL4 digit+ UL6 digit+

float_reg_lvalue F4 digit+ F6 dgit+
454 33002204

Ladder Logic 984
12.5 LL984 Programming Modes

LL984 Programming Modes

Direct
Programming

There are two situations that determine how direct mode ladder editing is applied:
� The first is where there is no open project and you are connected to a PLC that

has a valid program in it. When you select the command Direct-mode 984LL
Editor the first program in the first segment is displayed. You can see the direct
mode status at the right side of the status bar and the network window is labled
984LL Direct.

� The second case occurs when you have a project open and you are connected
to the PLC (but not EQUAL). When you select Direct-mode 984LL Editor in this
case a dialog is displayed listing segments and the number of networks contained
in each. Click on the segment you want click on OK and the Network edit window
is displayed with a window labeled 984LL Direct. If you have an orignal edit
window it will remain on the display.

Combination
Mode

Combination programming occurs when the programming panel is online. Valid
program changes are immediately written to both the controller and the program
database simultaneously.
33002204 455

Ladder Logic 984
456 33002204

33002204
13

DFBs (Derived Function Blocks)
At a Glance

Overview This Chapter describes the procedure for creating DFBs (Derived Function Blocks)
with help from Concept DFB.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

13.1 DFBs (Derived Function Blocks) 459

13.2 Programming and calling up a DFB 480
457

DFBs (Derived Function Blocks)
458 33002204

DFBs (Derived Function Blocks)
13.1 DFBs (Derived Function Blocks)

At a Glance

Overview This section provides an overview on creating and applying DFBs (Derived Function
Blocks).

What's in this
Section?

This section contains the following topics:

Topic Page

General information about DFBs (Derived Function Blocks) 460

Global / Local DFBs 462

Use of variables in DFBs 464

Combined Input/Output Variables (VARINOUT Variables) 466

Global Variables 474

Creating Context Sensitive Help (Online Help) for DFBs 478
33002204 459

DFBs (Derived Function Blocks)
General information about DFBs (Derived Function Blocks)

At a Glance DFBs are created with the help of the Concept DFB software.

DFBs (Derived Function Blocks) can be used for setting both the structure and the
hierarchy of a program.

In programming terms, a DFB represents a subroutine.

Meaning:
� Delivery/transfer of defined values to/from the subroutine
� Any complex program
� Nesting of one or more DFBs in a DFB
� Multiple DFB call up in the whole program, where the program code is bound only

once during the whole program
� DFB specific local variables
� Initial value for variables
� freely definable Interface

Programming
languages

DFBs can be created in the Function Block language (FBD), ladder diagram (LD),
instruction list (IL) and structured text (ST) programming languages.

Structure of a
DFB

A DFB firstly provides an empty space, which contains a manually defined input/
output and any manually programmed logic. The hierarchic structure of this logic
corresponds to a project in Concept which consists of one or more sections. These
sections contain the actual logic.

Internal structure of the DFB in the FBD editor:

Processing
sequence

The processing sequence of the logic, the programming rules and the usable FFBs
and DFBs correspond overall to those of the FBD, LD, IL and/or ST programming.

ADD_DINT

.6.5

SUB_DINT
.6.7

MUL_DINT

.6.6
IN1
IN2

IN3
IN4

OUT
460 33002204

DFBs (Derived Function Blocks)
Nesting It is possible to call up one or more already existing DFBs in a DFB, where the called
up DFBs themselves can call up one or more DFBs. A DFB cannot however contain
itself. A nesting depth of 5 should not be exceeded. The exact border depends,
among other factors, upon parameterization (e.g. the number of DFB input/output
variables) of the CPU in use and its configuration.

Context help Personalized context-sensitive help (online help) can be created for DFBs (see
Creating Context Sensitive Help (Online Help) for DFBs, p. 478).

Calling up a DFB DFBs are visually denoted in the FBD and LD editor window by double vertical lines
on the DFB border. Using the command button Despeckle… in the properties dialog
box of the DFB a document window can be opened, in which the programmed logic
of the DFB can be viewed (even when it was created with IL or ST). This document
window has a gray background, which denotes that the DFB in this document
window cannot be edited.

DFBs are treated as Function Blocks after they are called into Concept.

Call up of the DFB in the FBD editor:

Archiving and
Documentation

The archiving and documentation of a DFB is the same as with projects (see
Documentation and Archiving, p. 707).

Note: If nested DFBs are used, the whole nested DFB hierarchy is not checked
consistently in the DFB editor, but only the DFB on the next level. This means that,
for example, with a DFB with 3 or 4 levels, the deep nested DFBs can be altered
(i.e. Pin assignment), without this being apparent. In Concept, an error is not
reported until project analysis.

Note: NEVER use diagnostic EFBs (diagnostic library) in DFBs.

IN1

IN2

IN3 OUT

SKOE

FBI_3_7

IN4
33002204 461

DFBs (Derived Function Blocks)
Global / Local DFBs

Description Global and local DFBs differ in the locality of their directory hierarchy.

Depending on the directory or subdirectory in which the DFB is stored, it can be
called up globally, i.e. within all the projects created under Concept, or locally, in a
specific project.

In the Defining the Storage of Global DFBs during Upload, p. 1095 you can ensure
that during the IEC upload process a GLB directory containing the global DFBs is
created in the project directory. By doing this, the existing global DFBs in the
Concept → DFB will not be overwritten and therefore it will not have any effect on
other projects.

Directory structure without uploaded project:

Concept

DFB

...

C:\\

PRJ

DFB

...

Installation drive

Concept directory

Global DFB directory

Project directory

Local DFB directory
462 33002204

DFBs (Derived Function Blocks)
Directory structure according to INI settings ([Upload]: PreserveGlobalDFBs=1)
for uploaded projects:

If a local and a global DFB have the same name, the local DFB is given priority.

Note: The length of the DOS path name in which the DFBs are stored is limited to
29 characters. Care should be taken that the DFB directory does not exceed this
limit.

Concept

DFB

...

C:\\

PRJ

DFB

...

Installation drive

Concept directory

Global DFB directory

Project directory

Local DFB directory

GLB Global DFB directory for
uploaded project
33002204 463

DFBs (Derived Function Blocks)
Use of variables in DFBs

Introduction When programming DFBs, two forms of variables are distinguished:
� Internal variables
� Formal parameters (Input/Output variables)

Internal variables Internal variables are variables that are only used within the logic of DFBs. These
variables can only be altered in Concept DFB itself. This alteration is therefore valid
for all instances of this DFB.

The following are permitted as types of variables:
� Unlocated variables,
� Unlocated Multi-element variables,
� Constant variables
� Literals and
� Located variables.

These variables are declared in the Variable editor (see Global / Local DFBs,
p. 462).

Note: Located variables can be used if in the IEC Extentions dialog box you
activate the Allow located variables in DFBs option (see also section Global
Variables, p. 474).
464 33002204

DFBs (Derived Function Blocks)
Formal
parameters

Input and output variables are required to transfer values to or from a DFB. These
types of variables are called formal parameters. These variables are taken from the
DFB and displayed as input/output when calling up the DFB.

In the Variable editor (see Global / Local DFBs, p. 462) define the formal parameter
names (the names of the inputs/outputs), the type of data and the position of the
inputs/outputs (for the FBD /LD editor) on the DFB.

A maximum of 32 input and 32 output variables are possible. The width of the DFB
symbol is automatically matched to the length of the name of the inputs/outputs.
Input and output variables are always Unlocated variables.

An initial value can also be defined for input variables. Input variables, i.e. inputs,
are always shown to the left of the DFB in the FBD/LD editor. Output variables, i.e.
outputs, are always shown to the right of the DFB.

A special form of input/output variables are the VARINOUT variables (see
Combined Input/Output Variables (VARINOUT Variables), p. 466).

Transfer of
values during the
program runtime

During program runtime, the value of the current parameters in the DFB program are
passed and redistributed via the formal parameters. The value of these formal
parameters are determined by the value of the current parameters, which have been
linked with the corresponding DFB input/output. The current parameters can be
direct addresses, located variables, unlocated variables, located multi-element
variables, unlocated multi-element variables, elements from multi-element
variables, constants or literals.

Through this, the same DFB type can be called up several times and each copy of
the DFB assigned with individual parameters.

Exchanging
positions

If all 32 possible input or output variables are occupied when creating the DFB and
the exchange of the positions of 2 variables is required, a variable can be placed in
position 33 in the meantime. This enables the alteration of the variable positions.
However, saving a DFB with 33 input or output variables is not possible. Position 33
only serves as an auxiliary position when editing.
33002204 465

DFBs (Derived Function Blocks)
Combined Input/Output Variables (VARINOUT Variables)

Introduction Combined input/output variables are a special form of input/output variables. These
are also called VARINOUT variables.

Application
Purpose

DFBs are often used to read a variable on input (input variables), to process it and
to restate the altered values of the same variable (output variables). If the variables
are structured variables and elements unaffected by the processing are also to be
output again at the output, it is necessary to copy the complete variable within the
DFB from the input to the output. This is also necessary when only a single element
of a structured variable is processed in the DFB. To save memory and shorten the
execution time, it is sensible to use VARINOUT variables in this case. This variable
type can (must) be used simultaneously at DFB inputs and the associated DFB
outputs.

Creating a
VARINOUT
variable in DFB

The following conditions must be noted when creating a VARINOUT variable:
� Like all input/output variables, VARINOUT variables are created in the Variable

Editor.
� VARINOUT variables are declared twice. Once as input variables and once as

output variables.
� The same formal parameter names must be used in both declarations.
� The same data types must be used in both declarations.
� The same pin positions must be used in both declarations.
� The input variable is declared first, and then the output variable.
� After confirming the declaration with OK, it is no longer possible to modify the

input variable.

Specific
Features during
Creation

The following special features are to be noted when creating DFBs with VARINOUT
inputs/outputs.
� If the DFB VARINOUT input has been assigned an initial value, this is not used,

as it is imperative that the input is switched on.
466 33002204

DFBs (Derived Function Blocks)
Example DFB logic:

Declaration of inputs:

yyyIN1

zzz

aaa

XXX

IN2
OUT1

gggOUT1
mmm

jjj

FFF

IO1
OUT2

kkk IO1 (* IO1 = VARINOUT variable *)

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type PositionDef.Value Used

IN1 INT 1 1

IN2 DINT 3 1

Search/Paste

Search/Replace

1

2

4

IO1 MYTYPE 2 23

5

6

InputsVariables Outputs
33002204 467

DFBs (Derived Function Blocks)
Declaration of outputs:

Use of the DFB in
FBD/LD

The DFB is invoked and used in FBD/LD editor (see also Calling up a DFB in the
FBD Function Block dialog, p. 494 and Calling up a DFB in Ladder Diagram LD,
p. 496) just like any other DFB. The inputs/outputs of type VARINOUT are
characterized by a dotted line.

Use of the DFB in the FBD editor:

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type Position Used

OUT REAL 1 1

OUT2 REAL 3 1

Search/Paste

Search/Replace

1

2

4

IO1 MYTYPE 2 23

5

6

InputsVariables Outputs

DFBX

V4OUT1

V3OUT2

V5IO1

IN1V1
IN2V6
IO1V5
468 33002204

DFBs (Derived Function Blocks)
Specific features
in usage

The following special features are to be noted when using DFBs with VARINOUT
inputs/outputs.
� It is essential that VARINOUT inputs/outputs are linked. Otherwise an error

message appears during the section analysis.
� The same variables/variable components must be attached at the VARINOUT

input and the VARINOUT output.
� No graphical links can be attached to VARINOUT inputs/outputs.
� No literals or constants can be attached to VARINOUT inputs/outputs.
� No Boolean variables can be attached to VARINOUT inputs/outputs, because

this leads to problems in the code generation.
� No negations can be used at VARINOUT inputs/outputs.
� If a DFB with VARINOUT inputs/outputs is used within another DFB (nested

DFBs), the VARINOUT inputs/outputs of the inner DFB can be linked to those of
the outer DFB.
33002204 469

DFBs (Derived Function Blocks)
Use of the DFB in
ST

The DFB is invoked and used in ST Editor (see also Function Block/DFB Invocation,
p. 416) like any other DFB.

Use of the DFB in the ST Editor:

(* Function Block declaration *)
VAR

Instance_Name : DFBX;
END_VAR

(* Block invocation *)
Instance_Name (IN1 := V1,

IO1 := V5,
IN2 := V2);

(* Assignments *)
V4 := Instance_Name.OUT1;
V3 := Instance_Name.OUT3;

The following special features are to be noted when using DFBs with VARINOUT
inputs/outputs.
� It is essential that VARINOUT inputs be assigned a value on DFB invocation.

Otherwise an error message will appear during the section analysis i.e. the
following block invocation is not allowed, because the assignment of a value at
the VARINOUT input "V5" is missing:

Instance_Name (IN1 := V1,
IN2 := V2);

� VARINOUT outputs are not to be assigned a value. Otherwise an error message
will appear during the section analysis i.e. the following output assignment is not
allowed, because a value has been assigned at the VARINOUT output:

V5 := Instance_Name.IO1;
� No literals or constants are to be assigned to VARINOUT inputs.
� No Boolean variables can be attached to VARINOUT inputs/outputs, because

this leads to problems in the code generation.
� If a DFB with VARINOUT inputs/outputs is used within another DFB (nested

DFBs), the VARINOUT inputs/outputs of the inner DFB can be linked to those of
the outer DFB.
470 33002204

DFBs (Derived Function Blocks)
Use of the DFB in
IL

The DFB is invoked and used in IL editor (see also Use of Function Blocks and
DFBs, p. 361) like any other DFB.

Use of the DFB in the IL editor:

(* Function Block declaration *)
VAR

Instance_Name : DFBX;
END_VAR

(* Block invocation *)
CAL Instance_Name (IN1 := V1, IO1 := V5, IN2 := V2)

(* Assignments *)
LD Instance_Name.OUT1
ST V4
LD Instance_Name.OUT3
ST V3

The following special features are to be noted when using DFBs with VARINOUT
inputs/outputs.
� It is essential that VARINOUT inputs be assigned a value on DFB invocation.

Otherwise an error message will appear during the section analysis i.e. the
following block invocation is not allowed, because the assignment of a value at
the VARINOUT input "V5" is missing:

CAL Instance_Name (IN1 := V1, IN2 := V2)
� VARINOUT outputs are not to be assigned a value. Otherwise an error message

will appear during the section analysis i.e. the following output assignments are
not allowed, because a value has been assigned at the VARINOUT output:

LD Instance_Name.IO1
ST V5

� No literals or constants are to be assigned to VARINOUT inputs.
� No Boolean variables can be attached to VARINOUT inputs/outputs, because

this leads to problems in the code generation.
� If a DFB with VARINOUT inputs/outputs is used within another DFB (nested

DFBs), the VARINOUT inputs/outputs of the inner DFB can be linked to those of
the outer DFB.
33002204 471

DFBs (Derived Function Blocks)
Special features
when modifying

There are 3 general possibilities for modifying VARINOUT variables:
� Modify existing VARINOUT variables:

� Rename the variables
� Change the data type
� Change the pin position

� Two existing variables can be joined in one VARINOUT variable

� Split a VARINOUT variable into two variables

Change existing
VARINOUT
variables

To change (rename, change data type, change pin position) existing VARINOUT
variables, proceed as follows:

Join variables to
VARINOUT
variable

To join two variables to a VARINOUT variable, perform the following steps:

Step Action

1 Open the Variable Editor (F8).

2 Select the Outputs option.

3 Implement the required changes.
Response: The changes are automatically transferred to the input variable.

4 Confirm the changes with OK.

Step Action

1 Open the Variable Editor (F8).

2 Select the Inputs option.

3 Create a new input variable (e.g. INOUT1).

4 Select the Outputs option.

5 Create a new output variable with the same name (e.g. INOUT1), data type and
pin position as the input variable.

6 Confirm the changes with OK.

7 Replace all uses of the input and output variable with the VARINOUT variable in
your program.

8 Open the Variable Editor (F8) and delete the now redundant input and output
variable.
472 33002204

DFBs (Derived Function Blocks)
Splitting
VARINOUT
variable

To split a VARINOUT variable into two variables, proceed as follows:

Step Action

1 Open the Variable Editor (F8).

2 Select the Inputs option.

3 Create a new input variable (e.g. IN1).

4 Select the Outputs option.

5 Create a new output variable (e.g. OUT1).

6 Confirm the changes with OK.

7 Replace all usages of the VARINOUT variable with the input and output
variables in your program.

8 Open the Variable Editor (F8) and delete the now redundant VARINOUT
variable.
33002204 473

DFBs (Derived Function Blocks)
Global Variables

Introduction Global variables are located variables which are declared in Concept-DFB and
Concept.

Global variables in DFBs can only be declared if the Allow Located Variables in
DFBs check box is activated in the IEC Extensions dialog box. Then the the
Address column is available in the DFB Variable Editor, i.e. located variables can
now be declared.

Global validity of the variables is defined as soon as the DFB is used in the project
and the respective located variables are declared in the Concept Variable Editor.
When declaring the variables, make sure that the same name, address and data
type is used as in the DFB Variable Editor. All reference ranges can be used (0x, 1x,
3x and 4x).

Declaration errors are found and error messages are given when the program is
analyzed (Project → Analyze program). If global validity is recognized, the global
variables are shown with a gray background in the Concept Variable Editor and are
write protected in Concept. That means global variables canonly be changed in the
DFB Variable Editor. Then the declaration for the changed variables must be
updated in the Concept Variable Editor to restore global validity.

Note: If inconsistencies are found between the declaration of global variables in
the DFB and the program when analyzing the program (e.g. the address is
declared differently), the program cannot be downloaded to the PLC.
474 33002204

DFBs (Derived Function Blocks)
Execution in
Concept-DFB

To create global variables in DFB, carry out the following steps in Concept-DFB:

Step Action

1 Close Concept and Start Concept-DFB.

2 Select Options → Preferences → IEC Extensions..., and activate the check
box Allow Located Variables in DFBs.

3 Create a DFB (see section Creating the DFB, p. 482).

4 Create the logic (example: see section Creating the Logic in FBD Function Block
Language, p. 483).

5 Select Project → Variable declarations. To declare the located variables,
activate the Variables option button.
Note: All reference ranges can be used (0x, 1x, 3x and 4x) for addressing.

6 Now re-activate the selection mode with Objects → Select mode and double-
click on one of the unconnected inputs.
Result: The Connect FFB dialog box is opened, where you can assign a current
parameter to the input.

7 In Connect with, activate the Variable option button.

8 Open the variable editor using he Variable declaration... command button.
Then select the unlocated variable (STOP) and click OK.
Result: The selected variable is transferred to the text box in the Connect FFB
dialog box.

Type

Variable Editor

Variables Constants Inputs Outputs

Search/Paste

Search/Replace

OK Cancel Help

Variable name Data type Addres InitValue Used

Stop DINT 300001 11
2
3

33002204 475

DFBs (Derived Function Blocks)
9 With OK, the variable (STOP) is assigned to the selected input on the module.

10 Save the DFB using the menu command File → Save.

Step Action

ADD_DINT

VALUE1

.6.5 (1)

MUL_DINT

RESULT

.6.6 (3)VALUE2

SUB_DINT

VALUE3

.6.7 (2)

VALUE4

STOP
476 33002204

DFBs (Derived Function Blocks)
Execution in
Concept

To create global variables in DFB, carry out the following steps in Concept:

Step Action

1 Close the Concept DFB and Start Concept.

2 Call the DFB (example: see section Calling up a DFB in the FBD Function Block
dialog, p. 494).

3 Select Project → Variable declarations.... To declare the located variables
(STOP), activate the Variables option button.

4 Transfer the variable names, data type and the address of the located variables,
exactly as they were declared in the Concept-DFB variable editor.

5 Analzye the program using Project → Analyze program.
Result: The Messages window is opened and shows that the global variable
"STOP" was found in the DFB.
The global validity of the variable is recognized, therefore it is shown with a gray
background in the Concept Variable Editor.

6 In the DFB Editor, you can open the Function Block dialog box by double-
clicking on the DFB. Using the Refine... command button, open a document
window with the inner logic of the DFB (the global variable STOP is also shown
here).

TEST_DFB

RESULT

VALUE1

VALUE2

VALUE3

VALUE4

FBI_1_1(1)

300001nanu

Type

Variable Editor

Variables Constants Inputs Outputs

Search/Paste

Search/Replace

OK Cancel Help

Variable name Data type Addres InitValue Used

REAL 11
2
3

Stop 300001
33002204 477

DFBs (Derived Function Blocks)
Creating Context Sensitive Help (Online Help) for DFBs

Introduction In Concept, help is provided for each EFB, which can be invoked according to the
context (the Help on Type command key in the EFBs properties dialog). There are
of course no corresponding help texts in Concept for the DFBs created by you.

You can, however, create your own help for each DFB, which can be invoked in
Concept with Help on Type.

File Format: You can create your help in the following file formats:
� .chm (Microsoft Windows compiled HTML help file)
� .doc (Microsoft Word format)
� .htm (Hypertext Markup Language)
� .hlp (Microsoft Windows help file (16- or 32-Bit Format))
� .pdf (Adobe Portable Document Format
� .rtf (Microsoft Rich Text Format)
� .txt (Plain ASCII Text-Format)

Name The name of the help file must be exactly the same as the name of the DFB (e.g.
SKOE.ext)

The only exceptions are standardized DFB names (e.g. SKOE_BOOL,
SKOE_REAL etc.) In these cases the help file name is the DFB name without the
datatype extension (e.g. DFB name) SKOE_BOOL has the help file SKOE.ext).

Directory The help file can be stored in the following directories:
� Concept directory
� Concept Help directory (if defined in the file Concept.ini, see readme)
� Global DFB directory
� Local DFB directory
478 33002204

DFBs (Derived Function Blocks)
Invoking the Help
File

Concept carries out the following procedure to invoke the help file:

Phase Description

1 Search for the help file DFBName.ext in the local DFB-directory.
The help file is searched for in the following sequence:
� .hlp
� .chm
� .htm
� .rtf
� .doc
� .txt
� .pdf

Result: If the search result is positive the help file will be displayed, otherwise it
will continue with phase 2.

2 Search for the help file DFBName.ext in the global DFB-directory.
For the order, see phase 1.

Result: If the search result is positive the help file will be displayed, otherwise it
will continue with phase 3.

3 Search for the help file DFBName.ext in the Concept-directory or Concept-Help
directory.
For the order, see phase 1.

Result: If the search result is positive the help file will be displayed, otherwise it
will continue with phase 4.

4 Display of the comment created in Concept DFB with Project → Properties.
33002204 479

DFBs (Derived Function Blocks)
13.2 Programming and calling up a DFB

At a Glance

Overview This section describes programming and calling up a DFB.

What's in this
Section?

This section contains the following topics:

Topic Page

At a Glance 481

Creating the DFB 482

Creating the Logic in FBD Function Block Language 483

Creating the Logic in LD Ladder Diagram 486

Creating the Logic in IL Instruction List 490

Creating the Logic in ST Structured Text 492

Calling up a DFB in the FBD Function Block dialog 494

Calling up a DFB in Ladder Diagram LD 496

Calling up a DFB in the IL instruction list 498

Calling up a DFB in structured text ST 499
480 33002204

DFBs (Derived Function Blocks)
At a Glance

At a Glance Programming and calling up a DFB is divided into 3 main steps:

Step Action

1 Occupying the DFB (see Creating the DFB, p. 482)

2 Creating the logic in:
� Function Block language (FBD) (see Creating the Logic in FBD Function

Block Language, p. 483)
� Ladder diagram (LD) (see Creating the Logic in LD Ladder Diagram, p. 486)
� Instruction list (IL) (see Creating the Logic in IL Instruction List, p. 490)
� Structured text (ST) (see Creating the Logic in ST Structured Text, p. 492)

3 Calling up the DFB in:
� Function Block language (FBD) (see Calling up a DFB in the FBD Function

Block dialog, p. 494)
� Ladder diagram (LD) (see Calling up a DFB in Ladder Diagram LD, p. 496)
� Instruction list (IL) (see Calling up a DFB in the IL instruction list, p. 498)
� Structured text (ST) (see Calling up a DFB in structured text ST, p. 499)
33002204 481

DFBs (Derived Function Blocks)
Creating the DFB

Description The procedure for creating the DFB is as follows:

Step Action

1 Close Concept and start Concept DFB.

2 Create a new DFB using the menu command Data file → New DFB.
Reaction: The name now appears on the title bar:[untitled].

3 Using the menu command Data file → New section... , generate a new section
and enter a section name.
The section name (max. 32 characters) must be clear throughout the DFB, and
is not case-sensitive. If the section name entered already exists, a warning is
given and another name must be chosen. The section name must correspond to
the IEC Name conventions, otherwise an error message appears.
Note: In accordance with IEC1131-3, only letters are permitted as the first
character of names. If, however numbers are required as the first character, this
can be enabled using the menu command Options → Pre-settings → IEC
Expansions... → IEC Expansions → Enable leading figures in identifiers .

4 Select a programming language for the section:
� Function Block language (FBD) (see Creating the Logic in FBD Function

Block Language, p. 483)
� Ladder diagram (LD) (see Creating the Logic in LD Ladder Diagram, p. 486)
� Instruction list (IL) (see Creating the Logic in IL Instruction List, p. 490)
� Structured text (ST) (see Creating the Logic in ST Structured Text, p. 492)

5 The menu command Project → Properties can be used to generate a comment
about the DFB.
Reaction: This comment can be shown in Concept in the DFB properties box
with the command button Help for type.

6 Save the DFB with the menu command Data file → Save DFB.
Reaction: The first time the Save is used, the Save as dialog box opens –
specify the DFB name and directory where it is to be saved here.

7 Select the directory to be occupied by the DFB. Attention should be paid to the
difference between global and local DFBs (see also Global / Local DFBs,
p. 462).

8 Enter the DFB name (max. 8 characters, always with the .DFB extension).
The name must be clear throughout the directory, and is not case-sensitive. If
the section name entered already exists, a warning is given and another name
must be chosen.
482 33002204

DFBs (Derived Function Blocks)
Creating the Logic in FBD Function Block Language

Description The procedure for creating the logic in FBD function block language is as follows:

Step Action

1 To insert an FFB into the section, select the Objects → Select FFB... menu
command.
Result: The FFB dialog box from the library is opened.

2 In this dialog box you can select a library and an FFB from it by using the
Library... command button. You can, however, also display the DFBs that you
created and select one of them using the DFB command button.

3 Place the selected FFB in the section.

4 When all FFBs have been positioned, close the dialog box with OK

5 Activate select mode with Objects → Select Mode, click on the FFB and move
the FFBs to the desired position.

6 Activate the link mode with Objects → Link and connect the FFBs.
For example:

Close

DFB Type

LIGHTSS
NEST1
NEST2

FFBs in IEC Library

Group

FFB sorted...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB Type

AND_BOOL
AND_BYTE
AND_WORD
NOT_BOOL
NOT_BYTE
NOT_WORD
OR_BOOL
OR_BYTE

Help on Type

Library...

Help

DFB

ADD_DINT

.6.5

SUB_DINT

.6.7

MUL_DINT

.6.6
33002204 483

DFBs (Derived Function Blocks)
7 Activate the Variables Editor withProject → Variable Editor to declare the DFB
variables and inputs/outputs (formal parameters).
Example (inputs):

Example (outputs):

8 Then re-activate the select mode with Objects → Select Mode and double-click
on one of the unconnected inputs/outputs.
Result: The Connect FFB dialog box opens, in which you can allocate a current
parameter to the input/output.

Step Action

Variables Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type PositionInitValue Used

IN1 DINT 1 0

IN2 DINT 2 0

Search/Paste

Search/Replace

1

2

IN4 DINT 4 04

IN3 DINT 3 03

5

6

InputsVariables Outputs

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type Position Used

OUT1 DINT 3 0

Search/Paste

Search/Replace

1

2

3

OutputsVariables Inputs
484 33002204

DFBs (Derived Function Blocks)
9 Back up the DFB with the File → Save menu command.
For example:

Step Action

ADD_DINT

.6.5

SUB_DINT

.6.7

MUL_DINT

.6.6N1

N2

N3

N4

OUT
33002204 485

DFBs (Derived Function Blocks)
Creating the Logic in LD Ladder Diagram

Description The procedure for creating the logic in LD ladder diagram is as follows:

Step Action

1 To insert a contact or coil in the section, open the Objects main menu and select
the desired contact or coil. Contacts and coils can also be selected using the tool
bar. Place the contact or coil in the section.

2 To insert an FFB into the section, select the Objects → Select FFB... menu
command.
Result: The FFBs from Library dialog box is opened.

3 In this dialog box you can select a library and an FFB from it by using the
Library... command button. You can, however, also display the DFBs that you
created and select one of them using the DFB command button.

4 Place the selected FFB in the section.

5 When all FFBs have been positioned, close the dialog box with OK

6 Activate select mode using Objects → Select Mode, and move the contacts,
coils and FFBs to the required position.

Close

DFB Type

LIGHTSS
NEST1
NEST2

FFBs in IEC Library

Group

FFB sorted...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB Type

AND_BOOL
AND_BYTE
AND_WORD
NOT_BOOL
NOT_BYTE
NOT_WORD
OR_BOOL
OR_BYTE

Help on Type

Library...

Help

DFB
486 33002204

DFBs (Derived Function Blocks)
7 Activate link mode with Objects → Link, and connect the contacts, coils and
FFBs. Connect the contacts, FFBs and the left power rail.
For example:

Step Action

ADD_DINT

.6.5

EN ENO

SUB_DINT

.6.7

EN ENO

MUL_DINT

.6.6

EN ENO
33002204 487

DFBs (Derived Function Blocks)
8 Activate the Variables Editor withProject → Variable Editor to declare the DFB
variables and inputs/outputs (formal parameters).
Example (inputs):

Example (outputs):

9 Then re-activate select mode with Objects → Select mode, and double-click on
a contact or coil.
Result: The Properties: LD Objects dialog box is opened, in which you can
allocate an actual parameter to the contact/coil.

10 To connect the FFB input/outputs to the current parameters, double-click on one
of the unconnected input/outputs.
Result: The Connect FFB dialog box is opened, in which you can allocate a
current parameter to the input/output.

Step Action

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type PositionInitValue Used

IN1 DINT 1 0

IN2 DINT 2 0

Search/Paste

Search/Replace

1

2

IN4 DINT 4 04

IN3 DINT 3 03

5

6

InputsVariables Outputs

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type Position Used

OUT1 DINT 3 0

Search/Paste

Search/Replace

1

2

3

OutputsVariables Inputs
488 33002204

DFBs (Derived Function Blocks)
11 Back up the DFB with the File → Save menu command.
For example:

Step Action

N1

N2

N3

N4

OUT

ADD_DINT

.6.5

EN ENO

SUB_DINT

.6.7

EN ENO

MUL_DINT

.6.6

EN ENO
33002204 489

DFBs (Derived Function Blocks)
Creating the Logic in IL Instruction List

Description The procedure for creating the logic in Instruction List (IL) is as follows:

Step Action

1 Declare the function block and DFBs to be used using VAREND_VAR.
Note: Functions do not have to be declared:
Example:
VAR

 CLOCK : CLOCK_DINT ;

END_VAR

2 Declare the variables and their initial value in the Variable Editor.
Example (inputs):

Example (outputs):

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type PositionInitValue Used

IN1 DINT 1 0

IN2 DINT 2 0

Search/Paste

Search/Replace

1

2

IN4 DINT 4 04

IN3 DINT 3 03

5

6

InputsVariables Outputs

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type Position Used

OUT1 DINT 3 0

Search/Paste

Search/Replace

1

2

3

OutputsVariables Inputs
490 33002204

DFBs (Derived Function Blocks)
3 Create your program's logic.
For example:
LD IN1

ADD IN2

MUL (

LD IN3

SUB IN4

)

ST OUT

4 Back up the section with the File → Save Project menu command.

Step Action
33002204 491

DFBs (Derived Function Blocks)
Creating the Logic in ST Structured Text

Description The procedure for creating the logic in ST structured text is as follows:

Step Action

1 Declare the function block and DFBs to be used using VAREND_VAR.
Note: Functions do not have to be declared:
Example:
VAR

 CLOCK : CLOCK_DINT ;

END_VAR

2 Declare the variables and their initial value in the Variable Editor.
Example (inputs):

Example (outputs):

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type PositionInitValue Used

IN1 DINT 1 0

IN2 DINT 2 0

Search/Paste

Search/Replace

1

2

IN4 DINT 4 04

IN3 DINT 3 03

5

6

InputsVariables Outputs

Variable Editor

Type

Constants

Cancel HelpOK

Variable Name Data Type Position Used

OUT1 DINT 3 0

Search/Paste

Search/Replace

1

2

3

OutputsVariables Inputs
492 33002204

DFBs (Derived Function Blocks)
3 Create your program's logic.
For example:
OUT := (IN1 + IN2) * (IN3 - IN4)

4 Back up the section with the File → Save Project menu command.

Step Action
33002204 493

DFBs (Derived Function Blocks)
Calling up a DFB in the FBD Function Block dialog

Note When a DFB is called up, it is not significant which program languages it was created
in. The DFB can be called up in all the IEC sections.

Description The procedure for calling up a DFB in the FBD Function Block dialog is as follows:

Step Action

1 Close the Concept DFB and start Concept.

2 Open or create a project and open or create a section.

3 As with an EFB, the DFB is called up using the command button: Objects →
Select FFB....
Reaction: The dialog box FFBs from library is opened.

4 Press the DFB command button to display the global and local DFBs.
For example:

5 Now click on the desired DFB in the list, and position it in the Editor window.
For example:

6 Double-clicking on the DFB opens the Properties: Derived Function Block
dialog box, where the Refine... command button can be used to open a
document window with the internal DFB logic. The gray background indicates
that the DFB cannot be edited in this document window.

Close

DFB type

LIGHTSS
SKOE

FFBs in IEC library

Group

Sorted by FFB...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB type

MOVE
MUL_DINT
MUL_INT
MUL_REAL
MUL_UDINT
MUL_UINT
SUB_DINT
SUB_INT

Help about type

Library...

Help

DFB

SKOE

OUT

IN1

IN2

IN3

FBI_3_7

IN4
494 33002204

DFBs (Derived Function Blocks)
7 Now only the actual parameter needs to be defined. This is performed in a way
corresponding to the normal EFB link using the Link FFB dialog box (double-
click on the inputs/outputs to be parametered.
For example:

Reaction: As is clear from the example, two different sets of parameters are
used in the DFB calls 1 and 2. The formal parameters are the same in both calls
because the program code of the DFB is only occupied once.

Step Action

SKOE

RESULT1OUT

IN1VALUE1

IN2VALUE2

IN3VALUE3

SKOE1

IN4VALUE4

SKOE

RESULT2OUT

IN1VALUE5

IN2VALUE6

IN3VALUE8

SKOE2

IN4VALUE9
33002204 495

DFBs (Derived Function Blocks)
Calling up a DFB in Ladder Diagram LD

Note When a DFB is called up, it is not significant which program languages it was created
in. The DFB can be called up in all the IEC sections.

Description To call up a DFB in Ladder Diagram LD, do the following:

Step Action

1 Close the Concept DFB and start Concept.

2 Open or create a project and open or create a section.

3 As with an EFB, the DFB is called up using the command button: Objects →
Select FFB....
Reaction: The dialog box FFBs from library is opened.

4 Press the DFB command button to display the global and local DFBs.
For example:

5 Now click on the DFB required in the list, and position it in the Editor window.
For example:

Close

DFB type

LIGHTSS
SKOE

FFBs in IEC library

Group

Sorted by FFB...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB type

MOVE
MUL_DINT
MUL_INT
MUL_REAL
MUL_UDINT
MUL_UINT
SUB_DINT
SUB_INT

Help about type

Library...

Help

DFB

SKOE

ENO

OUT

EN

IN1

IN2

IN3

FBI_3_7

IN4
496 33002204

DFBs (Derived Function Blocks)
6 Double-clicking on the DFB opens the Properties: Derived Function Block
dialog box, where the Refine... command button can be used to open a
document window with the internal DFB logic. The gray background indicates
that the DFB cannot be edited in this document window.

7 Use the left power rail to link the EN input.

8 Now only the actual parameter needs to be defined. This is performed in a way
corresponding to the normal EFB link using the Link FFB dialog box (double-
click on the inputs/outputs to be parametered.
For example:

Reaction: As is clear from the example, two different sets of parameters are
used in the DFB call 1 and 2. The formal parameters are the same in both calls
because the program code of the DFB is only occupied once.

Step Action

SKOE

RESULT1OUT

EN

IN1VALUE1

IN2VALUE2

SKOE1

IN3VALUE3

IN4VALUE4

ENO

SKOE

RESULT2OUT

EN

IN1VALUE5

IN2VALUE6

SKOE2

IN3VALUE8

IN4VALUE9

ENO
33002204 497

DFBs (Derived Function Blocks)
Calling up a DFB in the IL instruction list

Note When a DFB is called up, it is not significant which program languages it was created
in. The DFB can be called up in all the IEC sections.

Description To call up a DFB in the IL instruction list, do the following:

Step Action

1 Close the Concept DFB and start Concept.

2 Open or create a project and open or create a section.

3 Calling up a DFB in the IL is performed like Calling up a Function Block (see Use of
Function Blocks and DFBs, p. 361).

For example:
VAR

SKOE1, SKOE2 : SKOE; (* Instancing the DFBs *)

END_VAR

CAL SKOE1(IN1:=VALUE1,IN2:=VALUE2,IN3:=VALUE3,IN4:=VALUE4)

LD SKOE1.out (* DFB Call 1 *)

ST RESULT1

CAL SKOE2(IN1:=VALUE5,IN2:=VALUE6,IN3:=VALUE7,IN8:=VALUE4)

LD SKOE2.out (* DFB Call 2 *)

ST RESULT2

Reaction: As is clear from the example, two different sets of parameters are used
in the DFB calls 1 and 2. The formal parameters are the same in both calls because
the program code of the DFB is only occupied once.
498 33002204

DFBs (Derived Function Blocks)
Calling up a DFB in structured text ST

Note When a DFB is called up, it is not significant which program languages it was created
in. The DFB can be called up in all the IEC sections.

Description The procedure for calling up a DFB in structured text ST is as follows:

Step Action

1 Close the Concept DFB and start Concept.

2 Open or create a project and open or create a section.

3 Calling up a DFB in the ST is performed like Calling up a Function Block (see
Function Block/DFB Invocation, p. 416).

For example:
VAR

SKOE1, SKOE2 : SKOE; (* Instancing the DFBs *)

END_VAR

SKOE1(IN1:=VALUE1, IN2:=VALUE2, IN3:=VALUE3, IN4:=VALUE4);

RESULT1:=SKOE1.OUT ; (* DFB Call 1 *)

SKOE2(IN1:=VALUE5, IN2:=VALUE6, IN3:=VALUE7, IN4:=VALUE8);

RESULT2:=SKOE2.OUT ; (* DFB Call 2 *)

Reaction: As is clear from the example, two different sets of parameters are used
in the DFB calls 1 and 2. The formal parameters are the same in both calls because
the program code of the DFB is only occupied once.
33002204 499

DFBs (Derived Function Blocks)
500 33002204

33002204
14

Macros
At a Glance

Overview This Chapter describes the procedure for creating macros with help from Concept
DFB.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

14.1 Macro 503

14.2 Programming and calling up a macro 513
501

Macros
502 33002204

Macros
14.1 Macro

At a Glance

Overview This section provides an overview on creating and applying macros.

What's in this
Section?

This section contains the following topics:

Topic Page

Macros: general 504

Global / Local Macros 506

Exchange marking 508

Creating Context Sensitive Help (Online Help) for Macros 511
33002204 503

Macros
Macros: general

At a Glance Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).

Creating macros Macros are created with the help of the Concept DFB software.

Programming
languages

Macros can only be created in the FBD and LD programming languages.

Properties Macros have the following properties:
� Macros only contain one section.
� Macros can contain a section of any complexity.
� From the point of view of program technology, there is no difference between an

instanced macro, i.e. a macro inserted into a section and a conventionally created
section.

� It is possible to call up DFBs in a macro.
� It is possible to declare macro-specific variables for the macro.
� It is possible to use data structures specific to the macro
� Automatic transfer of the variables declared in the macro.
� Initial values are possible for the macro variables.
� It is possible to instance a macro many times in the entire program with different

variables.
� The name of the section, variable names and data structure names can contain

up to 10 different exchange marks (@0 to @9).

Hierarchic
structure

The hierarchic structure of a macro corresponds to a project in Concept which
consists of only one section. This section contains the actual logic.

Context help Personalised context-sensitive help (online help) can be generated for macros (see
Creating Context Sensitive Help (Online Help) for Macros, p. 511).

Processing
sequence

The processing sequence of the logic, the programming rules and the usable FFBs
and DFBs correspond overall to those of the FBD or LD programming.
504 33002204

Macros
Calling up a
macro

A macro can be called up from SFC, FBD and LD sections.

There is a fundamental difference here:
� Call from an SFC Section

When a macro is called up (instanced) from an SFC section (e.g. as a network
for the action variable), a new FBD/LD section containing only the macro’s logic
is automatically created

� Calling up an FBD/LD section
When a macro is called up from an FBD or LD section, the macro’s logic is
inserted into the current FBD or LD section. In this case a new section is not
created.

Archiving and
Documentation

The process for archiving a macro is the same as for archiving and documenting a
project (see Documentation and Archiving, p. 707).
33002204 505

Macros
Global / Local Macros

Description Global and local macros differ in the locality of their directory hierarchy.

Depending on the directory or subdirectory in which the macro is stored, it can be
called up globally, i.e. within all the projects created under Concept, or locally, in a
specific project.

In the Defining the Storage of Global DFBs during Upload, p. 1095 you can ensure
that during the IEC upload process a GLB directory containing the global macros is
produced in the project directory. By doing this, the existing global macros in the
Concept → DFB will not be overwritten and therefore it will not have an effect on
other projects.

Directory structure without uploaded project:

Concept

DFB

...

C:\\

PRJ

DFB

...

Installation drive

Concept directory

Global DFB/macro directory

Project directory

Local DFB/macro directory
506 33002204

Macros
Directory structure according to INI settings ([Upload]: PreserveGlobalDFBs=1)
for uploaded projects:

If a local and a global macro have the same name, the name of the local macro is
displayed in lower case letters and that of the global macro in upper case letters
when they are inserted.

Note: The length of the DOS path name in which the macros is stored is limited to
29 characters. Care should be taken that the macro directory does not exceed this
limit.

Concept

DFB

...

C:\\

PRJ

DFB

...

Installation drive

Concept directory

Global DFB/macro directory

Project directory

Local DFB/macro directory

GLB Global DFB/macro directory for
uploaded project
33002204 507

Macros
Exchange marking

At a Glance The exchange markings (@0 to @9) in macros are used to insert the macro in a
Concept section. When inserting a macro into a section, you will input a character
string that will replace the character strings. It is therefore possible to use a logically
identical macro with different variables, data structures and comments, because
different series of character strings can be pre-set during each insertion.

The exchange flags can be used in the following elements:
� Section names
� Variable names
� Comments

Comment on
exchange
markings

A comment on the macro’s exchange marking can be written using File → Section
Properties. This comment will be displayed when the macro is called up in Concept
the in the exchange marking’s replacement dialog.

Exchange
marking in the
section name

When a macro is instanced, i.e. when it is called up from an SFC section, a new
section is automatically occupied with the name of the macro section, as well as
other procedures. The section name must be changed with each instancing so that
the macro can be instanced several times in one project. The exchange marking in
the section name is used for this. Therefore an exchange marking (@0 to @9)
should always be entered when a section is created in the macro. Otherwise the
macro can only be called up once from an SFC section and used in the project.

When a macro is called up from an FBD/LD section, the section name of the macro
is not significant because no new section is created in this case.
508 33002204

Macros
Exchange
marking in
variable names

Input and output variables are required to transfer values to or from a network.
These variables are already declared in the macro and are connected to the macro’s
EFBs.

To declare these variables, the variable name (with exchange markings), the data
type and possibly a comment (possibly with exchange markings) should be declared
in the variables editor. An initial value can also be defined for input variables.

When a macro is instanced in Concept, the exchange markings in all the variable
names are replaced with the pre-set character strings. This ensures that the
variables required for each use of the macro are clearly declared. If a variable is
used in all cases of macro instancing, it should be given a name without the
exchange marking.

The same applies to variables with Derived Data Types (data structures). This
means that the type of one data structure can be used in as many macros as
required as often as required.

Exchange markings in the Variables Editor

Note: If the macro is to be connected as an action to a step in a sequence, it is
advisable to denote the variable designated as an action variable only with the @0
exchange marking. In this case, the designated action variable will automatically
be connected to the step when the macro is instanced. Care should be taken that
the action variables are always of the BOOL type. If the macro contains several
action variables (e.g. for the forward and backward running of a motor), it is
advisable to define these action variables in a Derived Data Type (data structure)
and to denote the variable which this data type is assigned to with the @0
exchange marking only.

Variable Editor

Type

Variables Constants

Variable name Data type Initial Use

@0_on BOOL

@0_value VALUE

Find/insert

Find/replace

1

2

@1 BOOL4

@1_error INT3

@2_result REAL5

@0 switched on

@0 Default value

@1 reports error

@1 = Action variable

@2 result

Set…

Cancel HelpOK

value
33002204 509

Macros
Since a clear variable is assigned to each input/output during the instancing of the
macro, only unlocated variables can be assigned to the macro when it is created. It
is not possible to use direct addresses and located variables in the macro. If located
variables are to be used, the corresponding variables can be assigned a direct
address in the variables editor after the macro is instanced. If direct addresses are
to be used, no variables should be assigned to the corresponding inputs/outputs in
the macro and the inputs/outputs should be linked to the address desired after the
macro is instanced. If variables have already been declared, they are used
(references and initial values are retained).

Exchange
marking in
comments

When a macro is instanced in Concept, the exchange markings in all the comments
are replaced with the pre-set character strings. The same applies to text objects in
the section and to variable comments in the variables editor.
510 33002204

Macros
Creating Context Sensitive Help (Online Help) for Macros

Introduction In Concept, help is provided for each EFB, which can be invoked according to the
context (the Help on Type command button in the EFB properties dialog). There is
of course no corresponding help text in Concept for the macros that you created.

You can, however, create your own help for each macro, that can be invoked in
Concept with Help on Type.

File Format: You can create your help in the following file formats:
� .CHM (Microsoft Windows compiled HTML help file)
� .DOC (Microsoft Word format)
� .HTM (Hypertext Markup Language)
� .HLP (Microsoft Windows help file (16- or 32-Bit Format))
� .PDF (Adobe Portable Document Format
� .RTF (Microsoft Rich Text Format)
� .TXT (Plain ASCII Text-Format)

Name The name of the help file must be exactly the same as the name of the macro (e.g.
SKOE.EXT)

The only exceptions are standardized macro names (e.g. SKOE_BOOL,
SKOE_REAL etc.). In these cases the help file name is the macro name without the
datatype extension (e.g. macro name) SKOE_BOOL has the help file SKOE.EXT).

Directory The help file can be stored in the following directories:
� Concept directory
� Concept Help directory (if defined in the file CONCEPT.INI, see readme)
� Global macro directory
� Local macro directory
33002204 511

Macros
Invoking the Help
File

Concept carries out the following procedure to invoke the help file:

Phase Description

1 Search for the help file MacroName.EXT in the local macro-directory.
The help file is searched for in the following sequence:
� .HLP
� .CHM
� .HTM
� .RTF
� .DOC
� .TXT
� .PDF

Result: If the search result is positive the help file will be displayed, otherwise it
will continue with phase 2.

2 Search for the help file MacroName.EXT in the global macro-directory.
For the order, see phase 1.

Result: If the search result is positive the help file will be displayed, otherwise it
will continue with phase 3.

3 Search for the help file MacroName.EXT in the Concept-directory or Concept-
Help directory.
For the order, see phase 1.

Result: If the search result is positive the help file will be displayed, otherwise it
will continue with phase 4.

4 Display of the comment created in Concept DFB with Project → Properties.
512 33002204

Macros
14.2 Programming and calling up a macro

At a Glance

Overview This section describes programming and calling up a macro.

What's in this
Section?

This section contains the following topics:

Topic Page

At a Glance 514

Occupying the macro 515

Creating the logic 516

Calling up a macro from an SFC section 519

Calling a macro from an FBD/LD section. 522
33002204 513

Macros
At a Glance

At a Glance Programming and calling up a macro is divided into 3 main steps:

Step Action

1 Occupying the macro (see Occupying the macro, p. 515)

2 Creating the logic (see Creating the logic, p. 516)

3 Calling up the macro in:
� Sequence language (SFC) (see Calling up a macro from an SFC section,

p. 519)
� Function Block language (FBD) (see Calling a macro from an FBD/LD

section., p. 522)
� Ladder Diagram language (LD) (see Calling a macro from an FBD/LD

section., p. 522)
514 33002204

Macros
Occupying the macro

Description The procedure for occupying the macro is as follows:

Step Action

1 Close Concept and start Concept DFB.

2 Create a new macro usingFile → New macro... menu command.
Reaction: The name now appears on the title bar: [untitled].

3 Using the menu command File → New section... generate a new section and
enter a section name (with an exchange marking such as @0).
The section name (max. 32 characters) must be clear throughout the macro, and
it is not case-sensitive. If the section name entered already exists, a warning is
given and another name must be chosen. The section name must correspond to
the IEC Name conventions, otherwise an error message appears.
Note: In accordance with IEC1131-3, only letters are permitted as the first
character of names. If, however numbers are required as the first character, this
can be enabled using the menu commandPresettings → Presettings → IEC
Expansions... → IEC Expansions → Enable leading figures in identifiers .

4 Select a programming language for the section:
� Function Block language (FBD)
� Ladder Diagram (LD)

5 The menu command Project → Properties can be used to generate a comment
on the macro.
Reaction: The comment can then be displayed in Concept using the Help for
type command key in the selection dialog for macros.

6 The menu command File → Section properties can be used to generate a
comment on the exchange markings.
Reaction: This comment then appears automatically in the Replace dialog for
the exchange markings.

7 Save the macro with the menu command File → Save macro.
Reaction: The first time the Save is used, the Save as dialog box opens –
specify the macro name and directory where it is to be saved here.

8 Select the directory to be occupied by the macro. Attention should be paid to the
difference between global and local macros (see also Global / Local Macros,
p. 506).

9 Enter the macro name (max. 8 characters, always with the Extension Mac).
The name must be clear throughout the directory, and it is not case-sensitive. If
the section name entered already exists, a warning is given and another name
must be chosen.
33002204 515

Macros
Creating the logic

Description The procedure for creating the logic is as follows:

Step Action

1 To insert an FFB into the section, select the menu command Objects → Select
FFB....
Reaction: The FFBs in IEC library dialog box opens.

2 In this dialog box a library can be selected and an FFB selected from it by using
the Library... command button. Also with the command button DFB the
manually generated DFBs can be shown and one selected from them.

3 Place the selected FFB in the section.

4 When all FFBs have been positioned, close the dialog box with Close

5 Activate the selection mode with Objects → Selection mode, click on the FFB
and move the FFBs to the position required.

6 Activate the link mode with Objects → Link and connect the FFBs.

Close

DFB type

LIGHTSS
SKOE

FFBs in IEC library

Group

Sorted by FFB...

Arithmetic
Bistable
Comparison
Converter
Counter
Edge detection
Logic
Numerical

EFB type

MOVE
MUL_DINT
MUL_INT
MUL_REAL
MUL_UDINT
MUL_UINT
SUB_DINT
SUB_INT

Help about type

Library...

Help

DFB
516 33002204

Macros
7 Activate the Variables Editor withProject → Variables Editor to declare the
variables.
For unlocated variables, declare a name here (with exchange markings), a data
type, an initial value and a comment if necessary (possibly with exchange
markings).
For constants, declare a name here (with exchange markings), a data type, a
value and a comment if necessary (possibly with exchange markings).
For example:

Note: If located variables are to be used, the corresponding unlocated variables
can be assigned a direct address in the variables editor after the macro is
instanced.
If direct addresses are to be used, no variables should be assigned to the
corresponding inputs/outputs in the macro and the inputs/outputs should be
linked to the address required after the macro is instanced.
Note: If a variable or constant is to be used in all cases of macro instancing, this
variable or constant should be given a name without any exchange marking.

Step Action

Variable Editor

Type

Variables Constants

Variable name Data type
Initial

Use

@0_on BOOL

@0_value VALUE

Find/insert

Find/replace

1

2

@0 BOOL4

@0_error INT3

@0_result REAL5

@0 switched on

@0 Default value

@0 reports error

@0 = Action variable

@0 result

Set…

Cancel HelpOK

 value
33002204 517

Macros
8 Then re-activate the selection mode with Objects → Select and double-click on
one of the unconnected inputs/outputs.
Reaction: The Link FFB dialog box opens, where an actual parameter can be
assigned to the input/output.

9 Save the macro with the menu command File → Save.
For example:

Step Action

@0_free Lookup...

connect with

Variable Literal

Name

Connect FFB: .2.15 (AND_BOOL)

Input: IN1 (BOOL)

Cancel HelpOK

Direct address

Variable declaration...

Inverted

Concept - Macro [SKOE] - [@0_Math]

File View Objects Project Online Options Window HelpEdit

OWN_DFB

FBI_13_4

EN

VALUE

AND_BOOL

.6.5

@0

@0_on

@0_values

ENO

@0_result

@0_error
518 33002204

Macros
Calling up a macro from an SFC section

Description of
the action

The procedure for calling up a macro from an SFC section is as follows:

Step Action

1 Close Concept DFB.

2 Start Concept, open or create a project and open or create an SFC section.

3 Double-click to open the step properties of the step which the macro is to be
connected to.

4 Use the command button Instance section... to call up the dialog for instancing
the macros.

5 Select the desired macro from the list.
If section groups have been created in the Project Browser, the section group
where the section is to be inserted can be selected in the Insert into section
group text field.
Confirm with OK.
Example:

Reaction: The dialog Replace is opened to replace the exchange markings.

Authorize section

Available templates:

SKOE.MAC
TEST.MAC
(None)

Help about type

OK

Help

Cancel

Object name:

Insert into section group:

Motor1
33002204 519

Macros
6 Pre-set for the text fields @0 to @9 the character strings which the exchange
markings are to be replaced with in the macro.
Example:

7 Confirm the inputs with OK.

Reaction:
The following occurs after the procedure described above has been performed:
� A section is now automatically created whose name consists of the macro

section name and of the pre-set character strings in place of the exchange
marking.
Note: This section is not automatically opened. To perform any editing, open
by clicking on the variable name in the step properties dialog.

� All the variables declared in the macro are transferred into the variables
declaration of the current project and the exchange marking is also replaced
with the current character string. If variables have already been declared,
they are used (references and initial values are retained). The same applies
to any comments containing the exchange flags.

� If the macro contains a single Boolean input variable, it is automatically
transferred as an action variable.

� If the macro contains several Boolean input variables, the Select one of
these variables dialog opens, where the variable desired can be selected as
an action variable.

� If a data structure has been marked individually with the exchange flag, the
Select Bool type elements dialog is called up and the Boolean variable
desired for the action can be selected there.

Step Action

Step properties

Cancel HelpOK

Motor 1@0

Replaceable mnemonics

File access

I

Section Comment:

Load list...

Load list...

 @1

 @2

 @3

 @4

 @5

 @6

 @7

 @8

 @9
520 33002204

Macros
8 This action can be used to call the macro as often as required without any name
collisions occurring. The instanced macro and its variables are completely
identical to the sections and variables generated beforehand.
Example of an instanced macro:

Step Action

Concept [Plant1] - [Motor1_Math]

File View Objects Project Online Options Window HelpEdit

OWN_DFB

FBI_13_4

EN

VALUE

AND_BOOL

.6.5

Motor1

Motor1_on

Motor1_values

ENO

Motor1_result

Motor1_error

RESULT

ERROR
33002204 521

Macros
Calling a macro from an FBD/LD section

Description of
the action

The procedure for calling up a macro from an FBD/LD section is as follows:

Step Action

1 Close Concept DFB.

2 Start Concept, open or create a project and open or create an FBD/LD section.

3 With the menu command Objects → Macro insert the dialog Select macro to
insert macros into FBD/LD sections.

4 Select the desired macro from the list and confirm with OK.
Reaction: The dialog Replace is opened to replace the exchange markings.

5 Pre-set for the text fields @0 to @9 the character strings which the exchange
markings are to be replaced with in the macro.
Example:

Select macro

Available macros:

SKOE.MAC
TEST.MAC
(None)

Help about type

OK

Help

Cancel

Step properties

Cancel HelpOK

Motor 1@0

Replaceable mnemonics

File access

I

Section Comment:

Load list...

Save list...

 @1

 @2

 @3

 @4

 @5

 @6

 @7

 @8

 @9
522 33002204

Macros
6 Confirm the inputs with OK.
Reaction:
The following occurs after the procedure described above has been performed:
� There is now an automatic shift to Insert mode and the macro’s logic can be

inserted in any position in the FBD or LD section.
� Moreover, all the variables declared in the macro are transferred into the

variable declaration of the current project and the exchange marking is also
replaced with the current character string. The same applies to any
comments containing the exchange markings.

7 This action can be used to call the macro as often as required without any name
collisions occurring. The inserted macro and its variables are completely
identical to the sections and variables generated conventionally.
Example of an instanced macro:

Step Action

Concept [Plant1] - [Motor1_Math]

File View Objects Project Online Options Window HelpEdit

OWN_DFB

FBI_13_4

EN

VALUE

AND_BOOL

.6.5

Motor1

Motor1_on

Motor1_values

ENO

Motor1_result

Motor1_error

RESULT

ERROR
33002204 523

Macros
524 33002204

33002204
15

Variables editor
At a Glance

Overview This Section contains information about declaring variables in the variables editor.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

General 526

Declare variables 527

Searching and replacing variable names and addresses 530

Searching and Pasting Variable Names and Addresses 534

Exporting located variables 537
525

Variables editor
General

At a Glance The Variables-Declaration serves as data exchange in user program. Hence you
can address Variables (Located and Unlocated Variables) and/or assign a value to
constants

Variables or direct addresses will be assigned via the addressing of the I/O-Map and
can be used with symbolic names (variable) or with the direct addresses in the
programming. In so doing, values will be exchanged between different Sections via
the variables or the direct addresses.

Note: In accordance with IEC1131-3, only letters are permitted as the first
character of variable names. If, however numbers are required as the first
character, this can be enabled using the menu commandOptions → Presettings
→ IEC Expansions... → IEC Expansions → Enable leading figures in
identifiers enable.

Note: Undeclared variables will be denied during programming.
526 33002204

Variables editor
Declare variables

At a Glance At variable declaration the Data type, address and symbolic name are determined.
Via the addressing define the inputs (1x/3x) and outputs (0x/4x), assigned in the
user program with the selection of the data type of the respective function, or the
respective Function Blocks.

An initial value may also be provided for each variable; this will be transferred into
the PLC during the first load.

A comment may be written for each Variable or direct address, to aid recognition of
the assignment of a function.

If Declarations are changed, deleted or added, this alteration will be identified
through certain symbols in the first column.

Changes in
ONLINE mode

Variable names and addresses can be changed online. Apart from that, an
unlocated variable can be changed into a located variable (i.e. it will be assigned its
own address or the address will be deleted). Clicking on the command button OK
transfers the changes to the affected sections i.e. the sections in which the changed
variables will be used.

This has the following effects:

If… Then…

the variables are modified, the status of all affected sections will be set to MODIFIED and
the affected sections must be loaded into the PLC using Online
→ Load modifications.

a transition section is
affected by the
modifications,

the SFC section assigned to it is also set to the status
MODIFIED.

an affected section is
animated,

the animation is aborted.

a modified variable is used
in the reference data
editor,

no more variables can be inserted into the editor window, and
the animation of the reference data editor is stopped. This is
valid until the modifications are loaded into the PLC using
Online → Load modifications and the status EQUAL is
restored.

Note: The assignment of direct addresses and comments can also occur outside
Concept on completion of the programming.
33002204 527

Variables editor
Variable
declaration
outside the
variable editor

Procedure for completing variable declaration outside the variable editor:

Copying rows in
the variable
editor

It is possible to copy individual rows and whole blocks of rows and to paste them into
another position in the variable editor, before editing them. This operation is
performed using shortcut keys.

Copying and pasting can only take place inside the open variable editor; pasted
rows are marked red. These rows must subsequently be changed or they will
disappear on exiting the dialog. Identical settings are not permitted in the variable
editor.

Procedure for
copying and
pasting

To copy and paste entire rows proceed as follows:

Step Action

1 Export the variable declaration using File → Export → Variables: Text
delimited.

2 Open the exported file.

3 Enter the addresses and comments.

4 Import the edited variable declaration using File → Import → Variables: Text
delimited.

Note: A maximum of 500 rows can be copied.

Step Action

1 Select the relevant row in the first column in the table.
Reaction: The entire row is displayed in a different color.
Note: When copying a block of rows, select the first row in the block, and press
Shift, while simultaneously selecting the last row in the block.

2 To copy use the shortcut Ctrl+Insert or Ctrl+Alt+c.
Reaction: The selected rows are copied into the cache.

3 Select the row off which is to be pasted.
Reaction: The entire row is displayed in a different color.

4 To paste use the shortcut Shift+Insert or Ctrl+Alt+v.
Reaction: The copied rows are pasted off the selected row in the table, and are
marked red.
Note: When pasting between two existing rows, the selected row is moved down
according to the number of copied rows.
528 33002204

Variables editor
Printing the
variable list

Printing the variable list is done in the main menu File. Using the menu command
Print... open the dialog Document contents, in which the print undertaking is set
by checking the box Variable list.

Note: It should be noted that all 32 characters (maximum) of the symbol name do
not always appear on the paper when printing.
33002204 529

Variables editor
Searching and replacing variable names and addresses

At a Glance Use command button Search/Replace to call up a dialog box to search and replace
variable names and addresses. Therefore, unlike Search/Insert the existing
variable names/addresses are changed.

Use option button Name and Address to choose whether to search for variable
names or addresses.

If Search and Replace are to be restricted to a certain area of variables or
addresses, this area can be selected. In this case, searching and replacing is only
carried out in the selected area. If nothing is selected, search and replace are
applicable to all variables and addresses in the variable editor.

On activating check box Extend address the addresses specified in text box
Address are automatically extended to Standard format.

Use of wildcards The following wildcards can be used for searching and replacing:

* This character is used to represent any number of characters. * can only be used
at the beginning or the end of a line.

? This character is used to represent exactly one character. If several characters are
to be ignored, a certain number of ? have to be used.

The wildcards can be combined. The combinations *? and ?* are, however, not
permitted.

Note: When searching and replacing, the number of wildcards in the Search
character sequence and the Replace character sequence have to be equal. See
also the following examples in the table.
530 33002204

Variables editor
Examples of
Search/Replace

The example shows different search methods and the respective results when
replacing:

Search and
replace name

Select this option button to search and replace variable names. However, the search
for the occurrence of the character sequence to be found is exclusively carried out
in column Variable name of the variable editor.

Search and
replace address

Select this option button, to search and replace addresses. However the search for
the occurrence of the address to be found is exclusively carried out in column
Address of the variable editor.

Search: Replace with: available names Result

Name1 Name2 Name1
Name1A
Name A
Name B

Name2
Name1A
NameA
NameB

???123 ???456 abc123
cde123
abcd123
abc1234

abc456
cde456
abcd123
abc1234

Name1* Name2* Name1A
Name1B
NameAB

Name2A
Name2B
NameAB

*123 *456 abc123
cde123
abc1234
abcde123

abc456
cde456
abc4564
abcde456

123 *456* abc123abc
cde123defghi
abcde123def

abc456abc
cde456defghi
abcde456def

???123* ???456* abc123abc
cde123defghi
abcde123def

abc456abc
cde456defghi
abcde123def
33002204 531

Variables editor
Search for: Enter a character sequence, according to which the variables or addresses are to
be searched.

Without entering a character sequence that leads to a successful search result,
none of the possible functions of the dialog are executed.

Replace with: Enter a character sequence, which replaces the character sequence to be searched
for in the new variables or addresses

Find Next Description of function Find Next:

Note: Entries in the field Search remain intact for future use, even after closing the
dialog box.

Note: Entries in the field Replace with remain intact for future use even after
closing the dialog box.

Stage Description

1 The command button Find Next starts the search process at the beginning of
the variable editor table or the selected area and marks the found variable.

2 A query appears, asking whether a search for further occurrences of the
character sequence is required.

3 By activating command button Yes, the next location of the searched character
sequence is selected.
By activating command button No, the search is terminated.

4 When the search process has reached the end of the variable editor table, the
system asks whether or not the search process should be restarted at the
beginning of the variable editor table or the selected area.

5 By activating command button Yes, the next location of the searched character
sequence is selected.
By activating command button No, the search is terminated.

6 If no further occurrences of the character sequence are found, a message
appears, indicating that the search is terminated.
532 33002204

Variables editor
Replace Description of function Replace:

Replace all Searches for all occurrences of the character sequence and replaces these (without
first querying) with the inputs in the text box Replace with:. When the search
process has reached the end of the variable editor table, the system asks whether
or not the search process should be restarted at the beginning of the variable editor
table or the selected area.

Stage Description

1 The command button Replace starts the search process at the beginning of the
variable editor table or the selected area and marks the found variable.
Note: This function cannot be undone.

2 The system asks whether the found character sequence is to be replaced.

3 By activating command button Yes, the variable/address is replaced by the
character sequence in the text box Replace with:
By activating command button No, the search is terminated.

4 If there are several uses of the searched character sequence, the next site where
it is found is selected and a new query appears.

5 When the search process has reached the end of the variable editor table, the
system asks whether or not the search process should be restarted at the
beginning of the variable editor table or the selected area.

6 By activating command button Yes, the next location of the searched character
sequence is selected.
By activating command button No, the search is terminated.

7 If no further occurrences of the character sequence are found, a message
appears, indicating that the search is terminated.

Note: This function cannot be undone.
33002204 533

Variables editor
Searching and Pasting Variable Names and Addresses

Introduction The Search/Paste command button can be used to invoke a dialog for creating new
variables based on existing ones. Unlike with Search/Replace, a copy of the
existing variables with a new name/address is generated.

If, for example, you have already declared the variables for a motor and you want to
declare the same variables but with different names and addresses for another
motor, this is easily achieved with this dialog.

If you simply want to generate further variables from a specific range of variables,
this area can be selected. In this case, a search will only be carried out in the
selected range. If nothing is selected, search and paste applies to all variables in the
variable editor.

If you check the Extend Address check box, the addresses entered in the Address
text box are automatically extended to Standard format.

Using Wildcards The following wildcards can be used for searching and pasting:

* This character is used to represent any number of characters. * can only be used
at the beginning or the end of a line.

? This character is used to represent exactly one character. If several characters are
to be ignored, the corresponding number of ? have to be used.

The wild cards can be combined. The combinations *? and ?* are, however, not
permitted.

Find Name If you select this option button, you can search for variable names. Occurrences of
the string to be found are searched for exclusively in the Variable Name column of
the variable editor.

Find Address This field is only unavailable for constants.

If you select this option button you can search for addresses. Occurrences of the
address to be found are searched for exclusively in the Address column of the
variable editor.

Note: When searching and pasting, the number of wildcards in the Search string
and the Replace string has to be equal.
534 33002204

Variables editor
Find What: Enter a string to be searched for in variables or addresses.

The search is only carried out in the Variable Name and Address columns in the
variable editor table. A search in other areas (e.g. Data type) is not possible.

If you do not enter a string that leads to a successful search result, none of the
possible functions of the dialog are executed.

Replace With: Enter a string to be replaced in the new variable or address with the string being
searched for.

If the name entered already exists, no new variable is created.

Offset Address
By:

This field is only unavailable for constants.

Enter a value by which the addresses of the existing variables are to be increased.

With unlocated variables, it is not necessary to enter a value.

Entries in this field are retained for future use even after the dialog has been closed.

Example of
Offset Address
By

SKOE1 has the address 000012

Find What: SKOE1

Replace With: SKOE2

Offset Address By: 1

This results in the creation of the following new variable:

SKOE2 on address 000013

Note: Entries in the Search field are retained for future use, even after the dialog
box is closed.

Note: Entries in the Replace With field are retained for future use even after the
dialog box is closed.

Note: If you do not enter an offset value, the new variable will be placed in the
same address as the one already present.
33002204 535

Variables editor
Find Next Description of Find Next function:

Start Paste Description of Start Paste function:

Stage Description

1 The Find Next command button starts the search process at the beginning of
the variable editor table or the selected area and marks the found variable.

2 A query appears, asking whether a search for further occurrences of the string
is required.

3 If the Yes command button is pressed, the next location of the string being
searched for is marked.
If the No command button is pressed, the search is finished.

4 When the search process has reached the end of the variable editor table, a
query appears asking whether or not the search process should be restarted at
the beginning of the variable editor table or the selected area.

5 If the Yes command button is pressed, the next location of the string being
searched for is marked.
If the No command button is pressed, the search is finished.

6 If no further occurrence of the string is found, a message appears to inform you
that the search is done.

Stage Description

1 The Start Paste command button is used to start the search process at the
beginning of the variable editor table or the selected area and the found variable
is marked.
Note: This function cannot be undone.

2 A query appears asking whether a new variable with the displayed name and
address should be created.

3 If the Yes command button is pressed, the variable is created and the process
continued until all occurrences of the string being searched for have been
"exhausted".
If the No command button is pressed, the search is finished.

4 When the search process has reached the end of the variable editor table, the
system asks whether the search process should be restarted at the beginning of
the variable editor table or the selected area.

5 If the Yes command button is pressed, the next location of the string being
searched for is marked.
If the No command button is pressed, the search is finished.

6 If no further occurrence of the string are found, a message appears to inform you
that the search is finished.
536 33002204

Variables editor
Paste All Searches for all occurrences of the string to be found and replaces them (without
asking first) with the new variables given in the Replace With: text box. This process
is carried out until all occurrences of the string being searched for have been
exhausted, or until an error appears.

If an error appears, the function is immediately cancelled. However, all the
previously created variables are retained.

Exporting located variables

At a Glance For data exchange with MMI units, all Located variables in the column Exp can be
selected and transferred using the Export function in the main menu File.

Located variables can be exported via ModLink, Factory Link and via export format
"text delimited".

Removing the
selection

After export, the selection (in the column Exp) of the exported variables using the
shortcut Ctrl+Alt+F3 can be removed at once.

Note: This function cannot be undone.

Note: This removal cannot be undone, not even with the command button Cancel.
33002204 537

Variables editor
538 33002204

33002204
16

Project Browser
At a Glance

Overview This chapter describes the Project Browser.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

General information about the Project Browser 540

Detailed view in the project browser 543

Operating the Project Browser 545
539

Project Browser
General information about the Project Browser

Introduction The Project browser can be used to create groups of sections to make the layout
clearer and to facilitate operations. These groups have unique names and can
contain sections and further section groups. The display and operations are
performed graphically by means of Structure tree. The Project browser functions
represent a convenient, more extensive way of operating as an alternative to the
Concept functions present.

You can open an additional window in the Project browser for viewing existing DFBs,
sections with control blocks and transition sections.

Project browser:

FBD

FBD

FBD_Left

FBD_Right

Demo

LD LD1

FBD DFB

FBD MAC1

FBD DDT1

SFC

IL IL1

ST ST1

SFC1

FBD

FBD

Test11

Test12

Test1

FBD Test21

Test2

FBD Test31

Test3

Project: CC_Demo

Project Browser
540 33002204

Project Browser
Functions The Project browser provides the following functions:
� Create new section
� Open section (override the editor)
� Changing section properties (names, comments)
� Changing the execution order
� Delete section

� Creating section groups

� Opening section groups (showing the substructure)
� Closing section groups (hiding the substructure)
� Renaming section groups
� Finding section groups or sections in the Project browser
� Moving sections groups or sections (modification of the execution sequence

results!)

� Start up offline memory prognosis
� Deleting section groups

� Opening the Configurator

� Minimize open windows
� Open minimized windows
� Close all windows
� Set maximizing window size
� Show exact view

� Excluding individual sections from the alignment between the primary CPU and
standby CPU with Hot Standby systems.

� Animate enable states (animation of the structure tree)
� Switch enable state

Restrictions Attention should be paid to the following restrictions:
� Section groups can only be created with the Project browser.
� Transition sections are not displayed in the Project browser.
� It is only possible to modify the execution sequence via Project → Execution

order if no section groups exist in the Project browser. After the first section group
has been created, no further modifications can be performed via Project →
Execution order change.

� It is only possible to change the enable status of a section if the variable
belonging to the section (.disable) has not been used.
33002204 541

Project Browser
Special features
for LL984

Attention should be paid to the following special features when using LL984:
� If one or several LL984 sections exist, the Project browser automatically

generates an LL984 section group.
� LL984 sections cannot be moved.
� No IEC sections can be put into or before the LL984 section groups.

Special features
of I/O Events and
Timer Events

Please take note of the following special features when using interrupt sections:
� If one or several LL984 sections exist, the Project browser automatically

generates an I/O Event or Timer Event section group.
� Interrupt sections cannot be moved.
� No IEC sections can be put into or before the interrupt section group.
542 33002204

Project Browser
Detailed view in the project browser

Introduction In the shortcut menu for the project, you can divide the project browser window
vertically using the menu command Show detailed view. The right side of the
window contains the detailed information concerning the selected element in the
project structure tree.

The type of information depends on the selected element:

Element Information

Project Call hierarchy for all DFBs used in the project.

Group No display

LL984 section No display

FBD/LD Call hierarchy for all DFBs used in the section. If no DFBs are used, a
message is given (!).

ST/IL Call hierarchy for all DFBs used in the section. If no DFBs are used,
or if the analysis fails, a message is given (!).

SFC The SFC info module can contain the following information:
� Section which contains the control module (e.g. SFC_CTRL) for

this SFC section.
� Message with red exclamation point(!): The SFC section is in the

execution order before the section with the control module.
� Message with a black exclamation point(!): No transition sections

are used.
� All transition sections used.
33002204 543

Project Browser
Detailed view in the right window of the project browser:

FBD

FBD

ioevt01

ioevt02

I/O Events

FBD

FBD FBD2

FBD sfc_ctrl

FBD1

Project: CC_Demo

Project Browser

FBD

FBD

T_evt01

T_evt02

Timer Events

SFC SFC_ACT11

ST ST1

FBD1SFC SFC

IL IL1

LD LD1

DFB

DFB

Nest2

Nest1

FBD FBD1

DFB Lights

DFB

DFB

DFB_1

DFB_11

DFB DFB_12
544 33002204

Project Browser
Operating the Project Browser

Introduction The browser allows keyboard and mouse operation.

Mouse operation Operating the project browser with the mouse:

Function Key

Selecting a group or section
(during selection, a section which is already
open is put before all other open sections)

left mouse button

Switching off the context menu right mouse button

Using the first menu entry of the context menu Double-click with the left mouse button

Moving a group or section left-click on the corresponding symbol and
hold the mouse button, select the target
position by moving the mouse and release
the mouse button
or
Call context menu (right mouse button) →
Select Move → Find target position by
cursor up/down → Confirm position with
Enter

Opening or closing a section group click on the corresponding +/- symbol with
the left mouse button

Note: Context menus do not only appear when symbols are clicked on. The
following way to insert a new group or section is available: If the cursor is positioned
to the right of the connecting line between two symbols, it changes to show that a
context menu can be called in this location by clicking with the right mouse button.
This means that a new group or section can be inserted in the line selected.
33002204 545

Project Browser
Keyboard
operation

Operating the project browser with the keyboard:

Function Key

selecting the next/previous group/section
(during selection, a section which is already
open is put before all other open sections)

Cursor up/Cursor down

Selecting a group/section on the next or
previous page

Scroll up/Scroll down

Selecting a project symbol Pos1

selecting the last group or section End

Scrolling with the keyboard CTRL + Cursor up/Cursor down
or
CTRL + Scroll up/Scroll down

Switching off the context menu SWITCH + F10
or List

Carrying out the first menu entry Entry

Moving a group/section Call context menu (SWITCH + F10) →
Select Move → Find target position by
cursor up/down → Confirm position with
Enter
or
CTRL + SWITCH → Cursor up/down /
Scroll up/down → Confirm position with
Enter

Opening or closing a section group + or -
where: + restores the status before the last -

Opening a section group and all sub-groups *

Deleting a group or section Delete

Selecting the group above Cursor left or backspace delete
If the element actually selected is a group
when cursor left is used, the group is closed
before the higher group is selected.

Selecting the first section/group in a group Cursor right
If the group is closed and contains a section
or groups, it is opened.

Canceling the move ESC
546 33002204

33002204
17

Derived data types
At a Glance

Overview This Chapter describes the data type editor and the procedure for creating derived
data types.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

17.1 General information on Derived Data Types 549

17.2 Syntax of the data type editor 557

17.3 Derived data types using memory 567

17.4 Calling derived data types 569
547

Derived data types
548 33002204

Derived data types
17.1 General information on Derived Data Types

At a Glance

Overview This section contains general information about Derived Data Types.

What's in this
Section?

This section contains the following topics:

Topic Page

Derived Data Types 550

Global / Local Derived Data Types 553

Extended Data Type Definition (larger than 64 Kbytes) 555
33002204 549

Derived data types
Derived Data Types

Introduction Derived data types are defined using the data type editor. All the elementary data
types that already exist in a project and the Derived Data Types can be used to
define new data types.

Note: Open the Data Type Editor in Concept/Concept-DFB using File → Open →
File Format Data Type Files (*.DTY).

Note: Note that the File → Save and File → Save as menu commands are not
available in this editor. To save the Derived Data Types, select the menu command
File → Exit.
550 33002204

Derived data types
Using Derived
Data Types

Various block parameters can be transferred as one set through Derived Data
Types. This set is then divided into individual parameters again in the DFBs and
EFBs; these are processed and then output again as a set or as individual
parameters.

Using Derived Data Types in a DFB:

Note: For a definition of the Derived Data Types IN and OUT, see Example of a
Derived Data Type, p. 559.

EXAMP

FBI_3_7

ININ1 OUT OUT1

.6.5

IN.PAR1
IN.PAR2

ADD_DINT

.6.6

IN.PAR3
IN.PAR4

SUB_INT

.6.9

IN.PAR5
IN.PAR6

AND_BOOL

.6.10

IN.PAR7
IN.PAR8

OR_WORD

.6.7

INT_TO_DINT

.6.11

BOOL_TO_WORD

.6.12

OUT.PAR2
AND_BOOL

.6.8

OUT.PAR1
AND_BOOL
33002204 551

Derived data types
Definition of
Derived Data
Types

The definition of Derived Data Types appears in textual form.

When text is entered, all the standard Windows services for word processing are
available. The data type editor also contains some further commands for text
processing.

Spelling is immediately checked when key words, separators and comments are
entered. If a key word, separator or comment is recognized, it is identified with a
color surround.

Name
Conventions

The following name conventions apply to derived data types:
� Multi-element variable

If a Derived Data Type is assigned to a variable (field or structure), it is designated
as a multi-element variable.

� Structured variable
If a derived data type is assigned to a variable consisting of several elements, it
is designated as a structured variable. If this is the case, the declaration contains
the keyword STRUCT (see STRUCT ... END_STRUCT, p. 560). This also
applies if the derived data type only contains ARRAY declarations.
e.g.
TYPE
 EXP:
 STRUCT
 PAR1: ARRAY [0..1] OF INT;
 PAR2: REAL;
 PAR3: TEST;
 END_STRUCT;
END_TYPE

� Field variable
If a derived data type is assigned to a variable which consists of several ARRAY
Declarations (see ARRAY, p. 561), it is designated as a field variable. The key
word STRUCT is not used in this case.
e.g.
TYPE
 TEST: ARRAY [0..1] OF UINT;
END_TYPE
552 33002204

Derived data types
Global / Local Derived Data Types

Description Concept differentiates between global Derived Data Types and local Derived Data
Types. Global Derived Data Types can be used in any project (Concept) or in any
DFB (Concept DFB). Global Derived Data Types must be placed in the DFB
subdirectory of the Concept Directory. Local Derived Data Types are only
recognized in the context of a project or its local DFBs and can only be used there.
Local Derived Data Types must be located in the DFB subdirectory of the project
directory.

In the General information on the Concept INI file, p. 1092 you can specify that a
GLB directory containing the global Derived Data Types is generated in the project
directory during the IEC upload process. This means existing global Derived Data
Types in Concept → DFB are not overwritten, and there is no effect on other
projects.

Directory structure without uploaded project:

Note: This file structure should be noted at the creation stage of the Derived Data
Types, because the menu command File → Save as is not available for these. For
this reason it is imperative to ensure that the correct path has been selected prior
to pressing OK.

Concept

DFB

...

C:\\

PRJ

DFB

...

Installation drive

Concept directory

Directory for global Derived Data Types

Project directory

Directory for local Derived Data Types
33002204 553

Derived data types
Directory structure after setting up INI file ([Upload]: PreserveGlobalDFBs=1) for
uploaded projects:

Number of data
type files

Concept only supports one single local data type file for each project and only one
single global data type file. To ensure consistency between the host computer and
the PLC, the project containing one of the Derived Data Types must be reloaded into
the PLC after either of these files is edited.

If a local and a global Derived Data Type have the same name, the local Derived
Data Type is given priority.

Maximum File
Size

Concept

DFB

...

C:\\

PRJ

DFB

...

Installation drive

Concept directory

Directory for global Derived Data
Types

Project directory

Directory for local Derived Data Types

GLB Directory for
uploaded Derived Data Types

Note: The maximum file size (.DTY) for global and local Derived Data Types (i.e.
the definitions and including all comments) is 64 kbytes. If this maximum file size
is too small, the data type definitions can be shared between the global and local
data type file. T
554 33002204

Derived data types
Extended Data Type Definition (larger than 64 Kbytes)

At a Glance The maximum file size (*.dty) for global and local derived data types is 64 KBytes
(this includes the definitions and all comments). To extend this limitation for local
derived data types, you can create an Include file (*.inc), without increasing the size
of the database. This file contains a list of any data type files with the extension *.ddt.
However, the file cannot contain any DTY data type files.

A DDT data type file is structured just like a DTY data type file. Unlike DTY data type
files, a backup copy is not made in the database for DDT data type files. Therefore
it is impossible to determine exactly which data type was recently changed. Each
data type in the DDT data type file looks as if it was changed if the DDT data type
file was changed in any location. All initial values for variables with data types
defined in this DDT data type file are set to 0. The program status will be NOT
EQUAL as well.

The Include file is only allowed to be in the local DFB directory and contains the
name of the project, e.g. TESTPRJ.INC. Changing an Include file is monitored with
check digits.

The Include file has priority over the DTY data type file.

The definition of global derived data types has not changed.

Note: Only one Include file can be in the local DFB directory.
33002204 555

Derived data types
Create INC file An Include file can only contain existing data type files (*.ddt), i.e. the data type files
must exist in the project before creating an Include file.

The DDT data type files can be compared to DTY data type files, they are created
in the same way (see Elements of the Derived Data Types, p. 558) and can
therefore have the same contents.

The Include file is created in the Include file editor.

Carry out the following steps to open the Include file editor:

With this editor, the Include file created is automatically opened and now contains
all data type files (*.ddt) in the project. The data type files can then be added to the
contents of the Include file to define the Include file.

Only file names are allowed for data type file list, no path entries.

Example of the contents of an Include file:

The check digits are automatically generated by Concept when opening the project.

Limitations Changes in a DDT data type file or in the Include file do not cause this data type
check. Concept automatically carries out a data type check. The check consists of
many general tests which require a large amount of time.

This smallest change causes the program status to go to NOT EQUAL.

Step Action

1 Select File → Open and then go to the List files of type list box and select the
option Datatype file (*.dty...).
Reaction: The file types *.dty,*.ddt,*.inc are shown in the File name text box.

2 In the Folder text box, you must select the local DFB directory for your project.

3 In the File name text box, delete all data types except for *.inc.

4 Enter the name of the project as file name, e.g. TESTPRJ.INC.

5 Select OK and another window is opened. Confirm the question of if this file should
be created with Yes.
Reaction: The Include file editor is opened.

basic_dt.DDT; 0A3F5E2B; comment
basicprj.DDT; 3F5E0A2B; comment
local.DDT; 53F2BE0A; comment
prj_abc_1.DDT; 0A3F5E2B; comment
556 33002204

Derived data types
17.2 Syntax of the data type editor

At a Glance

Overview This section describes the syntax to be noted when generating Derived Data Types.

What's in this
Section?

This section contains the following topics:

Topic Page

Elements of the Derived Data Types 558

Key Words 560

Names of the derived datatypes 564

Separators 565

Comments 566
33002204 557

Derived data types
Elements of the Derived Data Types

At a Glance The following elements can be used to generate the Derived Data Types:
� Key words (see Key Words, p. 560)
� Names (see Names of the derived datatypes, p. 564)
� Separators (see Separators, p. 565)
� Comments (see Comments, p. 566)

Indents Indents and line breaks can be inserted at any position where a blank character is
also allowed to make the layout clearer. This does not affect the syntax.
558 33002204

Derived data types
Example of a
Derived Data
Type

Defining Derived Data Types:

OUT:

Keyword (beginning of data type definitions)

TYPE
(* Derived data type IN for EXAMP*)

Name of derived data type

IN:
STRUCT

PAR1: DINT; (* 1. Param. for addition *)
PAR2: DINT; (* 2. Param. for addition *)
PAR3: INT; (* 1. Param. for subtraction *)
PAR4: INT; (* 2. Param. for subtraction *)
PAR5: BOOL; (* 1. Param. for AND operation *)
PAR6: BOOL; (* 2. Param. for AND operation *)
PAR7: WORD; (* 1. Param. for OR operation *)

Data types of structure elements

Separators

Keyword (beginning of data type definitions)

STRUCT

PAR1: DINT; (* Result of the arithmetic operations
PAR1: DINT; (* Result of the arithmetic operations

END_STRUCT;

Name of structure elements

Keyword (beginning of data type definitions)

(* Derived data type IN for EXAMP*)

EXP: ARRAY [0..4] OF UINT

Definition of array “EXP”

END TYPE

Keyword (end of data type definitions)

Comments
END_STRUCT;

PAR8: WORD; (* 2. Param. for OR operation *)
33002204 559

Derived data types
Key Words

Introduction The following key words can be used to define the Derived Data Types:
� TYPE ... END_TYPE (see TYPE ... END_TYPE, p. 560)
� STRUCT ... END_STRUCT (see STRUCT ... END_STRUCT, p. 560)
� ARRAY (see ARRAY, p. 561)
� "Data types" (see "Data types", p. 563)

In accordance with IEC 113-3, key words must be entered in upper case. If lower
case is also to be used, however, this can be enabled in the dialog box IEC
Extensions using the option Allow case insensitive keywords.

If a key word is recognized, it is identified in colour.

TYPE ...
END_TYPE

The key word TYPE denotes the beginning of the data type definitions. The key word
TYPE is only entered once at the beginning of the data type definitions and is then
valid for all subsequent data type definitions.

The key word END_TYPE denotes the end of the data type definitions. The key word
END_TYPE is only entered once at the end of the data type definitions.

STRUCT ...
END_STRUCT

The key word STRUCT denotes the beginning of the elements of a Derived Data
Type. Structures are collections of various Elementary and Derived Data Types.
Variables, to which a Derived Data Type like this is assigned, are designated as
structured variables.

The key word END_STRUCT denotes the end of the elements of a Derived Data
Type.

Syntax for
STRUCT

STRUCT

NAME1: Data type;

NAME2: Data type;

NAMES: Data type;

END_STRUCT;
560 33002204

Derived data types
Example:
STRUCT ...
END_STRUCT

TYPE
 Example1:
 STRUCT
 Name1: BOOL; (* Comment *)
 Name2: INT; (* Comment *)
 Name3: ARRAY [0..5] OF BOOL; (* Comment *)
 END_STRUCT;
END_TYPE

ARRAY If several consecutive elements with the same data type are in use, they can be
defined as a field with the key word ARRAY.

After the key word ARRAY, the zone is given, i.e. the number of elements and the
number of the elements’ sub-elements if need be. Finally, the data type common to
all the elements is given. Elementary or Derived Data Types can also be used.

If a Derived Data Type is assigned to a variable in the variable editor consisting of
an ARRAY declaration, it is designated as a field variable.

Syntax for
ARRAY

NAME: ARRAY [No. 1.Element .. No. last element, no. 1st element .. no. last
element etc.] OF data type;

Encapsulation
Depth

The encapsulation depth is practically unlimited but should be restricted to a few
stages, e.g. to 2 or 3 dimensions to ensure clarity. The maximum size of a data type
file should not exceed 64KB.

Restrictions ARRAY indices can not be used in generic functions/function blocks (i.e. SEL and
MUX).

The following operations would generate an error:

k := Arr[a,b,MUX(i,in1=2)];
Arr30[0,1,MUX_INT(K := K, IN0 := 0, IN1 := 1, IN2 := 0)];

ARRAY indices can be used in all other functions/function blocks.

The following operation is possible:

B[8] := Arr3[REAL_TO_INT(TAN_REAL(ie.real1[2]),j,2]);

Example: One-
dimensional
ARRAYs

In the following example, a Derived Data Type is defined with the name par. This
Derived Data Type contains 6 elements (par[0] to par [5]) of the BOOL data type.

par: ARRAY [0..5] OF BOOL;

It is not absolutely necessary to begin the range with "0". Any range can be defined.
In this example the Derived Data Type contains 14 elements (par[51] to par [64]) of
the BOOL data type.

par: ARRAY [51..64] OF BOOL;
33002204 561

Derived data types
Example: A one-
dimensional
ARRAY in a
structured
variable

ARRAYs can also be used as elements in structured variables (definition with the
key word STRUCT):

Par3: STRUCT
 Name1: ARRAY [0..5] OF INT);
 Name2: BOOL;
 Name3: REAL;
 END_STRUCT;

Variables of the Par3 data type contain 3 elements:
� Name1 with 6 sub-elements (Par3.Name1[0] to Par3.Name1[5] of the INT data

type
� Name2 with 1 element of the BOOL data type
� Name3 with 1 element of the REAL data type

Multi-
dimensional
ARRAYs

In multi-dimensional ARRAYs the statements in [] are expanded by the number of
sub-elements of each element. i.e. the element given in the ARRAY contains in turn
a specific number of elements of the same data type.

Example: Two-
dimensional
ARRAY

The following example shows a two-dimensional ARRAY.

Par4: ARRAY [0..5, 1..3] OF BOOL;

Variables of the Par4 data type contain 6 elements of the BOOL data type each with
3 sub-elements of the BOOL data type:
� Par4 [0,1] to Par4 [0,3]
� Par4 [1,1] to Par4 [1,3]

and so on up to
� Par4 [5,1] to Par4 [5,3]

Example: Three-
dimensional
ARRAY

The following example shows a three-dimensional ARRAY.

Par5: ARRAY [0..5, 1..4, 11..14] OF REAL;

Variables of the Par5 data type contain 6 elements of the REAL data type each with
4 sub-elements of the REAL data type: Each sub-element contains 4 further sub-
elements of the REAL data type:
� Par5 [0,1,11] to Par5 [0,1,14]
� Par5 [0,2,11] to Par5 [0,2,14]

and so on up to
� Par5 [0,4,11] to Par5 [0,4,14]
� Par5 [1,1,11] to Par5 [1,1,14]

and so on up to
� Par5 [5,4,11] to Par5 [5,4,14]
562 33002204

Derived data types
Example: A
multi-
dimensional
ARRAY in a
structured
variable

As for one-dimensional ARRAYs, multi-dimensional ARRAYs can also be used as
elements in structured variables (definition with the key word STRUCT).

Par6: STRUCT
 Name1: ARRAY [0..5, 1..3] OF INT;
 Name2: BOOL;
 Name3: REAL;
 END_STRUCT;

Variables of the Par6 data type contain 3 elements:
� Name1 with 18 sub-elements:

� Par6.Name1[0,1]
to

� Par6.Name1[5,3] of the INT data type
� Name2 with 1 element of the BOOL data type
� Name3 with 1 element of the REAL data type

Example: Step by
step definition of
multi-
dimensional
ARRAYs

Multi-dimensional ARRAYs can also be defined step-by-step.

Par71: ARRAY [1..100] OF WORD;
Par72: ARRAY [1..3] OF Par71;
Par73: ARRAY [1..33] OF Par6;

"Data types" The names of the elementary data types and the names of already defined Derived
Data Types are recognized as a key word (in contrast with the names of elementary
data types, the names of derived data types are not displayed in color). Data types
must be closed with the separator ";".

If a different Derived Data Type is in use while defining a Derived Data Type, it must
be defined before it can be invoked.
33002204 563

Derived data types
Names of the derived datatypes

Description Names are given to the derived data types and the elements in the data type editor.

Names should not be longer than 24 characters and must be ended with the
separator ":"

Names are displayed in black

Note: Names should not begin with figures even if the option Options →
Preferences → IEC expansions... → Enable leading figures in identifiers is
activated.

Note: Within the data type editor it is possible to use special symbols (umlauts,
accents etc.). These symbols are also permitted in Concept EFBs created with
Concept-EFB can NOT be used however. The above is based on the internal
processes of Borland products. It is therefore strongly recommended that NO
special symbols are used in names.
564 33002204

Derived data types
Separators

Introduction The following separators can be used to define the derived data types:
� : (colon) (see Separator ":" (colon), p. 565)
� ; (semi-colon) (see Separator ";" (semi colon), p. 565)
� [] (square brackets) (see Separator "[]" (square brackets), p. 565)
� .. (full stops) (see Separator ".." (full stops), p. 566)

Separator ":"
(colon)

Marks the end of a name (name of the derived data type, name of the element).

Example: TYPE
 Example1:
 STRUCT
 Name1: BOOL; (* Comment *)
 Name2: INT; (* Comment *)
 Name3: ARRAY [0..5] OF BOOL; (* Comment *)
 END_STRUCT;
END_TYPE

Separator ";"
(semi colon)

Indicates the end of an instruction.

Example: TYPE
 Example1:
 STRUCT
 Name1: BOOL; (* Comment *)
 Name2: INT; (* Comment *)
 Name3: ARRAY [0..5] OF BOOL; (* Comment *)
 END_STRUCT;
END_TYPE

Separator "[]"
(square
brackets)

Encloses the range specification of the keyword ARRAY.
33002204 565

Derived data types
Example: TYPE
 Example1:
 STRUCT
 Name1: BOOL; (* Comment *)
 Name2: INT; (* Comment *)
 Name3: ARRAY [0..5] OF BOOL; (* Comment *)
 END_STRUCT;
END_TYPE

Separator ".."
(full stops)

Separates the beginning and end of range for the keyword ARRAY.

Example: TYPE
 Example1:
 STRUCT
 Name1: BOOL; (* Comment *)
 Name2: INT; (* Comment *)
 Name3: ARRAY [0..5] OF BOOL; (*Comment *)
 END_STRUCT;
END_TYPE

Comments

Description In the data type editor begin comments with the character sequence (* and end with
the character sequence *). Between these character sequences any comments can
be entered.

Comments can be entered at any position in the data type editor

Comments are displayed in color.

Using the menu command Options → Preferences → IEC Extensions → Nested
comments authorized you can enable nested comments to be authorized. There
are then no limits to the nesting depths.

Example:
Comments

TYPE
 Example1:
 STRUCT
 Name1: BOOL; (* Comment *)
 Name2: INT; (* Comment *)
 Name3: ARRAY [0..5] OF BOOL; (* Comment *)
 END_STRUCT;
END_TYPE
566 33002204

Derived data types
17.3 Derived data types using memory

Use of Memory by Derived Data Types

Boolean
Elements

Boolean elements are conveyed as bytes, the bit information is in the first bit.

Storage of Boolean elements:

2 2 2 2 2 2 2 2

Bit information

7 6 5 4 3 2 1 0
33002204 567

Derived data types
WORD Elements There are no gaps when Derived Data Types are stored in memory.

Example of a Derived Data Type:

TYPE
 SKOE:
 STRUCT
 PAR1: BOOL;
 PAR2: WORD;
 PAR3: BOOL;
 PAR4: WORD;
 END_STRUCT;
END_TYPE

Storage of the Derived Data Type in memory:

It should be ensured that WORD elements begin with word addresses (a dummy bit
could be inserted).

Located Derived
Data Types

If derived data types are passed to the hardware (located Derived Data Types) they
may only be stored in the 3x or 4x registers. Storage in the 0x or 1x registers is not
possible.

Note: If the structured variable is associated with a direct address and is further
processed externally (e.g. is read by a visualisation system from the PLC), the
WORD elements (including ANY_NUM elements) absolutely must begin with a
word address.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR2 (LSB)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR2 (MSB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

PAR4 (LSB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR4 (MSB)
568 33002204

Derived data types
17.4 Calling derived data types

Calling Derived Data Types

Introduction When a derived data type is defined in the data type editor, the name of the derived
data type appears automatically in the variables editor (Column Data type). The
assignment of a variable to a derived data type occurs in the same way as for
elementary data types.

Multi-element variables can be called as a text input of the individual elements or
using a dialog box Lookup variables. In such a case, the corresponding elements
are chosen according to the selection of a multi-element variable in the Select
Component of Type dialog box.

Addressing a
structure
element

To address a structure element the variable names are first assigned and then
separated from the element name by a dot
(e.g.VARIABLE_NAME.ELEMENT_NAME). If this element also consists of a
Derived data type as well, it is again separated from the next element name by a full
stop (e.g. VARIABLE_NAME.ELEMENT_NAME.SUB_ELEMENT_NAME) etc.
33002204 569

Derived data types
Example:
Addressing a
structure
element

Addressing a structure element:

Addressing an
ARRAY element

To address an ARRAY element the variable name comes first followed by the
element number in square brackets (e.g. VARIABLE_NAME[4]).

Step Action

1 Define a derived data type.
For example:
TYPE

 Example1:

 STRUCT

 Par1: BOOL;

 Par2: INT;

 END_STRUCT;

END_TYPE

2 Declare a new variable in the variable editor (e.g. with the name TEST).

3 Assign these variables the data type of the derived data type created (e.g.
Example1).

4 Close the variable editor with OK.
Reaction: A new multi-element variable called "TEST" of data type "Example1"
is now created.

5 To address this multi-element variable in its "entirety", simply enter the name of
the variable (TEST) into the program as usual.

To address only a single element of this multi-element variable (e.g. the element
"Par1"), enter the variable name and (separated by a dot) the name of the
element (e.g. TEST.Par1) into the program.
570 33002204

Derived data types
Example:
Addressing an
ARRAY element

Addressing an ARRAY element

Addressing an
ARRAY element
in a structure

To address an ARRAY element which is part of a structure the variable name is
entered first, followed by a dot and the element name, followed by the element
number in square brackets (e.g. VARIABLE_NAME.ELEMENT[4])

Step Action

1 Define a derived data type.
For example:
TYPE

 Example2: ARRAY [0..5] OF BOOL;

END_TYPE

2 Declare a new variable in the variable editor (e.g. with the name MY_VAR).

3 Assign these variables the data type of the derived data type created (e.g.
Example2).

4 Close the variable editor with OK.
Reaction: A new multi-element variable called "MY_VAR" of data type
"Example2" was created.

5 To address this "entire" multi-element variable, simply enter the name of the
variable (MY_VAR) into the program as usual.

To address only a single element of this Multi-element variable (e.g. the 4th
element of the ARRAY), enter into the program the variable name and in square
brackets the number of the element (e.g. MY_VAR[4]).
33002204 571

Derived data types
Example:
Addressing an
ARRAY element
in a structure

Addressing an ARRAY element in a structure:

Step Action

1 Define two derived data types (in which the second derived data type uses the
first as an element).
For example:
TYPE

 Example3:

 STRUCT

 Par1: BOOL;

 Par2: ARRAY [0..5] OF BOOL;

 Par3; BOOL;

 END_STRUCT;

 Example4:

 STRUCT

 Elem1: Example3:

 Elem2: INT;

 END_STRUCT;

END_TYPE

2 Declare a new variable in the variable editor (e.g. with the name
COMPLEX_VAR).

3 Assign these variables the data type of the derived data type created (e.g.
Example4).

4 Close the variable editor with OK.
Reaction: A new multi-element variable called "COMPLEX_VAR" of data type
"Example4" is now created.

5 To address this "entire" multi-element variable, simply enter the name of the
variable (COMPLEX_VAR) into the program as usual.

For example, if you only want to address one individual element of this multi-
element variable (e.g. you want to call the 5th element of the ARRAY from
element "Par2" (derived data type "Example3") as an element of "Elem1"), enter
the variable names in your program and the element name separated by a dot,
(in your "current" derived data type, here "Example4"), and the name of the
elements of the derived data type called by the "current" derived data type
separated by a dot (here "Example3") and followed by the element number in
square brackets (e.g. COMPLEX_VAR.Elem1.Par2[5]).
572 33002204

Derived data types
Range
Monitoring for
Indexed Access

Indexed access to Arrays in ST are monitored for over range violations. If the index
is a constant, monitoring is carried out on the compile level in the programming
device. If the index is a variable, monitoring is carried out during runtime in the PLC
during every cycle.

In order to optimize program run time, the index for multi-dimensional arrays or
arrays that are embedded in structures are only checked for the starting and end
address of the memory area reserved for the variable. This means that an invalid
component is overwritten even though it is always located inside the structure. An
error message is only generated in the event display dialog box when the index for
the memory area allocated for this structure is exited: "ARRAY Index exceeds range
(..)". Data access is diverted to the memory starting address of the structure.

Example 1 one
dimensional
structure

Defining a derived data type in the data type editor:

Variable definition:

Sequence in text language:

If the Index (indx) is too large (>7) or too small (<4), and data access is made
outside the range(Otto), the first element is automatically accessed in the PLC
runtime system (Otto[4]) and an error message is generated.

Data can be overwritten!

The index ARRAY does not serve as the range boundary, but always the entire
memory range allocated to the variable.
With multi-dimensional Arrays or Arrays within a structure, an error message is first
returned when the index is displayed on a memory address outside of the memory
area allocated for the entire array or entire structure.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

TYPE
IntArr4: ARRAY [4..7] OF INT;

END_TYPE

VAR
 indx: INT;
 Otto: IntArray4;
END_VAR

FOR indx := 4 TO 7 DO (* standardize all elements with 1234 *)
Otto[indx] := 1234;

END_FOR ;
33002204 573

Derived data types
Example 2 Array
embedded in a
structure

Defining a derived data type in the data type editor:

Variable definition:

Sequence in text language:

In this case the range boundary is determined by the total amount of memory
occupied by the Otto variables. The range monitoring is first activated when indx <2
or indx >9 occurs. An over range then accesses the address Otto.F1!

Access with indx = 2-3 or indx = 8-9 is not recognized as faulty, but the elements
F1 (indx = 2-3)or F3 (indx = 8-9) are overwritten!

TYPE
IntArr4_M:

STRUCT
F1: DINT;
F2: ARRAY [4..7] OF INT;
F3: REAL;
END_STRUCT;

END_TYPE

VAR
 indx: INT;
 Otto: IntArray4_M;
END_VAR

FOR indx := 4 TO 7 DO (* standardize all elements with 1234 *)
Otto.F2[indx] := 1234;

END_FOR ;
574 33002204

Derived data types
Example 3 multi-
dimensional
array

Defining a derived data type in the data type editor:

Variable definition:

Sequence in text language:

In this case when the first index indx_x of the range boundary is exceeded it directly
results in a error message. For the second index indx_y, the range monitoring
becomes active when the address created from the two indexes are outside the
memory area for the entire array (4*4 words).

 Examples:

for indx_x = 1, it can become indx_y = 16 before the range monitoring is put into
effect.

for indx_x = 4, range monitoring becomes active when indx_y = 5.

TYPE
IntArr4x4:
ARRAY [1..4, 1..4] OF INT;

END_TYPE

VAR
 indx_x: INT;
 indx_y: INT;
 Otto: IntArray4x4;
END_VAR

FOR indx_x :=1 TO 4 DO (* standardize all elements with 1234 *)
 FOR indx_y :=1 TO 4 DO

Otto[indx_x, indx_y] := 1234;
 END_FOR ;
END_FOR ;
33002204 575

Derived data types
576 33002204

33002204
18

Reference data editor
At a Glance

Overview This Chapter describes the reference data editor (RDE) and its use with activated
animation.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

General Information about the Reference Data Editor 578

Converting RDE templates 580

Changing signal states of a Located variable 582

Cyclical Setting of Variables 583

Unconditional locking of a section 586

Animation 587

Replacing variable names 589

Load reference data 590
577

Reference data editor
General Information about the Reference Data Editor

At a Glance Variables can be displayed in animation mode, 0x and 1x references can be blocked
(forced) and unlocated element variables or elements of structures can be set
cyclically using the Reference Data Editor (RDE). The behavior of the variables can
be followed and modified online through directly accessing the variables and direct
addresses used in the IEC program. Variable states are displayed in animation
mode with different colors (disabled, cyclically set).

Maximum 250 entries are possible in the Reference Data Editor. If this limit is
exceeded a warning message is generated when saving.

Creating RDE
Templates

To create an RDE template, use the variables declared in the variable editor. There
are various possibilities here:

Display Signal
States

Stored signal states are always overwritten by the current values in the PLC with an
activated animation (Online → Animation) when opening an RDE template.

The signal states in the PLC can be displayed in online mode using menu instruction
Controller status... . When starting the PLC, you can view signal states
corresponding with the program progress in animation mode.

If ... Then

You make a double click on the
corresponding numerical field in the first
column,

you open the dialog Lookup variables, for
selecting a declared variable or component of
a structure.

You enter the variable names of a declared
variable in the column Variable name,

the declared parameters are entered into the
RDE template.

You enter the direct address in the column
Address,

then the value, the format and in some cases
the defined name of the corresponding signal
are entered in the RDE template.

You use menu command Insert
Addresses... to insert entire reference
blocks into the column Address,

the values and the formats of the
corresponding signals are entered into the
RDE template.
578 33002204

Reference data editor
Printing RDE
Templates

To print an open RDE template, click in the RDE main menu on the menu instruction
Print. An exact copy of the screen image of the RDE template will be created on
paper.

Using RDE
Templates

Using an RDE template in more than one project is not recommended. This can
cause doubled variable names to appear as well as variable names that did not exist
in the original RDE template. The variables in the RDE templates are always
displayed with the current reference addresses.

Converting RDE
Templates

This procedure can be found in the description Converting RDE Templates (see
Converting RDE templates, p. 580).

Note: We recommend that you modify the printer properties to landscape paper
format in the operating system (Windows). This will give you the complete image
of the RDE template on a single page.
33002204 579

Reference data editor
Converting RDE templates

Introduction RDE templates from an earlier version of Concept are automatically converted into
the template format of the new Concept version. To differentiate between the
converted RDE templates and the other RDE templates, they are saved with the file
extension *.RDF.

Incomplete RDE templates are created!

Before the conversion make sure that the variables in the RDE template are
declared in the opened project in the new version of Concept. New variables are
listed in an error message and cannot be displayed in the RDE template (*.RDF)
created from it.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
580 33002204

Reference data editor
Automatic
Conversion

Automatic Conversion is performed when the RDE template of a previous version of
Concept is opened:

Step Action

1 Start the new version of Concept and open the project.

2 In the Online main menu click on the Reference data editor menu command.
Result: The RDE main menu appears in the men bar.

3 In the Online main menu click on the Reference data editor menu command.

4 Select the directory, in which the RDE template (*.RDE) is saved (e.g.
D:\CONCEPT_OLD).
Result: All existing RDE templates (*.RDE or *.RDF) are displayed.
Note: The files with the *.RDF extension come from the conversion of generated
RDE templates (*.RDE).

5 Select the *RDE RDE template to be converted.

6 Click on the command button OK.
Result: The RDE AutoConvert message appears. This informs you that the
*RDE template was created in a previous version of Concept and is now being
saved in a new format, so that it can be used in this version of Concept. The
converted template is saved in a file with the *.RDF extension.

7 Click on the command button OK.
Result: The converted RDE template (*.RDF) is displayed.
Warning: All RDE template variables must be declared beforehand in the
project. For new variables, the RDE Template Errors error message appears
now, in which all faulty variables are listed. After closing the window, the
converted RDE template opens, but only containing the declared variables.

8 Using the Save reference data table under... menu command, it is possible to
save the converted RDE template in the directory in the new version of Concept
(C:\CONCEPT_NEW).
Result: The converted RDE template is stored in the Concept directory with the
*.RDF file extension.
33002204 581

Reference data editor
Changing signal states of a Located variable

At a Glance Located variables can be changed by checking the corresponding signal box in the
columnDisable and editing the value. Upon locking, the variable is separated from
the hardware and is only used in the logic again if the disablement is undone. In this
way, the changed signal states of all editors (FBD, SFC, LD, ST, LL984) are taken
into account.

Forcing inputs
and outputs

When inputs are forced, signal states are transferred until the value in the RDE table
is changed again. When outputs are forced, the new value appears at the beginning
of each program cycle. When a subsequent change is made using the program
logic, this value is not saved in the state RAM until the locking of the output has been
removed.

Display of
disabled
variables

Variables that have been disabled by checking the check mark are shaded in color
in the editor display. By removing the check symbol, the colored background of the
corresponding variable is also no longer visible.

Loading
reference data

Cyclically set values and disabled variables can be loaded onto the PLC using the
menu command Load reference data.

These settings then remain the same until the user makes a change in the RDE
table, or the PLC loses the loaded data (e.g. by loading a different project).

All changed signal states are loaded directly onto the PLC.

Though not in the case of forced located variables.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

Note: In an open RDE table, the changed date is then automatically saved using
the menu command Load reference data. The menu command Save table then
no longer needs to be used.
582 33002204

Reference data editor
Cyclical Setting of Variables

Introduction Variables and structure elements can be changed by entering a set value
corresponding to the data type of the variable in the Set Value column. This value
will be written uniquely, if the corresponding signal's box in the Cyclic Set column
is subsequently checked. The new signal state is loaded directly onto the PLC and
is transferred to the cyclically set variables administrator. The signal state of the
variable, attained after logic editing at the end of the cycle, is specified in the Value
column. In animation mode, the cyclical setting of variables in IEC sections is
displayed.
33002204 583

Reference data editor
Cyclic Set

When the cyclical setting check box is checked, the set value in the Set Value
column can still be changed.

If the box in the column Cyclic Set is unchecked, the signal state in the column
Value is loaded onto the PLC and is used in the logic.

A maximum of 300 variables can be cyclically set. For cyclical setting, the length of
the entry is limited to 150 characters in the column Variable Name, because this
name is sent to control. If a variable is used several times in the reference data
editor, the most recently entered value will always be the one taken into account for
cyclical setting.

Cyclical setting and locking of signal states in the operating modes:

Note: Cyclical setting of variables can only be performed ONLINE and in EQUAL
mode, not in animation mode. Depending on logic, the displayed value may deviate
from the cyclically set value.

Note: All changed signal states are loaded directly onto the PLC.

Modified variable names are not recognized by replacements.

When a variable is cyclically set, the spelling of the variable name should not be
changed in the variables editor.

Failure to follow this instruction can result in injury or equipment damage.

Mode Option Meaning

LOCAL Disable The variables declared in the Variable Editor can be
written in the RDE Template in local mode. The signal
states specified in online mode are displayed in local
mode but cannot be changed and have no effect.

ONLINE Disable The changed signal states of located variables are
transferred directly from the program logic.

LOCAL Cyclic Set Cyclical setting of variables cannot be executed in local
mode.

ONLINE Cyclic Set The signal state in the column Set Value is used in logic
editing by checking the box (check mark visible), and
supplies a value at the end of the cycle, which is
displayed in the column Value.

CAUTION
584 33002204

Reference data editor
Getting/deleting
cyclical set list

The cyclical values set in animation mode can be inserted into the RDE Template in
disabled animation using the menu command Get CSL.

Cyclically set values are recognized in the RDE Template by the check mark in the
column Cyclic Set, and are automatically recognized row by row. It is therefore
referred to as a cyclical set list. Using the menu command Online → Get CSL this
recognized list will be inserted dependently from the selected row in the RDE table.
Getting and inserting the cyclical set list can be done as often as required. The most
recent cyclical set list is always located on the clipboard and can only be deleted
using the menu command Delete CSL. Thereafter, getting and inserting is no longer
possible until values are cyclically set at the next animation.

Downloading
reference data

Cyclically set values and disabled variables can be loaded onto the PLC using the
menu command Download reference data.

These settings then remain the same until the user makes a change in the RDE
Template, or the PLC loses the loaded data (e.g. by loading a different project).

Note: Each time, the system gets all cyclically set values .

Note: In an open RDE Template, the changed date is then automatically saved
using the menu command Download reference data. The menu command Save
template then no longer needs to be used.
33002204 585

Reference data editor
Unconditional locking of a section

At a Glance At the section to be inhibited, the logic must carry a BOOL data type "output" and it
should be noted that the section is disabled at configured "1".

Procedure for
unconditional
locking of a
section.

The following procedure is performed to disable a section unconditionally in the RDE
table:

Risk of unwanted process states.

Locking a section does not mean that programmed outputs within the section are
deactivated. If an output was already set during a previous cycle, this state also
remains after the section has been inhibited. It only ceases to be possible to
change the state of these outputs once the section has been inhibited.

Failure to follow this instruction can result in injury or equipment damage.

Note: A section that contains a logic to lock/release other sections should not be
disabled, if possible. Output state disabled sections cannot be changed.

CAUTION

Step Action

1 By double-clicking in a text box in the first column in the table (1 … 100) open
the dialog box Look up variables.

2 In the zone Data type select the option button Structured and from the list select
SECT_CTRL.
Reaction: The names of all sections are displayed.

3 Select the name of the file to be disabled and using the command button
Elements... open the dialog box Select elements by type.

4 Select the line disable : BOOL and confirm with OK.
Reaction:The structured variable (Sectionname.disable) to which the section to
be disabled is assigned, is entered in the RDE table.

5 Link the PLC and the programming device (Online → Link...), and load the user
program onto the PLC (Online → Load...).
Reaction: The PLC is in ONLINE and ANIMATIONS mode.

6 In the column Value enter a configured "1".
Reaction: The section is disabled and will not be processed.
586 33002204

Reference data editor
Animation

At a Glance Animation can only take place in ONLINE mode. By activating Animation in the
Reference data editor it is possible to display the signal states of the variables, and
to observe the behavior of the output signals while the program is running.

During animation, signal states can be changed online also. The new values are
automatically loaded onto the PLC and are taken into account during the next cycle.

Animation status The column Animation status specifies the status of entered unlocated Variables
during animation.

This table provides an overview of the animation status possibilities:

Note: When changing a value it should be ensured that the locking of the variable
is subsequently removed. It is impossible to animate disabled variables correctly.

Display Mode Cause

Not used
Note: In LOCAL
mode, this display
changes to "Unequal
program"

ONLINE,
ANIMATED

A variable not used in the user program, which is
declared in the Variable Editor, was entered in the
RDE table.

Inhibited I/O flag bits ONLINE An unlocated variable was cyclically set during the
ANIMATIONS mode.

Unequal program ONLINE A variable that is used in the user program, which is
declared in the Variable Editor, was entered in the
RDE table. The program is in MODIFIED mode.

Unequal program
Note: In ONLINE
mode, this display
changes to "Not
used".

LOCAL A variable not used in the user program, which is
declared in the Variable Editor, was entered in the
RDE table.
33002204 587

Reference data editor
Display of forced
and cyclically set
signals in
ANIMATIONS
mode

The variables that are forced or cyclically set in the reference editor are labelled with
a colored background in the individual editors.

Forced variables are displayed in the following way:

Cyclically set variables are displayed in the following way:

Display of forced
and cyclically set
element
structured
variables in
ANIMATIONS
mode

If a structured variable element is forced or cyclically set, there are different display
possibilities.

Editor Display

IEC editors (FBD, LD, SFC, IL, ST) When forcing occurs, variable names are shaded in
ochre (brown-yellow).

LL984 editor When forcing contacts, variable names are
underlined.
When forcing spools, an opened contact ("inhibited")
is displayed before the spool.

Monitoring fields and Display dialog When forcing occurs, variable names are shaded in
ochre (brown-yellow).

Editor Display

IEC editors (FBD, LD, SFC, IL, ST) When cyclical setting occurs, the variable name is
shaded in violet.

Monitoring fields and Display dialog When cyclical setting occurs, the variable name is
shaded in magenta.

Note: In LD (Ladder Diagram) spools and contacts are displayed in color.
However, due to forcing and cyclical setting, it is possible that the colors of the
variable names will be different from the color display of spools and contacts.

Display Cause

The name of the structured variable
(e.g. motor) is shaded in color.

In the editor, a multi-element variable (e.g. motor) is
displayed, in which one or more elements is forced
or cyclically set.

The name of the structured variable
element (e.g. right motor on) is
shaded in color.

In the editor, a forced or cyclically set element of a
multi-element variable (e.g. right motor on) is
displayed.

The name of the structured variable
element (e.g. right motor on) is
shaded in color, but the name of the
element is not.

In the editor, an element of a multi-element variable
that is not forced or cyclically set is displayed, but a
different element of this multi-element variable is
cyclically set or forced.
588 33002204

Reference data editor
Replacing variable names

At a Glance When using an open RDE table it is possible to simultaneously edit the Variable
Editor. If variable names are changed in the Variable Editor using the Find/replace
function, these changes are automatically adopted in the open RDE table. In this
case the RDE animation is initially terminated and the RDE table must be reloaded.

Procedure and
reaction

For the automatic adoption of replaced variable names in the simultaneously open
RDE table, the following steps are to be performed:

Step Action

1 Open a section and create an online link.
Note: The state between PLC and programming device must be EQUAL. If not,
load the program into the PLC.

2 Start the animation (Online → Animate binary values).
Reaction: The signal states of the section are displayed in color.

3 Open an existing RDE table (RDE → Open table...).
Reaction: The RDE animation is started.

4 Open the Variable Editor (Project → Variable declaration...).

5 Using the command button Find/replace open the dialog Find/replace.

6 Replace an existing variable name with a new name (Command button
Replace).
Reaction: The variable name was changed in the Variable Editor.

7 Exit the Variable Editor using OK.
Reaction: The section is automatically updated, and the RDE animation is
terminated.

8 Close the RDE table and save the changes (Command button Yes).

9 Reopen the saved RDE table (RDE → Open table...).
Reaction: The RDE animation with the changed variable name is recovered.
33002204 589

Reference data editor
Load reference data

At a Glance In the same cycle, the variables changed in the reference data editor are sent to the
PLC, using the menu command Online → Load reference data.

Note: To perform the loading, the animation must be disabled.
590 33002204

33002204
19

ASCII Message Editor
At a glance

Introduction This chapter describes the ASCII message editor.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

19.1 ASCII Editor Dialog 593

19.2 User Interface of ASCII Message Editor 601

19.3 How to Continue after Getting a Warning 605

19.4 ASCII Editor in Offline/Combination/Direct Modes 606
591

ASCII Message Editor
592 33002204

ASCII Message Editor
19.1 ASCII Editor Dialog

At a glance

Introduction This section describes the ASCII editor dialog.

What's in this
Section?

This section contains the following topics:

Topic Page

Generals to ASCII editor dialog 594

Text 595

Variables 596

Control code 597

Spaces 597

Carriage Return 598

Flush (buffer) 599

Repeat 600
33002204 593

ASCII Message Editor
Generals to ASCII editor dialog

Introduction Use the ASCII message editor to create, edit, and simulate ASCII messages. The
ASCII message text/control that is created in the editor can be transferred to the
selected PLC. Conversely, the ASCII messages internal to the controller can be
uploaded to the editor.

An ASCII message set consists only of a list of messages that satisfy certain rules.
The number of messages allowed and the maximum length of the ASCII message
set is defined as part of the PLC configuration. Each message consists of a list of
ASCII message fields separated by commas.

The following fields are currently supported:
� Text, p. 595
� Variables, p. 596
� Control code, p. 597
� Spaces, p. 597
� Carriage Return, p. 598
� Flush (buffer), p. 599
� Repeat, p. 600

Preconditions This function is only available when using:
� Concept for Quantum
� The modules J892 or P892
� Programming language LL984
594 33002204

ASCII Message Editor
Text

Introduction The text messages defined by text fields take the format ’Hello World’ whereby
Hello World becomes the text to be forwarded. The single quotation marks are
the delimiters. The ASCII message editor development dialog provides a
development area and a simulator area where the composed message is interpreted
and displayed for you to make any necessary edits before leaving the editor dialog.

Message Length An ASCII message can be as long as 134 words. Three words are for overhead plus
the actual message maximum of 131 words (2 characters per word).

Message words are used up as follows:

Field type Field length (in words)

ASCII text 1 + length of text / 2 rounded up

Return 1

Flush 0, 1 1

Flush 2, 3 2

Control 1

Variable 1

Repeat 2

Space 1
33002204 595

ASCII Message Editor
Variables

Introduction A variable will be given the format NTF.

The meaning of this is:
� N representing the decimal number (1...99) of the data fields of the data type

defined by T.
� T is the data type of the variable.
� F the decimal field width for the variable.

Data Types The data types supported are:

Example For example: 2H2 means:
� 2 registers (N)
� in hexadecimal (T)
� containing 2 hexadecimal numbers (F)

N can fit into the number of data registers needed, but it is not an absolute
requirement.

The relationship is:

Type Repetition factor

A = ASCII character 1

B = binary number 1 to 16

H = hexadecimal 1 to 4

I = integer 1 to 8

L = integer with leading 0s 1 to 8

O = octal 1 to 6

Type Relationship

A Number of registers = N/2 (next upper integer value)

B Number of registers = N

H for 1 ≤ F ≤ 4... Number of registers = N
for 5 ≤ F ≤ 8... Number of registers = 2 x N

I and L The same as H

O Number of registers = N
596 33002204

ASCII Message Editor
Control code

Meaning of
Control Code

A control code is given the format "Null", with Null being a three characters OOO,
and the double quotation marks are delimiters.

For example: "017"

Spaces

Meaning of
Spaces

A space field is given the format ddx, with dd being a decimal number (1..99) used
to determine how many spaces are to be added to the message.

Representation
of Dialog

Many spaces between text:

ASCII Message Editor

Cancel HelpOK

Message

1 ´Hello´,10x,´World´

Hello World

Simulation:

Used Words: 12 Free Words: 8 Length: 12

Delete

Delete All

View

Export

Import
33002204 597

ASCII Message Editor
Carriage Return

Meaning of
Carriage Return

A carriage return field will add a carriage return to the output information, and it has
the format, /.

Representation
of Dialog

Carriage return:

ASCII Message Editor

Cancel HelpOK

Message

1 ´Hello´,/,´World´

Hello

Simulation:

Used Words: 12 Free Words: 8 Length: 12

World

Delete

Delete All

View

Export

Import
598 33002204

ASCII Message Editor
Flush (buffer)

Meaning of Flush This will expressly specify for the P892 only how the input message buffer is to be
cleared. This field has the format <*>/.

The * can be any of the following:

* Meaning

0 Remove all characters in the buffer. An example is: <0> clears all.

1;bbb Removing the number of characters specified by bbb, whereby bbb is a number
(1...255). For example, <1;100> flushes the first 100 characters in a buffer.

2;hhhh Scanning the message for the 2 characters that are specified by the
hexadecimal numbers hhhh. If a match is found, delete all characters up to but
not including the match.
An example is: <2;5445> causes the buffer ‘12TEST’ to become "TEST".

3;rrr;hhhh Scanning the message for the 2 characters that are specified by the
hexadecimal numbers hhhh. If a match is found, delete all characters up to and
including the match. The search is to be performed as often as specified by rrr,
whereby rrr is representing a decimal number 1...255.
Example: <3;2;5445> causes the buffer ‘12TEST3456TEST789TEST’ to
become ST789TEST.
33002204 599

ASCII Message Editor
Repeat

Meaning of
Repeat

Use this message field to specify that a number of message fields will be repeated
several times. This field has the format dd(*), with dd being a decimal repetition
factor (1....99), () are delimiters, and * is a series of message fields.

Representation
of Dialog

Repeated text:

ASCII Message Editor

Cancel HelpOK

Message

1 3[´repeat´,2x]

repeat repeat repeat

Simulation:

Used Words: 10 Free Words: 10 Length: 10

Delete

Delete All

View

Export

Import
600 33002204

ASCII Message Editor
19.2 User Interface of ASCII Message Editor

At a glance

Introduction This section describes the user interface of the ASCII message editor.

What's in this
Section?

This section contains the following topics:

Topic Page

How to Use the ASCII Message Editor 602

Message Number 603

Message Text 604

Simulation Text 604
33002204 601

ASCII Message Editor
How to Use the ASCII Message Editor

Invocation of
ASCII Message
Editor

The ASCII message editor is invoked from the ASCII messages... menu item in the
Project menu. This editor allows you to add/modify/delete messages in a temporary
work space, then save or cancel the changes.

Add New
Messages

To add a new message, type the new message number into the Message text box
and type a syntactically correct message into the message text box. As you enter a
message into the message text box, its corresponding simulation is displayed in the
Simulation text box. When the message is syntactically incorrect, it is displayed in
red.

Modify Existing
Messages

To modify an existing message, select a message from the Message number list
and change the text.

Delete Messages To delete a message, select a message from the Message number list and click on
Delete.

Clicking on the button Delete All will remove all messages in the temporary
workspace. The button is active if there is at least one ASCII message in the
message set. Selecting this option results in the display of a confirmation dialog.

View Clicking at the button View will produce a view of the displayed ASCII message
dialog. The view message format is message number followed by message text.

You can select from the choices available. To download the editor from the view list,
click on the message and on OK.

Save Changes Use the button OK to save processes performed while working with the ASCII editor
and to close the dialog. Each message that has been created or changed is checked
for syntactic correctness at this point. The checking begins at the current message
and wraps around until all messages are checked. If a syntax error is detected, a
definition of the error is displayed first, and as soon as the error dialog is cleared, the
message itself appears with the cursor on the faulty character. Every attempt to add
ASCII characters which will cause the size of the entire message area set in the
configuration to be exceeded will generate an error.

Length, Used
and Free

These fields display the length of the current message (in words), the number of
words used and the number of words remaining.
602 33002204

ASCII Message Editor
Message Number

Introduction The combo box Message number is a dialog that contains a message selection list
with a check mark next to the currently selected message.

Use this dialog to select existing message numbers and/or to add new message
numbers. As long as there are no messages, text box and list are empty. If there are
messages, the editor is initially displayed with the text box containing the first
message number and a list of message numbers for existing messages. The
message number that relates to the currently displayed message is posted above
the list box.

Action For the selection of an existing message, click at the list button and mark a number
in the list or type the number into the text field. A new message number can be
inserted by typing the number into the text field.

Effects If the message number assigned to an existing message is changed (either text or
list entry), the text box Message will display the message text for the message
number and the box Simulation shows the simulation of the message. If a new
message number has been entered, the text boxes Message and Simulation will
be cleared.

Error handling The following errors can be appearing:

If... Then ...

an unauthoried character is entered
in the number field of the message.

a message field dialog will show: "Message number
contains illegal characters".
After acknowledging the error, the message number is
reset and the process will continue in the text box
Message.

the text box Message is not filled
out.

a message field dialog will show: "There must be a
message number before text can be

entered".
After acknowledging the error, the message number is
reset and the process will continue in the text box
Message.

the number is greater than the
maximum number set in Configure
→ ASCII Setup....

a message field dialog will show: " Message number
exceeds maximum set in configuration".
After acknowledging the error, the message number is
reset and the process will continue in the text box
Message.
33002204 603

ASCII Message Editor
Message Text

Introduction The text box Message is a text editor with free format for the entry of ASCII
messages. This editor allows one arbitrarily long line of free-format text. Although
the text should follow the ASCII message syntax, it does not necessarily have to be
syntactically correct prior to activating the OK button, even though a view note
regarding validity will appear already during entry of the messages.

Actions A currently selected message is made available for editing, otherwise a new
message can be entered. The standard Windows edit operations (Cut, Paste,
Copy, ...) are allowed.

Effects If the message is syntactically correct, its text will be displayed in normal textual
color, if not, the display will be in red. Text wraps so there is never a case where
horizontal scrolling is required.

Simulation Text

Introduction The text box Simulation is a read-only multi-line field. The simulated output of the
current message is displayed in this window. As messages are added or changed,
the simulated output is displayed in the simulation window.

Special
Considerations

The simulation of control codes is shown as the ASCII character that corresponds
to the controller, except those control codes that are not authorized in Windows text
control and are written as an ’l’.

Note: Any simulation greater than 32 k characters is truncated to this maximum.
604 33002204

ASCII Message Editor
19.3 How to Continue after Getting a Warning

How to Continue after Getting a Warning

Introduction A few conditions will allow continuing work with the ASCII editor although with
possibly restricted functionality.

Exceeding the
Total Messages

Message numbers that are above the maximum limit set in Configure → ASCII
Setup... will only be available for display or delete. These messages appear grayed
out.

The accompanying warning reads: "Warning: Some message numbers
exceed the highest message number xx, defined in Configure.
All messages beyond xx can only be displayed or deleted."

Exceeding the
Message Area
Size

If the size of the message in the data base is greater than the size defined in
Configure → ASCII Setup..., a warning will appear. You can continue to view,
change, or delete but changes cannot be saved unless the size falls below the
configuration setting.

This warning reads: "Warning: The size of the ASCII message area,
xx, exceeds the maximum size, xx, defined in Configure."

Tips

Note: To match a configuration, messages may be deleted.

Note: To match a configuration, messages may be deleted.

Note: Information about the ASCII character set can be found in the PLC User’s
Guide.
33002204 605

ASCII Message Editor
19.4 ASCII Editor in Offline/Combination/Direct Modes

ASCII Message Editor in Offline/Combination/Direct Modes

Offline When using Concept to program in offline mode, the ASCII message editor is
displayed with the set of messages saved in the data base. By activating the OK
button, these messages will be saved in the database.

Direct When using Concept to program in direct mode, the ASCII message editor will be
displayed with the set of messages saved in the controller. By clicking on the OK
button, the changes made to the ASCII messages will be downloaded to the
controller.

Combination
Mode

When entering the Combination mode, Concept checks whether the information in
the controller matches the information in the data base. If a match is found, the
controller is considered EQUAL to the database. A mismatch is marked as NOT
EQUAL. If the status is EQUAL, the ASCII message editor will be displayed with the
ASCII message set taken from the data base. If a displayed editor message is
changed, these changes will be saved to the database and the controller after
clicking the OK button.
606 33002204

33002204
20

Online functions
At a Glance

Overview This chapter describes the various online functions.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

20.1 General information about online functions 609

20.2 Connect to PLC 610

20.3 Setting up and controlling the PLC 626

20.4 Selecting Process information (status and memory) 639

20.5 Loading a project 645

20.6 Section animation 656

20.7 Online Diagnosis 659

20.8 Logging Write Access to the PLC 661
607

Online functions
608 33002204

Online functions
20.1 General information about online functions

General information

At a Glance After setting up a link via Modbus, Modbus Plus or TCP/IP between the
programming device and the PLC the project can be loaded onto the PLC. Now
special online functions for displaying and changing the current value in the PLC
state RAM are available in the separate editors. The PLC can be controlled.

A communication timeout or a general memory protection failure could
occur if the system clock of the programming device is changed while it is
online.

If the running program cannot be terminated, all animated program sections should
be closed , or the animation should be turned off in order to reduce the possibility
of getting into a time critical operation.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
33002204 609

Online functions
20.2 Connect to PLC

At a Glance

Overview This section contains information about connecting the PLC.

What's in this
Section?

This section contains the following topics:

Topic Page

General 611

Presettings for ONLINE operation 614

Modbus Network Link 615

Modbus Plus Network 616

Modbus Plus Bridge 622

TCP/IP-Network Link 624

Connecting IEC Simulator (32 bit) 624

State of the PLC 625
610 33002204

Online functions
General

Introduction A connection can be created between a programming device and the PLC.

In monitor operation (it is not supported by M1E PLCs), it is possible to make
alterations to the IEC sections, but these cannot be downloaded to the PLC. When
exiting Concept a warning will be displayed.

Limited PLC
Login

When logging into the PLC, the following restrictions are imposed for Quantum
CPUs 140 434 12 A and 534 14 A/B:
� If a programming device is already connected with the PLC in programming

mode, then no other programming devices can be connected with the PLC.
� If a programming device is already connected with the PLC in Monitor mode then

other programming devices can be only connected with the PLC in Monitor mode.
An attempt to connect with the PLC in another operating mode is not possible for
the other programming devices.

Consistency
check

If a project is open and a connection between the programming device and the PLC
is to be created, a consistency check is automatically carried out between the
program, EFBs and DFBs on the programming device, and the PLC. The result of
this check (EQUAL, MODIFIED or NOT EQUAL) is displayed in the status bar and
written in a file. This file is located in the project directory of Concept and has the
name PROJEKTNAME.RMK. It functions for internal usage and automatically
changes its contents. The meaning of the individual entries can be found in the
following diagram.

Note: Only one programming device may be connected to the PLC.
33002204 611

Online functions
Status
descriptions

Status descriptions:
� EQUAL

The program on the programming device and the PLC is consistent.
� NOT EQUAL

The program on the programming device and the PLC is not consistent. To
establish consistency use the menu command Online → Download... .

� MODIFIED
The program on the programming device was modified. The modifications can be
made online in the PLC with the menu command Online → Download changes.
Note: Even when changes that are not relevant to the code (e.g. creating/
changing comments in IL/ST, moving objects (without affecting logic) exist in
FDB/LD/SFC), the MODIFIED status is displayed temporarily. When the section
is next analyzed (Project → Analyze project, Project → Analyze section or
Online → Download changes), the program automatically reverts to the EQUAL
status (if no changes have been carried out that are relevant to the code). Even
if changes that are relevant to the code have been carried out, only these
sections appear in the Download changes dialog box.
612 33002204

Online functions
Relationships
between states

The diagram shows the relationships between the different program states:

Unk UNKNOWN
Dis DISCONNECTED
!Eq NOT EQUAL
Mod MODIFIED
E!S EQUAL but not saved
EqS EQUAL and saved

!Eq

Dis

Mod

E!s
Downloading ok

Disconnect

Connect unsaved prog.
to EQUAL

Using "modified flag"

change
Load/load changes okchange

EqS

SaveSave

Unk
Open prog. after FFB,

Connect with
EQUAL

Link

Connect with
with MODIFIED

change

Close prog. with
Disconnect

Disconnect

Connect saved prog.
to EQUAL

Using "modified flag"

Download failureConnect

Download
failed

Close prog.Open prog.

Change config.Close prog.

Open prog. with EQUAL (EqS)
Open prog. with "downloaded flag"

Close prog.,
Save

Open prog.

Open prog. after
FFB, DDT modification

Close prog.,
without saving

DDT modification

end
33002204 613

Online functions
Presettings for ONLINE operation

At a Glance The dialog box Link PLC to can be used to specify settings for both the PLC link
and ONLINE mode resulting from it.

Access It is possible to specify which functions will be executed in the ONLINE operation,
i.e. which menu commands are available in the Online main menu.

Protocol types To link the programming device and PLC, it is important to know which network the
communicating nodes are in so that the correct protocol type is selected.

Use the table to decide which protocol type fits the network link used:

Linking the network nodes Protocol type

Serial Interface Modbus

SA85-/PCI85-Adapter Modbus Plus

NOE-module (on Ethernet-Bus SINEC H1) TCP/IP

TCP/IP Interface map (32-Bit Simulation) IEC Simulator (32-Bit)

Note: The programming device can always only be linked to one PLC. This means
that before a link is made to another PLC, any existing link must be terminated with
the Terminate Link menu command.
614 33002204

Online functions
Modbus Network Link

Introduction For a Modbus network link, the settings of the modbus interface must correspond
with the settings on the PLC.

The interface is edited in the Modbus Port Settings dialog (PLC Configuration →
Modbus Port Settings...).

Protocol
Settings for
Modbus

When the Modbus protocol type is selected, specify further data in the Protocol
Settings: Modbus range. Specify the Node Address (Node No.) on the PLC and
enter this in the corresponding text box. You can determine the transfer mode for
communication between the PLC and the host computer.

The following modes are available according to the application:

After the serial interface for the Modbus network link has been specified, using the
Settings... command button, open the Settings for COMx dialog. Enter the settings
for the interface here, as in the Modbus port settings dialog.

Use the OK command button to create the ONLINE link.

Application Mode

Communication with various host devices. The ASCII mode
works with 7 data bits.

ASCII

Communication with an IBM compatible personal computer. The
RTU mode works with 8 data bits.

RTU
33002204 615

Online functions
Modbus Plus Network

Introduction For a Modbus Plus network connection, enter in the Protocol settings: Modbus
Plus range whether the 16-Bit IEC-Simulator (Port 0) or the Modbus Plus interface
(Port 1) is being used.

All nodes on the local network are displayed in the list. Additionally, the routing path
of the token rotation sequence in the network, which can contain up to 5 Node
addresses is displayed. Up to 64 nodes can be addressed on one network, i.e. a
routing path address can be between 1 and 64. Several networks can be linked via
a bridge.

To pass the program execution to the Modbus Plus device driver, Concept triggers
a MS DOS Software Interrupt. The preset Interrupt number for this is 5C (hex).

[PORTS]

mbp0=5d

If the Interrupt 5D from the NTVDM.EXE is activated the share violation should no
longer occur.

IEC Simulator
(16 Bit)

The simulator simulates a coupled PLC via Modbus Plus. The address of the
programming device is displayed in the list in the routing path.

The simulator is active if in the Protocol settings: Modbus Plus: area, the option
Port 0 is selected.

The simulator is only available for the IEC languages (FBD, SFC, LD, IL and ST).

Note: The node list of a different network can be displayed by double-clicking on a
listed bridge.

Note: If no virtual Modbus Plus driver is installed, the virtual MS DOS environment
in Windows NT has problems when reacting to the software interrupt. If a share
violation (Exception) occurs under certain conditions, change the Interrupt number
to 5D (hex) in the MODICON.INI file:

Note: When the simulator is active, no further nodes can be displayed.
616 33002204

Online functions
PLC as Modbus
Plus Node

When the PLC is a Modbus Plus node, the address which the PLC has in the routing
path is displayed in the list. This address corresponds to the node address which is
set with a rotary switch on the back of the CPU.

SA85/PCI85 as
Modbus Plus
Node

The SA85 module is a Modbus Plus adapter for an IBM-AT or compatible computer.

The port address is displayed in the list. The address shows in which network the
SA85/PCI85 is installed.

Displaying a routing path with SA85/PCI85:

Node Node Node

 SA85/PCI85AT/MC-984

MODBUS PLUS

To other nodes
or via a bridge
to another network
33002204 617

Online functions
Bridge Plus as
Modbus Plus
Node

A Bridge Plus (BP85) links nodes within two Modbus Plus networks. The Bridge is
displayed in the list box, and the next Modbus Plus network can be accessed by
double-clicking on the Bridge.

Displaying a routing path with a Bridge Plus BP85:

Node

Modbus Plus network A

5

Node

BP85

Node

22

BRIDGE
PLUS

BP85
20

Node NodeBRIDGE
PLUS

NodeNodeNode Node

Connector

End connector

Modbus Plus network B

Modbus Plus network C
12
618 33002204

Online functions
Example:

The example shows a routing path across 3 Modbus Plus networks. The task is to
send a message from node 5 in network A to node 12 in network C.

The routing path here is 22.20.12.00.00 and it is made up as follows:

Bridge as
Modbus Plus
Node

A link between the Ethernet and the Modbus Plus network or between two Modbus
Plus networks is created via the Modbus Plus Bridge.

The Modbus Plus Bridge should be regarded as a host computer and must be
configured in the Protocol settings: TCP/IP area. Enter the IP address or the host
name of the Bridge, and finally in the text box Protocol type: change to Modbus
Plus network setting.

The Modbus Plus Bridge is only listed in the list of nodes in the Modbus Plus network
as a host name which was previously entered in the Protocol Settings: TCP/IP
area. A double-click on the corresponding host name opens the Modbus Plus
Bridge dialog box for 5 byte routing path configuration.

Further action in the dialog box can be found in the chapter"Modbus Plus Bridge,
p. 622".

Path Meaning

22 The first address contains the network A Bridge Plus address from Network A
from output node 5. This means the message is sent from output node 5 across
this Bridge to the next network, B.

20 The second address contains the Bridge Plus address of the next network, B.
Here, the message is sent from network B to the third network, C.

12 The third address contains the address of node 12, the destination segment.

00.00 Addresses four and five are set to 0 because there are no further forwarding
addresses.
33002204 619

Online functions
Example:

In the dialog box Modbus Plus Bridge (see Modbus Plus Bridge, p. 622), create
the routing path 25.8.17.33.0, which defines the following link (from A to D):

A The message sent from the host computer contains the 5 byte Modbus Plus Routing Path.
The first byte with the node address of the host computer refers to the Modbus Plus Bridge
linked to it. The Modbus Plus Bridge 1 receives the message on internal path 8, as
specified in byte 2.

B The TCP Index No. 17 (byte 3) administered in the Modbus Plus Bridge passes the
message on to the configured node with the IP address 205.167.8.10. In this case the node
with this IP address is another Modbus Plus Bridge.

C Modbus Plus Bridge 2 receives the message. The MBP Index No. 3 given in 4 byte and
administered by the bridge passes the message on to the configured Modbus Plus node.
In this case the node 12.0.0.0.0.

D The message has reached its destination, Modbus Plus node 12.

B

NOE

Modbus Plus
 Bridge 1

ETHERNET

TCP index 17:

25

205.167.8.10
 : :

 : :

MODBUS PLUS

Host PC A

Modbus Plus routing path:
25.8.17.33.0

Modbus Plus
 Bridge 2

MBP index 33:

12

 12.0.0.0.0
 : :

 : :

MODBUS PLUS

Node D

C

IP address:
205.167.8.10

ETHERNET
620 33002204

Online functions
Bridge
Multiplexer as
Modbus Plus
Node

The BM85 Bridge Multiplexer links up to four Modbus devices or Modbus networks
to a Modbus Plus network.

See also "User’s Guide BM85 Modbus Plus Bridge/Multiplexer."

Displaying a routing path with a Bridge Multiplexer BM85:

Node

Modbus Plus network B

30

Node

BP85

25

BRIDGE
PLUS

End connector

Connector

Modbus connector

M Modem

BM85
5

BRIDGE
MULTIPLEXER

1 2 3 4

MASTER
A

SLAVE
A

NETWORK
M

M

M

SLAVE
50

NETWORK
SLAVE

80

 X

22

Modbus Plus network A

 Y

2

Node
 Z

24
33002204 621

Online functions
Modbus Plus Bridge

At a Glance Enter the 5 byte routing path which defines the link from the host computer to the
Ethernet node in this dialog box.

Making settings The following table describes how to define the routing path:

Setting zone Routing path byte Meaning

Bridge Path 2. Byte A maximum of 8 links can go out from the
Bridge to the other network, and one of these
should be selected.

IP routing byte 3. Byte Enter an index no. which is assigned to an IP
address. This IP address should correspond to
an Ethernet node address where the message
is then sent. If this IP address is being sent to
another Modbus Plus Bridge in the
Ethernet,another node address (MB+ routing
byte) must be given for it to be transferred
further into the Modbus Plus network.

MB+ routing byte 4. Byte If a link is displayed between two Modbus Plus
networks via two Modbus Plus bridges, the
index no. of the Modbus Plus node must be
entered here. This index no. is also assigned to
a node address. If there is no link across a
different bridge, the value "0" is entered.

Complete address 5. Byte The whole 5 byte routing path is displayed
according to the setting. The first byte is then
automatically adjusted to the node address of
the host computer.
622 33002204

Online functions
Modbus Plus
index no.

The assignments of the Modbus Plus index no. are pre-set and can be selected
between 0 and 255. Note that index no. 255 is reserved for specific operations.
When this index no. is selected, data selection or loading is permitted between a
TCP/IP node and the Modbus Plus Bridge via an internal command. Index nos. 250
– 253 are reserved and cannot be used.

The index in the Modbus Plus routing path is shown in the following table:

TCP/IP Index No. The assignments of the TCP index no. follow automatically after the IP address of
the Modbus Plus Bridge has been specified in the Link → Protocol Settings:
TCP/IP dialog box. Each index is assigned to an IP address where the first 3 bytes
are assigned to the first 3 bytes of the Modbus Plus Bridge IP address. The 4th byte
is counted upwards from 1 to 255 at the most.

Example:

For a Modbus Plus Bridge IP address of 205.167.4.65, the TCP/IP addresses are
automatically pre-set, as in the following table:

Index Modbus Plus routing path

1 ... 64 1.0.0.0.0 ... 64.0.0.0.0

65 ... 128 2.1.0.0.0 ... 2.64.0.0.0

129 ... 192 3.1.0.0.0 ... 3.64.0.0.0

193 ... 249 3.2.1.0.0 ... 3.2.57.0.0

Index IP address

1 205.167.4.1

2 205.167.4.2

... ...

255 205.167.4.255

Note: Refer to the "174 CEV 200 30 TSX Momentum Modbus Plus to Ethernet
Bridge User Guide" for a detailed description of the Ethernet Bridge.
33002204 623

Online functions
TCP/IP-Network Link

Introduction For an Ethernet link, select the protocol type TCP/IP in the Connect to PLC dialog
box.

Protocol
Settings for
TCP/IP

To connect to other Ethernet nodes, specify the IP address or the host name of the
Ethernet node in the Protocol Settings: TCP/IP range.

To connect to the Ethernet via Modbus Plus node, specify the IP address or the host
name of the Modbus Plus Bridge in the Protocol Settings: TCP/IP range (see also
"Bridge as Modbus Plus Node (see Bridge as Modbus Plus Node, p. 619)").

Connecting
Quantum to the
Ethernet

You can connect the Quantum to the Ethernet Bus by configuring the NOE module.
By doing this, it is possible to communicate with other automation components in the
Ethernet Bus system via the host computer.

Connecting IEC Simulator (32 bit)

Introduction The simulator simulates a PLC connected via TCP/IP, where the signal status of the
I/O modules can also be simulated. Up to 5 host computers are connected to the
simulated PLC at the same time.

To activate the simulator, select the protocol type IEC simulator (32 bit) in the
Connect to PLC dialog box.

Protocol
Settings for IEC
Simulator (32 bit)

The simulator is active, if you specify the address of your TCP/IP interface board in
the Protocol Settings: IEC Simulator (32 bit) range.

The TCP/IP address can be obtained on the title bar of the Concept simulator
program PLCSIM32.

Note: At the present time the simulator is only available for IEC languages (FBD,
SFC, LD, IL and ST).
624 33002204

Online functions
State of the PLC

At a Glance With a network link, the state of the PLC is displayed in the list of nodes in the
Modbus Plus network in the Link to PLC dialog box.

States of the PLC All the states which can arise are listed in the following table:

State Meaning

Running Identifies a PLC with a program running.

Stopped Identifies a PLC with a program which has stopped.

Unknown Identifies an unknown PLC.

Not configured Identifies a PLC without a hardware configuration, i.e. no online
functions are possible.
33002204 625

Online functions
20.3 Setting up and controlling the PLC

At a Glance

Overview This chapter contains information about setting up and controlling the PLC.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information 627

Setting the Time for Constant Scans 628

Single Sweeps 629

Deleting memory zones from the PLC 630

Speed optimized LL984-Processing 631

Save To Flash 632

Reactivate flash save 635

Set PLC Password 636
626 33002204

Online functions
General Information

Introduction The PLC and CPU functions can be controlled in ONLINE mode. The PLC must be
connected to the host computer to establish ONLINE mode.

You can control the PLC directly with the following commands:
� Set Scan Time
� Single Scan Function
� Clear Controller
� Set Clock
� Run Optimized Solve
� Save in Flash
� Set Password for PLC

The commands for setting up and controlling the PLC can be found in Online →
Online Control Panel.
33002204 627

Online functions
Setting the Time for Constant Scans

Introduction A constant cycle time for processing the user program can be specified in the Online
→ Online control panel → Invoke constant sweep → Constant Sweep Settings
dialog box.

However, if the actual cycle time is longer than the constant cycle time specified the
system ignores the user settings and uses the normal cycle running time (Cycle
time in free running mode).

If a constant cycle time is selected which is longer than the actual cycle time, the
control will wait during each cycle until the set cycle time has been reached.

Selection
condition

This dialog box is only available if the link has been established between the PLC
and the programming device (ONLINE mode).

Settings for
constant cycle

A tab (4x) must be specified first to determine the constant cycle. You also need to
enter the scan time (10-200m) that is allocated to the register.

Exiting Constant
Scan

After starting the constant scan with the Invoke constant sweep... changes the
designation of the command button in Cancel constant sweep.... Clicking on this
command button exits the function.

Note: Inputs/outputs connected via communication experts may not be used for
updating constant I/O requests, as there can be highly variable I/O response times.

Note: This function cannot be performed when there is a link with the simulator.

Note: The scan time increases if several windows are open in Concept, e.g.
several sections are displayed in animation mode. Therefore if you are using
several windows you should reduce the scan time.
628 33002204

Online functions
Single Sweeps

Introduction You can specify single sweeps times for processing the user program in theOnline
→ Online Control Panel → Single Sweep On… → Settings for Single Sweeps
dialog box.

After the specified number of scans has been performed the logic editing stops. This
function is helpful for diagnostic purposes. It allows the checking of edited logic,
modified data and calculations that have been carried out.

Selection
Condition

This dialog box is only available if the link has been established between the PLC
and the host computer (ONLINE mode). Single sweeps are only performed in PLC
RUN mode.

Settings for
Single Sweeps

To determine the single sweeps, the scan time (10 – 200ms) and the number of
scans being performed must be specified. A maximum of 15 single sweeps is
possible.

Execution of
Single Sweeps

After the scan time and number have been specified you can perform the single
sweeps with the Trigger Sweep command button.

It can lead to unsafe, dangerous and destructive operations of the tools or
processes that are attached to the controller.

Single sweeps should not be used for searching for errors in controlling machine
tools, processes or material maintenance systems if these are running. When the
number of scan times given has been processed, all the outputs will be retained in
their last state. Since no more logic editing is taking place, the controller ignores
all input information. Therefore the single sweeps function should only be used for
searching for errors during start up.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING

Note: The Trigger Sweep command button is only available in PLC RUN mode.
33002204 629

Online functions
Exiting Single
Sweeps Function

After the single sweeps function has been started with the Single Sweep On
command button, the designation of the command button changes to Single
Sweeps Off. Clicking on this command button terminates the function again, and
the Settings... and Trigger Sweep command buttons no longer appear in the dialog
box.

Deleting memory zones from the PLC

At a Glance Specific memory zones can be deleted from the PLC by activating the
corresponding options key in theOnline → Online Control → Delete PLC... →
Delete PLC contents dialog box.

The menu command Load... can be used to load the deleted memory areas back
onto the PLC.

Condition for
dial-in

This dialog box is only available if the link has been established between the PLC
and the programming device (ONLINE mode) and the PLC is in STOP mode.

Deleting a
configuration

If the hardware function of a PLC is deleted, no further online functions can be
performed. The NOT CONFIGURED and NOT EQUAL TO modes are displayed in
the status bar.

Deleting a
program

If the user program is deleted in the PLC, the PLC cannot be started. The NOT
EQUAL TO state is displayed in the status bar.

Deleting state
RAM

If the state RAM is deleted, the initial values of the located variables in the PLC are
set to 0.
630 33002204

Online functions
Speed optimized LL984-Processing

At a Glance A speed optimized LL984 Processing can be optimized in the dialog boxOnline →
Online Control with the Opt. processing in command button.

After the command button is activated its designation changes in Opt. Processing
out. This means that a click on this command button will deactivate the speed
optimization which is running again.

Condition for
dial-in

This dialog box is only available if the link has been established between the PLC
and the programming device (ONLINE mode) and the PLC is in STOP mode.

Note: This function only influences the LL984- program.
33002204 631

Online functions
Save To Flash

Introduction For data protection purposes, you can save parts of the RAM in the PLC's Flash-
EPROM. After a power failure, the contents of the Flash-EPROM is loaded back
onto the CPU RAM for the restart.

Selection
condition

This function is available when using all 140 CPU 434 12 and 140 CPU 534 14
TSX Compact, Momentum and Quantum modules.

This function is not available with IEC Hot Standby operation with Quantum.

The Flash memory function is not available when using the simulator.

Modified process status after next start!

It is important to choose the right time for saving to Flash, as there could be signal
values in the Flash memory which are downloaded later following a power failure,
and which do not correspond to the process status for the next start.

Failure to follow this instruction can result in death, serious injury, or
equipment damage.

WARNING
632 33002204

Online functions
Procedure Carry out the following steps to Save To Flash:

Edit Flash
program

As soon as the Allow Editing After Power Up check box is checked, on saving to
Flash, information is loaded to the Flash-EPROM, which after uploading the
contents of Flash (e.g. in the case of the return of the power supply) allows the
program to be edited. Since these later modifications were not downloaded onto the
Flash-EPROM, this data is lost if there is a power failure. To prevent this, changes
should be downloaded to Flash-EPROM by using the Save To Flash command
button.

Step Action

1 In the Flash Type area, select the Internal or PC Card option button depending
on the hardware used.
Note: Applications that require more than 480 kBytes must be saved in the PC
Card Flash.

2 In the Controller State area, select the operating mode (RUNNING or
STOPPED) the PLC should be in after a restart.

3 Check the Allow Editing After Power Up check box if you want to edit the
uploaded Flash program when the voltage supply returns.
Caution: Since these later modifications were not downloaded onto the Flash-
EPROM, this data is lost if there is a power failure.

4 Check the Save State Ram check box if you want to save all 4x registers to
Flash-EPROM.
Note: This selection is not available with the Momentum family, i.e. all
applications are always downloaded to Flash-EPROM.

5 If you have checked the Save State Ram check box, you must enter the number
of registers to save in the Number of registers to save text box. The
corresponding register area, which is downloaded onto Flash-EPROM, is then
set from the 400001 address.

6 Select the Save To Flash command button to load the user program, the
configuration, the IEC programming initial values from the RAM to the Flash
EPROM.
33002204 633

Online functions
Modification of
the Flash
program is not
allowed

As soon as the Allow Editing After Power Up check box is unchecked, the
program can be modified after reading the Flash contents (e.g. in the case of the
return of the power supply), but cannot be loaded to the Flash EPROM.

Modifying the program leads to the following reactions when uploading:

If the EQUAL status is established in the above case a), the contents of the host
computer are different from the contents of the Flash-EPROM. After a power failure
the Flash-EPROM is uploaded, resulting in the loss of all changes.

If the NOT EQUAL status is established in the above case b), the contents of the
Flash-EPROM are different from the contents of the host computer. After a power
failure the Flash-EPROM is uploaded, resulting in the loss of all changes.

M1 Ethernet CPU The password protected application is automatically downloaded on each switching
on/off cycle. This procedure cannot be undone if you forget the password. The PLC
must be sent for repair.

Procedure: Changes protected
with Download
changes...

Changes protected
with Save project

The following status
is established after
connection:

a) Yes No EQUAL

b) Yes Yes NOT EQUAL

Note: To download a program change to Flash EPROM again, the Save To Flash
command button must be available again. Specific steps must be carried out to do
this, as described in the Reactivate flash save, p. 635 section.
634 33002204

Online functions
Reactivate flash save

Introduction If you have not checked the check box in Flash Save Allow Editing after Power Up
the program saved in Flash EPROM can no longer be changed. After a power failure
the Flash-EPROM will finish on restarting the PLC. However, the command buttons
Save to Flash and Clear Flash are not available.

Reactivate Flash
Save

In order to enable the Flash Save again, the following steps are necessary:

Step Action

1 Turn off the controller.

2 Compact CPUs: Set the "Memory Protect" switch (Memory Protect) to ON.
Quantum CPUs: Set the switch to the "stop" position.

3 Turn the controller on again.

4 Compact CPUs: Set the "Memory Protect" switch (Memory Protect) to OFF.
Quantum CPUs: Set the switch to the "start" position.

5 Make the link between the host computer and the controller (Online →
Connect...).

6 Open the dialog box Save to Flash (Online → Online control panel → Flash
Program...).
Result: The command buttons Save to Flash and Clear Flash are now
available again.
33002204 635

Online functions
Set PLC Password

Introduction You can use a password to prevent the PLC being written to without permission.

Before you can set a new password, however, you must first download the
configuration to the PLC. Then enter the password that is to loaded to the PLC. The
password is now saved so that password protection operates when a connection is
made between the host computer and the PLC (password required).

Valid characters
for the PLC
password and
user name

The following characters are permitted within the character length of 616 characters:
� a ... z
� A ... Z
� 0 ... 9
� _

Selection
conditions

This function is available when using all TSX Compact CPUs, a Quantum CPU 434
12 A/534 14 A/B or a Momentum Ethernet CPU.

Note The following passwords can be assigned in Concept:
� PLC password
� Concept Password (see Changing Passwords, p. 748) (in Concept Security)

Note: When setting a Quantum password, a specific time can also be set for the
automatic cancel function in the Quantum Security Parameter dialog box. This
function is found in the preference setting Never. This function means that the user
is logged out after the time specified as soon as no read or write access occurs
from the programming device to the PLC through this connection within the
predefined amount of time.

Note: Spaces, umlauts (e.g.: ä, ö, ü) and special characters are not allowed!
636 33002204

Online functions
Set new PLC
password

To set a new PLC password, proceed as follows:

Change Old PLC
Password

To change an old PLC password, proceed as follows:

Step Action

1 Using Online → Download load the configuration onto the PLC

2 Using Online → Online Control Panel... → Set PLC password... open the
dialog Change PLC Password.

3 Enter your new password in the Enter New Password: text box.

4 Enter the new password in the Confirm New Password: text box again.

5 Enter the user name in the User name text box, e.g. "anyname".

6 Press the OK command button.
Reaction: The dialog box is closed and the password is automatically
downloaded to the PLC

Step Action

1 Using Online → Online Control Panel → Set PLC password... open the dialog
Change PLC Password.

2 Enter your old password in the Enter Old Password: text box.

3 Enter your new password in the Enter New Password: text box.

4 Enter the new password in the Confirm Password: text box again.

5 Enter the user name in the User name text box.

6 Press the OK command button.
Reaction: The dialog box is closed.

7 Using Online → Download load the configuration onto the PLC
Reaction: The password was loaded onto the PLC, and will be requested the
next time the PLC and the host computer are connected.
33002204 637

Online functions
If You Forget
Your Password

If the PLC password has been forgotten the procedure depends on the PLC platform
used.

Quantum and Compact:

Momentum without Flash:

Momentum with Flash:

Step Action

1 Switch off the power supply to the PLC.

2 Move the Memory Protect switch on your hardware module to the MEM_PROT
position.

3 Remove the lithium battery from the PLC.

4 Wait 5 minutes and then switch on the power supply to the PLC again.
Reaction: By doing this, the battery backup RAM is deleted without
downloading the PLC program from Flash-EPROM. In this way, the start status
of the PLC (configuration-free and without log on password) is re-established.

5 Continue with the step table Set new PLC password, p. 637.

Step Action

1 Switch off the power supply to the PLC.

2 Remove the battery from the interface adapter.

3 Wait 5 minutes and then switch on the power supply to the PLC again.

4 Continue with the step table Set new PLC password, p. 637.

Step Action

1 Switch off the power supply to the PLC.

2 Send the module back to the product manufacturer (Schneider Automation
GmbH).
638 33002204

Online functions
20.4 Selecting Process information (status and
memory)

At a Glance

Overview This chapter contains information about selecting the process information.

What's in this
Section?

This section contains the following topics:

Topic Page

General information 640

PLC state 641

Memory Statistics 643
33002204 639

Online functions
General information

At a Glance Certain processes and their storage occupancy can be controlled during operation
of the automation equipment.

Read status bits. Status bits provide information about the hardware communication with other
modules as well as existing errors in the running of the program. The user specifies
the status register already during configuration. In this register , status bits that
change their state as soon as a faulty signal is set in the process or a timeout word
is not observed are saved. The user can recognize via defined status states (0 or 1)
whether the process is faulty.

Read storage
occupancy

The user can control the storage occupancy for the current project in the memory
statistics. In an overview the total memory, free memory space and used memory
for the user program, as well as the user files and FFB libraries are displayed.

Note: Errors can occur when selecting a configuration that has been generated by
another configuration tool (e.g. SyCon, CMD). The selection is based on removing
the memory, whereby this is not always compatible with the other software
programs. Therefore please use the Modsoft Converter to transfer the Modsoft
application according to Concept.
640 33002204

Online functions
PLC state

At a Glance All the PLC states are displayed in the multi-page dialog box.

There are 67 pages altogether, containing various state information

Condition for
dial-in

This function is only available if a link has been established between the PLC and
the programming device. When the simulator is active the PLC states cannot be
retrieved.

Programming
states

The following status information is obtained through the programming:
� Number of segments

� End of logic pointer address

� Run/Download/Debug Status

Hardware states The following state information is given about the hardware:
� CPU state

� S911 Hot Standby State

� Machine State

� State of the I/O processor

� Quantum I/O state

� DIO-State

Error codes The following state information is given about errors arising:
� Machine stop code

� Quantum start error code S908

Transfer and
communication
states

The following state information is given about transfer and communication
executions:
� Data transfer state

� Message transfer state

� Communication state
33002204 641

Online functions
Cable A + B
states

The following state information is given about the A + B cable:
� Cable A + B error counter

� A + B global state

� Cable A + B communication error counter
642 33002204

Online functions
Memory Statistics

Introduction An overview of the memory data for the open project is given in the Memory
statistics dialog box. The current scan time is also displayed if a real PLC is used
(and not the simulator).

Total IEC
memory

The memory statistics cover the following information:

Modifying Total
IEC Memory Size

The total IEC memory consists of the IEC program memory and the global data.
Additional space is required in the total IEC memory for program extensions and for
the administration of program modifications. The general recommendation is to set
the value so that 20-30% of the value entered in the Used text box also remains free.

IEC Program
Memory

The values displayed correspond to the memory space used for
� Program code

� EFB code

� Program data (section and DFB instance data)

Global Data The memory statistics cover the following information:

Total IEC memory Meaning

Configured The displayed value corresponds to the value specified in the PLC
Selection dialog.
Note: If you use a simulator, the total memory is not given.

Used The displayed value corresponds to that of the IEC program memory
space used by the user program.
Note: If you use a simulator, the used memory space is not given.

Note: Changes can only be made offline and are only accepted once the program
has been downloaded to the PLC.

Memory space Meaning

Configured The displayed value corresponds to the value specified in the memory
space for unlocated variables in the PLC Selection dialog.

Used The displayed value corresponds to the memory space for the
declared unlocated variables used by the user program.
33002204 643

Online functions
Changing the
Memory Size for
Global Data

You can change the memory size of the global data. It should be noted that an
increase in the global data size decreases the IEC program memory size. Each
object, e.g. FFB instance, variable, step etc., takes up several bytes in the IEC
program memory.

Because more memory space is not automatically gained by deleting unlocated
variables, it is recommended that sufficient memory space is planned. The general
recommendation is to set the value so that 20-30% of the value entered in the Used
text box also remains free.

Defragmenting The value displayed corresponds to the current status for the Defragmenting, which
is activated in the dialog box PLC Selection. The action in question here is a
continuous process, which will end after some time at 100%. 100% means that there
are no longer any gaps in the PLC memory.

Since this continuous process affects the scan time, it can be deactivated in the
dialog box PLC Selection.

Scan Time The value displayed corresponds to the current scan time. With the first call, the I/O
station is standardized so that a scan time of 0 ms/scan is specified. After
initialization, the scan time is calculated as an average value.

Note: Changes can only be made offline and are only accepted once the program
has been downloaded to the PLC.

Note: If you are using the simulator, the scan time is not given. The display na
means "not available".
644 33002204

Online functions
20.5 Loading a project

At a Glance

Overview This chapter contains information about loading a project.

What's in this
Section?

This section contains the following topics:

Topic Page

General information 646

Loading 647

Download Changes 649

Uploading the PLC 652

Upload Procedure 654
33002204 645

Online functions
General information

At a Glance To carry out an online command a transfer has to be made to the PLC after setting
up or changing sections. Otherwise a complete project can be transferred from the
PLC to the programming device. As soon as the user program is consistent on the
programming device and the PLC, the EQUALS status is displayed in the status bar.

The status display MODIFIED identifies the program in which at least one section
has been changed or where changes to the variable editor were performed. With
command button Load changes... the consistency between the programming
device and the PLC is restored. Status display NOT EQUALS identifies a program
in which critical changes were performed. Critical changes are for example changes
to EFBs, DFBs or derived data types. With command button Load... the consistency
between the programming device and the PLC is restored.

Loading, loading changes and selecting are not possible in the animation mode.

With command button Select... the following project areas can be selected from the
PLC:
� Configuration
� IEC sections
� 984 Ladder Logic sections
� ASCII messages
� State RAM
� Initial values
� Extended memory

Process for
loading

Loading the PLC can take place in two parts:
1. The exportable code (machine code) is always loaded onto the PLC.
2. The complete compressed user program is loaded onto the PLC

Note: The user program, consisting of user defined EFBs, DFBs, derived data
types and the program (variables, sections, etc.), is only loaded onto the PLC if in
dialog Options for generating codes (Project → Options for generating
codes...) check box contain IEC selection information was activated
beforehand. The option to also load the comments contained in the check box onto
the PLC, thereby making them available as selection information, is available, as
well.
During selection the entire user program can be transferred from the empty project
to the programming device.
646 33002204

Online functions
Loading

Introduction With menu command Load... the configuration, the entire user program (IEC or
LL984 sections) ASCII messages (only with Concept for Quantum) and the state
RAM with the initial values of a project can be sent to the PLC. This establishes
consistency between the user program on the programming device and the PLC so
the online functions are executable.

Loading single
parts onto the
PLC

Single parts to be loaded onto the PLC can be selected.

The following table contains the available options and their meaning:

Option to be loaded Meaning

Configuration This option sends the hardware configuration to the PLC.
Note: The Hardware Configuration can only be sent to the PLC
when a corresponding access privilegehas been authorized. This
option is not available with a Modbus Plus connection.

IEC Sections This option sends the code from all the sections created with an
IEC programming language (FBD, SFC, LD, IL, ST) to the PLC.

984 Ladder Logic This option sends the code from all the sections created with an
LL984 programming language to the PLC.

ASCII messages This option sends ASCII messages for Ladder Logic to the PLC.
Note: This function is only available when using Concept for
Quantum.

State RAM + Initial
Values

With this option, at first all initial values of the Located 4x-
Variables are copied from the Variable Editor into the state RAM
mirror (image). Then, the initial values and all blocked 0x- and 1x-
I/O bits from the state RAM mirror (Image) are loaded into the
PLC.
Note: While the PLC is running, all non-blocked 0x-variables are
reset by the firmware in the PLC. Thus, values of 0x- and 1x-
variables are only loaded if the variables are in blocked status.

Only state RAM With this option, the initial values of the Located 4x-variables and
all blocked 0x and 1x I/O bits are loaded from the state RAM
mirror (Image) into the PLC.

Only initial values With this option, exclusively initial values of the Located 4x-
Variables are loaded from the Variable Editor into the state RAM.

Expanded memory This option assigns the PLC an extended memory allocation (6x-
references).
Note: This function is only available when using Concept for
Quantum.
33002204 647

Online functions
Loading IEC
selection
information

To obtain a complete project when uploading from the PLC Options for code
generation the check box Include IEC Upload Information must be activated in
the dialog box before loading. If this check box is not activated only the executable
code (machine code) is loaded onto the PLC.

If loading is not
possible

There are several possibilities why loading is not possible:
� An active screen saver can lead to loading errors. It is therefore recommended to

deactivate the screen saver.
� If loading the program is not possible due to insufficient program data memory,

the memory size can be optimized.Main structure of PLC Memory and
optimization of memory, p. 153.

Note: If, while loading the program, a warning appears due to inconsistent DFB
versions, use the menu command Project → Synchronize nested DFB versions.
648 33002204

Online functions
Download Changes

Introduction Download changes is always used if sections have been changed, added or deleted,
whether online or offline, and the program is in MODIFIED state. In this way the
changes are indicated and can be transferred to the PLC.

The changes are loaded into the PLC and the consistency between the user
program on the programming device and the PLC is restored.

With changes that do not influence the logic of the program (e.g. renaming a step
name, renaming a section, renaming a variable, graphic moving of a component,
etc.), the state of the program between PLC and host computer will remain EQUAL
and cannot be downloaded to the PLC using the Download changes function.
However, the changes will not be lost. They can be updated with the Download
changes function during the change, which will result in the state of CHANGED. Or
the entire project is downloaded to the PLC using the Online → Download function.

If the changes cannot be downloaded because there is too little memory in the PLC,
there are 2 possibilities for proceeding:
� Sequential loading of modified sections
� Optimize Project

ID for specific
sections

The following sections contain additional ID information as they are different from
cyclically set sections:
� E for "Event Section" (I/O Event and Timer Event Section = Interrupt-Section)
� T for "Transition Section"

Note: However, if you wish to update your changes immediately, simulate a Modify
code (e.g. delete and restore), so that the state of the program changes to
MODIFIED. Then carry out the Download changes function.

Note: If, while loading the program, a warning appears due to inconsistent DFB
versions, use the menu command Project → Synchronize nested DFB versions.
33002204 649

Online functions
Sequential
loading of
modified/new
sections

The user can download changed/new segments onto the PLC one after the other.

When segments are downloaded sequentially, the following points must be noted:
� If the constants value has been changed, it is not possible to download the

changed segments sequentially.
� All deleted IEC segments will be automatically deleted the first time the user

downloads sequentially onto the PLC.
� All initial values of new variables, all modified values of literals are automatically

loaded onto the PLC on the first sequential loading.
� If new sections already contain used variables, the value of these variables

remains.
� When closing a project ensure that it is saved before loading changes onto the

PLC. Otherwise it might not be possible to continue the project after it is reopened
with the remaining changes loaded, or there will be "newer" sections (previously
loaded changes) on the PLC than on the programming device.

Modified Initial
values

Modified initial values are no longer loaded onto the PLC. The initial value during the
first download (Download.../Download changes...) that was downloaded to the
PLC cannot be overwritten with the menu command Download changes.... The
initial values can however be changed in the Reference data editor.

Procedure for
sequential
loading

The procedure for downloading changes sequentially is as follows:

Risk of unwanted and dangerous process states

Loading sections sequentially on a running PLC can lead to unwanted and
dangerous process states. It is therefore recommended to stop the PLC during
sequential loading.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

Step Action

1 Stop the PLC with Online → Online control → Stop controller.

2 Select the segment(s) which must be downloaded from the list.

3 Confirm using OK.

4 Call the dialog box again and repeat the process until all modified/new sections
are loaded onto the PLC and EQUAL mode is reached.

5 Start the PLC with Online → Online PLC → Start PLC.
650 33002204

Online functions
Loading IEC
upload
information

If, in the Code generation options dialog, the check box Include IEC upload
information is checked, IEC upload information is loaded onto the PLC with the
Download changes...menu command.

Optimize the
Project

It may be possible to eliminate existing gaps in the program data memory
management of the PLC with the menu command Optimize projectand enable
loading again in this way. However, the PLC must be stopped and the complete
program must be downloaded again. Furthermore, it may be necessary to adjust the
size of program data memory, see Memory statistics (see Memory Statistics,
p. 643).

It is still possible to optimize use of the program data memory with the menu
command Online → Memory statistics.

Modifications are only transferred when the program is loaded onto the PLC.

After optimizing the project or modifying the program data memory size the PLC
must be stopped and the program loaded onto the PLC.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
33002204 651

Online functions
Uploading the PLC

Introduction With menu command Upload...the configuration, the entire user program (IEC and/
or LL984 sections), the ASCII messages and the state RAM with a project’s initial
values can be transferred from the PLC to the host computer.

Note: Upload information (PLC configuration), which was generated by the
Software programs as Concept, is possibly erroneous. The upload is based on
removing the memory, so that it is not always compatible with other software
programs. Please use the Modsoft converter for transferring your Modsoft
application to Concept.
652 33002204

Online functions
Reading
Individual Parts
from the PLC

Individual parts to be loaded from the PLC to the host computer can be selected.

The following table contains the available options and their meaning:

Option to be loaded Meaning

Configuration This option sends the hardware configuration to the host
computer.
Note: The hardware configuration can only be sent from the PLC
when a relevant authorization is granted in the Access Rights.
This option is not available with a Modbus Plus connection.

IEC sections This option transfers the revertive presentation information of all
the sections created with an IEC programming language (FBD,
SFC, LD, IL, ST) to the host computer. In this process, however,
no current signal values from variables and registers are loaded.

984 Ladder Logic This option sends the revertive information from all the sections
created with an LL984 programming language to the host
computer.

ASCII messages This option transfers ASCII messages for Ladder Logic to the
host computer.
Note: This function is only available when using Concept for
Quantum.

Upload state RAM +
update initial values

With this option, first all Located 0x-, 1x- and 4x-values are read
from the SPS, and saved in the state RAM mirror (Image). Then,
the initial values of the 4x-variables are overwritten with the value
from the state RAM mirror (Image). With the upload process, the
dialog box Upload initial values is then opened. With the
command button Yes you confirm the overwriting of the initial
value displayed with the new value.
Note: Uploaded state RAM values can be overwritten in the RDE
by Online Operations. This behavior can be changed, however,
in the CONCEPT.INI-file (see INI-Settings for the RDE behavior,
p. 1100).

Only update initial values With this option, the initial values of the Located 4x-Variables are
overwritten by the Variable Editor with values from the state
RAM.

Only upload State RAM With this option, all Located 0x-, 1x- and 4x-values are read from
the SPS, and saved in the state RAM mirror (Image). The initial
values in the Variable Editor are not overwritten.

Expanded memory This option transfers the PLC’s available extended memory (6x
references) into the configuration.
Note: This function is only available when using Concept for
Quantum.
33002204 653

Online functions
Upload Procedure

Introduction If the IEC upload information was being taken into account during loading into the
PLC (Project → Code Generation Options → Include IEC upload information),
a new project containing the IEC upload information is generated in Concept during
upload. In this way, the entire user program and user EFB libraries are always
downloaded, i.e. individual sections, EFBs etc, cannot be selected for transfer.

Requirements In order to carry out a PLC upload, an empty project must first be created.

There are several ways of doing this.

Note: During loading (Online → Download Controller) of the IEC upload
information, additional memory is required so that this function should only be
used, when you want to upload the project loaded into the PLC again.

Selection Action

1 You can create an empty project using the File → New project menu command.
Then execute the Online → Upload... menu command.
Result: The Upload to project dialog is opened. Here you can determine (e.g.
D:\NEW\TESTPRJ.PRJ) where the project will be uploaded to.
Note: You can select a different directory or even create a new directory so as
not to come into conflict with existing projects. The preset project name
corresponds to the project name downloaded in the PLC and does not
necessarily have to be changed.

2 Using the File → Open... menu command you can create a new project (e.g.
D:\NEW\TESTPRJ.PRJ) Then execute the Online → Upload... menu command.
Result: The Upload Controller dialog is opened.

3 There is no project open and you have established a connection with the PLC
using the Online → Connect... menu command. Then execute the Online →
Upload... menu command.
Result: The Upload to project dialog is opened. Here you can determine (e.g.
D:\NEW\TESTPRJ.PRJ) where the project will be uploaded to.
Note: You can select a different directory or even create a new directory so as
not to come into conflict with existing projects. The preset project name
corresponds to the project name downloaded in the PLC and does not
necessarily have to be changed.
654 33002204

Online functions
Procedure To upload loaded IEC information, proceed as follows:

Double
Designation

Conflicts with existing names can occur during the upload procedure.

Double designation is prevented for each program sequence as follows:

Step Action

1 Open a new project.
Note:If, during upload, there is a second project still open, it must be closed. In
this case a query appears asking whether the project should be saved before it
is closed and all changes are lost.

2 Establish a connection between the PLC and the programming unit (Online →
Connect...).

3 Start the upload procedure (Online → Upload Controller...).
Result: A window appears in which you can determine the path for the project
that is to be uploaded.

Program
sequence

process

User EFB library A query appears, which can interrupt uploading. If not, a query appears,
asking whether the user EFB library should be overwritten, and whether
a backup of the old EFB library should therefore be created.

DTY File (derived
data types)

A query appears, which can interrupt uploading. If not, the DTY file of the
same name is automatically overwritten. No backup is made of the old
file.

DFB library A query appears, which can interrupt uploading. If not, the DFB file of the
same name is automatically overwritten. No backup is made of the old
file.
33002204 655

Online functions
20.6 Section animation

At a Glance

Overview This chapter describes the basic principles for animating sections. The details can
be found in the chapters on individual programming languages.

What's in this
Section?

This section contains the following topics:

Topic Page

IEC-Sections animation 657

LL984 Programming Modes 658
656 33002204

Online functions
IEC-Sections animation

At a Glance IEC sections can be animated, i.e. the program’s current states in the PLC /simulator
will be displayed.

Animation is possible with both a running and a stationary PLC. Display data is
automatically refreshed when the PLC is running. The static state of the program on
the PLC is displayed when the PLC is stationary.

Load and Load changes is not possible in animations mode. Should these
commands be executed, animation will be stopped automatically.

Requirements
for animation

Requirements for animation
� The section to be animated in the programming device and the section loaded

onto the PLC must be consitent. Otherwise, establish consistency using Online
→ Load... (if mode UNEQUAL) or Online → Load changes... (if mode
MODIFIED).
Note: Even when the program mode is MODIFIED, the sections that have not
been changed can be animated. The mode displayed in the footer refers to the
program and not to the currently displayed program.

� To animate, the programming device and the PLC must be online. Otherwise,
establish the link using Online → Link... .

Active animation
display

The active animations mode is indicated:
� by a check mark before the menu command, in the ANIMATEDbox on the status

bar,
� by a depressed animations button on the symbol bar and
� by the gray window background.

Animating more
than one section

If several sections are animated, an animated section is updated in each cycle. This
means that the more animations are active, the "older" the values of the individual
animations. Additionally, the animation increases the load on the PLC cycle. For this
reason, animations that are no longer necessary should be terminated. This also
applies to the animation of many variables or very large derived data types.

Note: When coupling using Modbus Plus, it is recommended that no more than 10
sections should be animated at one time.

Note: When coupling using Modbus, it is recommended that no more than 5
sections should be animated at one time.
33002204 657

Online functions
Animating a
disabled section

If a disabled section is animated, the state INHIBITED is displayed in the status bar.

Animation of a
transition
section

If the animated section is used as a transition section for the sequential control
(SFC), and the transition (and therefore also the transition section) is not processed,
the status INHIBITEDappears in the transition section.

Changing a
animated section
into a symbol

If an animated section is changed into a symbol, the animation with the most current
values stops, and then restarts automatically once the section is called.

LL984 Programming Modes

Direct
Programming

There are two situations that determine how direct mode ladder editing is applied.
The first is where there is no open project and you are connected to a PLC that has
a valid program in it. When you select the command Direct Mode LL Editor the first
program in the first segment is displayed. You can see the direct mode status at the
right side of the status bar and the network window is labled 984 LL Direct.

The second case occurs when you have a project open and you are connected to
the PLC (but not EQUAL). When you select Direct Mode LL Editor in this case a
dialog is displayed listing segments and the number of networks contained in each.
Click on the segment you want click on OK and the network edit window is displayed
with a window labeled 984 LL Direct. If you have an orignal edit window it will remain
on the display.

Combination
Mode

Combination programming occurs when the programming panel is online. Valid
program changes are immediately written to both the controller and the program
database simultaneously.
658 33002204

Online functions
20.7 Online Diagnosis

Diagnostics Viewer

Introduction Using the diagnostics viewer in Concept (Online → Online Diagnostics...) it is
possible to view the content of the PLC diagnostics error buffer.

Selection
Condition

The diagnostics viewer is only available if the PLC is in online mode and the EQUAL
status has been created between the PLC and host computer.

The diagnostics viewer only works with the SFC, FBD and LD programming
languages and with the diagnostics blocks of the EXTENDED group.

Conditions of the
Diagnostics
Viewer

To activate diagnostics, a supervision time must first be set for the step (Transition
diagnostics) or the diagnostics block (Reaction diagnostics). In addition, in the Code
generation options dialog (Project → Code generation options...), the Include
diagnosis information check box must be checked. As a result memory space is
prepared on the PLC (max. 64 diagnostics entries) for the diagnostics error buffer.

Behavior of the
error buffer

A maximum of 64 events (errors) and a maximum 20 signals per event are read. If
the diagnostics error buffer overflows all further signals (21 onwards) are lost. The
next event (error) coming is only entered once an event (error) which has gone has
been acknowledged in the error buffer.

A diagnostics error buffer overflow is displayed in the dialog status line.

Transition
Diagnosis

Information on this can be found in the Transition diagnosis, p. 314section.

Reaction
diagnosis

Information on this can be found in the "Diagnostics Block Library" handbook.

Note: A maximum of 16 events (errors) can be scheduled within one SFC section.
All further errors (17 onwards) are lost. The next event (error) is only entered once
a past event (error) has been acknowledged in the error buffer.
33002204 659

Online functions
Diagnostics
viewer

After analysis, the events (errors) and the analyzed signals are written in the buffer
and displayed in the diagnostics viewer in Concept.

The following specific information is contained in transition diagnostics:
� Denotes the transition preventing the active step from being executed to the next

step.
� Denotes the TRANS type for transition in a PLC section
� Denotes the active step, which is not executed.
� If this is a transition section in the named transition, the analyzed signals are also

listed.

The following specific information is contained in reaction diagnostics:
� Denotes the diagnostics block preventing a reaction from being triggered due to

incorrect signals.
� Denotes type ACT, PRE, GRP, LOCK, REA for diagnostics blocks
� Diagnostics block drop number
� The analyzed signals are listed.
660 33002204

Online functions
20.8 Logging Write Access to the PLC

Logging and Encrypted Logging

Introduction Logging the write access to the PLC can record the following data among others:
� Section name
� EFB/DFB Instance name, FB type name
� Pin-Name
� [variable name] [literal] [address]
� Old value
� New value
� User name (if the Concept (Login) password is activated in Concept Security)
� Date and Time (see alsoAddress format in LOG file [Logging], p. 1099)

The following logging can be carried out during log-on:
� Modification of the user rights
� Deleted user
� Aborted log-on

Besides the log which can be read in the *.LOG file, an encrypted log can be created
in an *.ENC file. The file name is made up of the current date, e.g. 20020723.LOG
or 20020723.ENC.

Encrypting the protocol file is done to protect the file contents from being changed.
The view tool is only provided so that the user can read the log file. Saving the file
in another readable format is not possible. Editing the file so that it is not
recognizable is impossible since the ASCII file only displays unrecognizable
characters.

Note: Log files are not archived by Concept and no backup files are created.
33002204 661

Online functions
Log *.LOG Logging is activated in Concept using the Options → Preferences → Common...
→ Common preferences with the File option dialog box. Use the text box
Directory for Log-File: to define a new path for the log file (e.g. 20020723.LOG).

Dialog Common Preferences:

The current logfile can be viewed in Concept with menu command File → View
Logfile.

Common Preferences

HelpCancelOK

FBD

LD

Online

Connect to controller at startup

Save project after download

ST

IL

Define during creation

Address format

Standard (400001)

Separator (4:00001)

Compact (4:1)

IEC (QW00001)

Logging

Disable

LogServer (NT)

File
Directory for Log-File:
c:\concept\log|

Online backup

Encrypt logfile

Default Date Format (22-Dec-2002)

Editor type of Transition Sections
662 33002204

Online functions
Encrypted
Logfiles *.ENC

In addition, any repetitive strings are displayed in separate encrypted strings in the
logfile.

In Concept, the encryption can be activated with two different settings:
� With menu command Options → Preferences → Common → Common

Preferences and the activation of the check box Encypt Logfile.
Note: The check box is only available if no project is open.

� Indirectly with the menu command Project → Project Properties and the
activation of the check box Secure Application.
Note: This dialog box is only available in offline mode.

Dialog Project Properties:

If the encryption is activated after an unencrypted logfile (*.LOG) has been created,
then a second encrypted logfile (*.ENC) is created. The storage location for the
*.ENC file is defined in the Common Preferences (Directory for Log-File:) dialog
box.

Note: Supervisor rights are required for activating the encrypted logging
procedure.

Project Properties

HelpCancelOK

Database Version:

Secure Application

PLC related Version:
Global DFB_Path:

09.07.02 09:34:04
09.07.02 09:34:04
C:\CC614~1\DFB\

Description:

This is the project we always generate to test ConCept.
This project is really great.
Everybody knows it and we can always refer to it.

Have a nice ConCept !

 The ConCept Development Team
33002204 663

Online functions
View Tool The View tool can be used for reading encrypted logfiles. Editing and saving so that
the file can be read normally is not possible but the logfile can be printed. Supervisor
rights are required in this case as well. With menu command File → View Protocol
the View tool is opened automatically if encryption has been activated for the current
log.

The logfile is stamped with an electronic signature and the following tests are
performed:
� The logfile is created by Concept.
� The logfile is not a counterfeit.
664 33002204

33002204
21

Import/Export
At a Glance

Overview This chapter describes the various import and export options for sections, variables
and PLC configurations.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

21.1 General Information about Import/Export 667

21.2 Exporting sections 669

21.3 Exporting variables and derived data types 672

21.4 Section import 673

21.5 Variables import 694

21.6 Import/Export of PLC Configuration 703
665

Import/Export
666 33002204

Import/Export
21.1 General Information about Import/Export

General Information about Import/Export

Export functions The following export options are available:

Program Path Export files

Concept
Concept DFB

File → Export � Sections from a source project and import
into a target project

� Sections from a source DFB and import into
a target DFB

� Sections from a source DFB and import into
a target project

� Sections from a source project and import
into a target DFB

� FBD, SFC and LD sections into IL or ST
files

� Variable declarations into an ASCII file
(Concept only)

� PLC configuration (Concept only)

Concept Edit → Save as text file... � Contents of IL or ST sections into an ASCII
file

� Definitions of Derived data types from the
Data type editor

Concept File → Archiving... Relevant project files (compressed)

Concept
Converter

File → Export →
Configuration

PLC Configuration
33002204 667

Import/Export
Import functions The following import options are available:

Program Path Import files

Concept
Concept DFB

File → Import � Exported sections from a source project or
source DFB

� Exported or externally created IL/ST files
into IL/ST sections

� Exported or externally created IL/ST files
into FBD/SFC sections (with conversion)

� Variable declarations from an ASCII file
(Concept only)

� PLC configuration exported with Concept
(Concept only)

Concept Edit → Insert text file... � Contents of ASCII files IL or ST sections
� Definitions of Derived data types into the

Data type editor

Concept File → Archiving... Relevant project files (decompressed)

Concept
Converter

File → Import PLC Configuration
668 33002204

Import/Export
21.2 Exporting sections

Exporting Sections

Introduction In Concept it is possible to export projects or DFBs selectively from a source project/
source DFB, and if desired, to then import them immediately into the current target
project.

Requirements The project from which the export is to take place must be stable (check using
Project → Analyze Program).

Export range The following are exported:
� the selected sections with their accompanying variables, DFBs, EFBs and data

types.
� In the case of SFC, the accompanying transition sections are also exported.
� The PLC configuration is not exported.

Exporting more
than one section

When more than one section is exported, a "pseudo SFC" is generated to maintain
the execution order. To do this, the following code is generated:

INITIAL_STEP SECTION_SCHEDULER:
 Section1 (N);
 Section2 (N);
 :
 SectionN (N);
END_STEP

Note: When exporting IL and ST sections, ensure that the settings for nested
comments (Options → Preferences → IEC Extensions → Allow nested
comments) are identical in the source and target projects.
33002204 669

Import/Export
Exporting FBD,
SFC and LD
Sections

Using File → Export → Program: IEC Text FBD, SFC and LD sections can be
exported to IL and ST. The text languages of both export files follow the grammar of
IEC text languages, shown in IEC 1131-3 and in the process tables 52 - 56 of IEC
1131-3.

The exported code is displayed in a PROGRAM … END_PROGRAM or
FUNCTION_BLOCK ... END_FUNCTION_BLOCK frame and contains all project or
DFB variables in a VAR ... END_VAR frame at the start of the file.

If more than one section is being exported, the code separation is expressed as an
artificial PLC frame, which is not a component of the original program. It only has
one INITIAL_STEP for all sections linked to it as actions (with the identifier N). These
actions (sections) are executed every time the step is active, which is always the
case. The actions follow as sections, which do not have variable declarations.

The artificial INITIAL_STEP has the name SECTION_SCHEDULER. It displays the
execution order as it was specified in the section execution order dialog box. The
artificial SFC frame is left out when re-importing in Concept. The criterion for this
omission is the specific name SECTION_SCHEDULER.

The ASCII file can be re-imported into a FBD or SFC section using the IEC text
import. Using exports and imports it is possible, for example, to convert a LD section
into a FBD section. Importing into a LD section is not possible.

If the EN and ENO optional imports/exports have been used in the FBD/LD sections,
they are ignored when exporting to IL/ST.

FBD section logic before export:

FBD section logic after import:

The LD elements "N.C. contact" and "N.O. contact" are converted to AND and
ANDNOT.

The ASCII file can, however, also be imported into an IL or ST section using the
Insert Text File function. In this case, however, manual correction of the files is
necessary, since the extensions described above must be removed again from the
file.

TON

ENO

%4:00001

Q

ET

ENIN1

ININ2

PT

Z1(1)

t#11s

ENO

Q

ET

EN

IN

PT

Z2(2)

t#11s

OT2

OT1

%4:00002

TON

TON

ENO

%4:00001

Q

ET

ENIN1

ININ2

PT

FBI_1_2(1)

t#11s

TON

Q

ET

IN

PT

FBI_1_3(2)

t#11s

OT2

%4:00002

FBI_1_2Q_1 FBI_1_2Q_1
670 33002204

Import/Export
SFC Export
Limitations

The following limitations should be noted when using SFC import:
� Only variables are permitted as actions. Direct addresses cannot be exported.
� Only literals are allowed as time variables for identifiers. Variables are converted

to literals with the value 0.
� Transition section names are changed to standard names.
� Step monitoring times and step delay times are lost when exporting.

Exporting IL and
ST Sections

Using Process → Save as Text File... it is possible to export the contents of IL or
ST sections into an ASCII file.

This export function is a simple text export function, which can also be performed via
the clipboard (cut/copy/paste). Data conversion does not take place. For this
reason, the required variable declarations, for example, are not exported with the
section contents. If the ASCII files are to be converted to an FBD or SFC section
using File → Import → Program: IEC Text, all information necessary for the project
(e.g. program frame, section name (see also Importing (insert file) IL and ST
programs into IL or ST sections, p. 690 and Procedure for "Copying" an IL section
from an existing project into a new project., p. 691)) must be entered manually.
33002204 671

Import/Export
21.3 Exporting variables and derived data types

Exporting variables and Derived Data Types

Exporting
variables in "Text
delimited" format

Using File → Export → Variables: Text delimited a project’s variables can be
exported into a ASCII file in text delimited format (refer to Importing Variables in
"Text Delimited" Format, p. 695 and Importing structured variables, p. 698).

The ASCII file can be re-imported into a Concept project with the help of the
importing text delimited (refer to Importing Variables in "Text Delimited" Format,
p. 695).

Exporting
variables for
Factory Link

Using File → Export → Variables: Factory Link a project’s variable declarations
can be exported into a ASCII file in "Factory Link" format.

If your Factory Link version of Concept is not supported, please call our hotline.

The ASCII file can be re-imported into a Concept project with the help of Factory Link
import (see Importing variables in Factory Link format, p. 701).

Exporting
variables for
Modlink

Using File → Export → Variables: Modlink a Modlink configuration file can be
generated, which can be used directly in Modlink.

The Modlink configuration file contains all those Located variables, which are
selected to be exported in the Variable Editor.

If no Located variables are selected to be exported, an error message appears and
a configuration file will not be generated.

Related information about Modlink is found in Modicon ModLink, User Guide.

Exporting
Derived Data
Types

In the data type editor, using Process → Save as text file... definitions of Derived
Data Types can be exported to a ASCII file.
672 33002204

Import/Export
21.4 Section import

At a Glance

Overview This section describes the import of sections.

What's in this
Section?

This section contains the following topics:

Topic Page

Importing Sections 674

Procedure for importing sections 679

Importing IL and ST Programs to FBD, SFC, IL or ST Sections (with
Conversion)

686

Importing (insert file) IL and ST programs into IL or ST sections 690

Procedure for "Copying" an IL section from an existing project into a new
project.

691

Procedure for converting FBD sections from an existing project into IL sections
of a new project.

692
33002204 673

Import/Export
Importing Sections

Introduction In Concept, the possibility exists to export individual sections selectively from a
source project or source DFB, and if desired, to then import them immediately into
the current target project or DFB:
� Section export from source project, followed by section import into the target

project
This transfers section information, including transition sections at SFC, all used
global and local DFBs used, as well as all the variable declarations used.
Data types defined in data type files are not transferred, (refer to notes).

� Section export from source DFB, followed by section import into the target DFB
This transfers section information, all global and local DFBs used as well as all
declarations of variables, inputs and outputs used.
Data types defined in data type files are not transferred, (refer to notes).

� Section export from source project, followed by section import into the target DFB
This transfers section information, all global and local DFBs used as well as all
used declarations of unlocated variables.
Direct address and Located variable declarations must be deleted before export,
since they are not authorized in a DFB. Data types defined in data type files are
not transferred, (refer to notes).

� Section export from source DFB, followed by section import into the target project
This transfers section information, all global and local DFBs used as well as all
declarations of variables used.
Declarations of inputs/outputs in this DFB must be deleted before export, since
they are not authorized in a Concept project. Data types defined in data type files
are not transferred, (refer to notes).

Notes Attention should be paid to the following notes:
� The imported sections will be inserted at the end of existing sections.
� The PLC configuration is not automatically imported. Instead, it must be imported

explicitly (refer to Import/Export of PLC Configuration using Concept, p. 704.
� If projects with different local data structures are being imported (different DTY

files in the local DFB directories), they must be brought together in an individual
DTY file before import. This common file must then be saved in the local DFB
directories for source and target projects. Afterwards, open these files to make
them known to the individual projects.

� Ensure during import of IL and ST sections that the settings for nested comments
(Options → Preferences → IEC extensions → Nested comments authorised)
are identical in the source and target projects.
674 33002204

Import/Export
Checking the
Sections to be
Imported

Before the import actually takes place, a check of the following takes place:
� identical project environment (DFBs, EFBs, definition of Derived Data Types)
� existing sections
� existing SFC sections (not authorized in Concept DFB)
� existing step names
� Declarations of inputs/outputs (not authorized in Concept projects)
� Declarations of direct addresses (not authorized in Concept DFB)

If an error is identified, the import is canceled.

Errors that occur subsequently are "irreparable" and will cause the project to close
(i.e. all changes made since the last save are lost). Possible errors are:
� Name collisions between variables with different data types
� Name collisions between item names
� other errors

Name collisions between variables with different initial values or direct addresses
(located variable) cause a warning. The value of the target project is retained.

Automatic
adjustment of
standard preset
names

An automatic adjustment of standard preset names occurs in the case of:
� Standard generated names, such as SFC step names (S_x_y) and transition

section names (TransSection_x_y)
� Standard generated item names (FBI_x_y)
� Position of new DFB inputs/outputs (only with import into Concept DFB)

Specific
Changes

During import there are also the following possibilities for performing specific
changes, in order to adjust the sections that are to be imported specifically to the
target project / target DFB.
� Replacing names (variable names, section names, item names, names in text

languages, comments, etc)
� Address offset for located variables and direct addresses in graphic languages

(e.g. %3:10 -> %3:20) and text languages (%QW10 -> %QW20)

The following points are excluded from the replace function:
� DFB names
� Index of ARRAYs (e.g. a[1])
� Elements from multi-element variables (e.g. a.dummy)
� In the case of EFBs, the replace function is only used for non-automatically

generated names (i.e. Instance names)
33002204 675

Import/Export
Syntax for
replacing names
and address
offset (address
shift)

The following syntax applies when replacing names:
� Only entire names will be searched. If parts of names are to be replaced,

wildcards must be used.
� The "?" character is permitted as a wildcard. It is used to represent one character

exactly. If more than one character is to be ignored, a corresponding number of
"?" must be used. The "?" character is only permitted at the start of the name.

� The "*" character is permitted as a wildcard. It is used to represent any number
of characters. The "*"character is only permitted in the character string that is to
be searched for.

� Wildcards are only permitted in the search character string.
� There are no case distinctions.
� The section name, which is to be used as a replacement, must conform to IEC

name conventions, otherwise an error message occurs.
� In accordance with IEC1131-3, only letters are permitted as the first character of

item names. Should figures be required as the first character, however, the menu
command Options → Preferences → IEC extensions... → Allow leading
digits in identifiers.

� The specified value for the address offset is added to the corresponding address
zone for located variables and direct addresses.

� The offset value is given in decimal format by default. If it is given in hexadecimal
format, this can be marked as such with the prefix "16#" in front of the actual
offset value (e.g. 16#100).

Note: Replacing names has an effect on all variables, instance names and
comments. Using wildcards runs the risk of replacing names that also happen
incidentally to contain the same character string that is being searched. This would
normally lead to a cancellation.
676 33002204

Import/Export
Examples of search and replace:

Replaces: By: available names Result

Name1 Name2 Name1
Name1A
NameA
NameB

Name2
Name1A
NameA
NameB

???123 456 abc123
cde123
abcd123
abc1234

abc456
cde456
abcd123
abc1234

Name1* Name2 Name1A
XName1B
NameAB

Name2A
XName1B
NameAB

*123 456 abc123
cde123
abcde123
abd123a

abc456
cde456
abcde456
abd123a

123 456 abc123abc
cde123defghi
abcde123def

abc456abc
cde456defghi
abcde456def

???123* 456 abc123abc
cde123defghi
abcde123def

abc456abc
cde456defghi
abcde123def
33002204 677

Import/Export
Syntax for
Creating the
Replace List with
an External
Editor

When creating the replace list using an external editor, the following syntax should
also be noted:
� The replace-by string (previous name-new name) must be separated by a

comma (e.g. name1,name2).
� The replace list is processed line by line. Individual replace instructions must be

separated by a line break.
� The instructions for the address offset have the following structure:

� to add an address offset:
<reg0>,www
<reg1>,xxx
<reg3>,yyy
<reg4>,zzz

� to subtract an address offset:
<reg0>,-www
<reg1>,-xxx
<reg3>,-yyy
<reg4>,-zzz

� Likewise, the value can be given in hexadecimal form, e.g.:
<reg1>,16#xxx
678 33002204

Import/Export
Procedure for importing sections

At a Glance In principle, sections must firstly be exported from the source project /DFB into an
export file (*.sec) and then be imported by the target project/DFB. Exporting and
importing from project to project or from DFB to DFB can take place in shared or in
separate sessions. Exporting and importing from projects into DFBs or from DFBs
into projects must take place in separate sessions.

Section export
and section
import

To section export a source project and then section import into a target project, the
following procedure should be performed:

Step Action

1 Open the target project in Concept.

2 Call File → Export → Program: section(s).

3 In the window Open file select the source project, e.g.
C:\SOURCE_DIR\SOURCE.PRJ

4 Select the sections to be exported from the source project.

5 In Save section export under , specify the name of the export file (*.SEC), e.g.
C:\TARGET_DIR\TARGET.SEC

Reaction: The sections are exported and saved in the *.SEC file, e.g. in
TARGET.SEC.
The question Import section into project now ? follows

6 If the question as to whether the sections should be imported is answered with
OK , the import will be performed now.
Answer Cancel, if you want to start the mport later, see also procedure
Resuming following canceled import (see Resuming after import cancelation,
p. 685).

7 Answer the question as to whether the project should be saved first with OK.

Note: The query Save project first ? should be answered with OK , because,
in the event of an import error, the current project is closed and all changes since
the last save are rejected.

8 If it is required or necessary, it is possible in the table Replace , to make
replacements for item names of variables, sections etc., as well as to define
address offsets for located variables and direct addresses (refer to Specific
Changes, p. 675).
33002204 679

Import/Export
9 Select OK to continue (the whole import process is canceled if Cancel is
selected).

Reaction: Sections, used DFBs, used derived data types and the declarations
for used variables, including comments, are imported into the target project.
The import is canceled and the current project closed, if
� the sections to be imported contain DFBs that are not available in the target

project.
� the sections to be imported contain DFBs whose versions differ from already

available DFBs. (The imported DFB version can be accepted or rejected.)
� other errors arise during import.

Errors are displayed in the messages window and have to be acknowledged.

10 If the import had been canceled, eliminate the cause of the cancelation and carry
out the Resuming after import cancelation (see Resuming after import
cancelation, p. 685)procedure.

Step Action
680 33002204

Import/Export
DFB export and
DFB import

To section export a source DFB and to then section import into a target DFB, carry
out the following procedure:

Step Action

1 Open the target DFB in Concept DFB.

2 Call File → Export → Program: section(s).

3 In the window Open file select the source DFB, e.g.
C:\SOURCE_DIR\SOURCE.DFB

4 Select the sections to export from the source DFB.

5 In Save section export under specify the name of the export file (*.SEC), e.g.
C:\TARGET_DIR\DFB\TARGET.SEC

Reaction: The sections are exported and saved in the *.SEC file, e.g. in
TARGET.SEC.
The question Import section into project now? is now displayed.

6 If this question is answered with OK, the import is performed now.
If the answer given is Cancel, the import is started later, refer to Resuming after
import break (see Resuming after import cancelation, p. 685)procedure.

7 Respond to the question as to whether the project should first be saved with OK.

Note: The query Save project first ? should be answered with OK , because,
in the event of an import error, the current project is closed and all changes since
the last save are rejected.

8 If required or necessary, it is possible in the table Replace, to replace item
names of variables, sections etc., as well as to define address offsets for located
variables and direct addresses (refer to Specific Changes, p. 675).

9 Select OK to continue (the whole import process is canceled if Cancel is
selected).

Reaction: Sections, used DFBs, used derived data types and the declarations
for used variables, outputs and inputs are imported into the target project.
The import is canceled and the current DFB closed, if
� the sections to be imported contain DFBs that are not available in the target

DFB.
� the sections to be imported contain DFBs whose versions differ from already

available DFBs. (The imported DFB version can be transferred or rejected.)
� other errors arise during import.

Errors are displayed in the messages window and have to be acknowledged.

10 If the import had been canceled, eliminate the cause of the cancel and carry out
the Resuming after import cancelation (see Resuming after import cancelation,
p. 685)procedure.
33002204 681

Import/Export
Section export
and DFB import

To section export a source project and to then section import into a target DFB, carry
out the following procedure:

Step Action

1 In Concept, delete all declarations of direct addresses and located variables in
the sections to be exported. (They are not authorized in a DFB.)

2 Open the source project in Concept.

3 Call File → Export → Program: section(s).

4 In the window Open file select the source project, e.g.
C:\SOURCE_DIR\SOURCE.DFB

5 Select the sections to be exported from the source project.

6 In Save section export under specify the name of the export file (*.SEC), e.g.
C:\TARGET_DIR\TARGET.SEC

Reaction: The sections are exported and saved in the file *.SEC, e.g. in
TARGET.SEC.
The question Import section into project now? is now displayed.

7 Answer the question as to whether the sections should be imported with Cancel.

8 Close Concept.

9 Open Concept DFB and the target DFB.

10 Execute the menu command File → Import → Program: section(s).

11 Select the export file (e.g. TARGET.SEC)

12 Respond to the question as to whether the project should firstly be saved with
OK.

Note: The question Save project first ? should be answered with OK, because
in the event of an import error, the current project is closed and all changes made
since the last save are rejected.

13 If required or necessary, in the table Replace, it is possible to replace item
names of variables, sections etc., as well as to define address offsets for located
variables and direct addresses (refer to Specific Changes, p. 675).
682 33002204

Import/Export
DFB export and
section import

To section export a source DFB and to then section import into a target project, carry
out the following procedure:

14 Select OK to continue (the whole import process is canceled if Cancel is
selected).

Reaction: Sections, DFBs used, derived data types used and the declarations
of used variables, inputs and outputs are imported into the target DFB.
The import is canceled and the current DFB closed, if
� the sections to be imported contain DFBs that are not available in the target

DFB.
� the sections to be imported contain DFBs whose versions differ from those of

DFBs already available. (The imported DFB version can be transferred or
rejected).

� other errors arise during import.

Errors are displayed in the messages window and have to be acknowledged.

15 If the import had been canceled, eliminate the cause of the cancel and carry out
the Resuming after import cancelation (see Resuming after import cancelation,
p. 685)procedure.

Step Action

Step Action

1 Delete the input/output declarations in the DFB to be exported before exporting
into Concept DFB, as these are not authorized in Concept projects.)

2 Open the source DFB in Concept DFB.

3 Call File → Export → Program: section(s).

4 In the window Open file select the source DFB, e.g.
C:\SOURCE_DIR\DFB\SOURCE.DFB

5 Select the sections to export from the source DFB.

6 In Save section export under specify the name of the export file (*.SEC), e.g.
C:\TARGET_DIR\TARGET.SEC

Reaction: The sections are exported and saved in the file *.SEC, e.g. in
TARGET.SEC.
The question Import section into project now? is now displayed.

7 Respond to the question as to whether the sections should be imported with
Cancel.

8 Close Concept DFB.

9 Open Concept and the target project.

10 Execute the menu command File → Import → Program: section(s).
33002204 683

Import/Export
11 Select the export file (e.g. TARGET.SEC).

12 Respond to the question as to whether the project should firstly be saved with
OK.

Note: The question Save project first ? should be answered with OK, because
in the event of an import error, the current project is closed and all changes made
since the last save are rejected.

13 If required or necessary, it is possible in the table Replace, to replace item
names of variables, sections etc., as well as to define address offsets for located
variables and direct addresses (refer to Specific Changes, p. 675).

14 Select OK to continue (the entire import process is canceled if Cancel is
selected).

Reaction: Sections, DFBs used, derived data types used and the declarations
of variables used, incl. comments, are imported into the target project.
The import is canceled and the current project closed, if
� the sections to be imported contain DFBs that are not available in the target

project.
� the sections to be imported contain DFBs whose versions differ from those of

DFBs already available. (The imported DFB version can be transferred or
rejected.)

� other errors arise during import.

Errors are displayed in the messages window and have to be acknowledged.

15 If the import had been canceled, eliminate the cause of the cancel and carry out
the Resuming after import cancelation (see Resuming after import cancelation,
p. 685)procedure.

Step Action
684 33002204

Import/Export
Resuming after
import
cancelation

To resume after an import cancelation, carry out the following procedure:

Step Action

1 Open the target project/target DFB again.

2 Execute the menu command File → Import → Program: section(s).

3 Select the export file (e.g. TARGET.SEC).

4 Answer the question Back up project?: with Yes.

Note: The question Back up project? should be answered with Yes, because
in the event of an import error, the current project is closed and all changes made
since the last save are rejected.

5 If required or necessary, it is possible in the table Replace, to replace item
names of variables, sections etc., as well as to define address offsets for located
variables and direct addresses (refer to Specific Changes, p. 675).

6 Select OK to continue (the whole import process is canceled if Cancel is
selected).

Reaction: Sections, DFBs used, derived data types used and the declarations
of variables used, incl. comments, are imported into the target project.
The import is canceled and the current project closed, if
� the sections to be imported contain DFBs that are not available in the target

project/target DFB.
� the sections to be imported contain DFBs whose versions differ from those of

DFBs already available. (The imported DFB version can be transferred or
rejected.)

� other errors arise during import.

Errors are displayed in the messages window and have to be acknowledged.
33002204 685

Import/Export
Importing IL and ST Programs to FBD, SFC, IL or ST Sections (with Conversion)

Introduction Using File → Import → Program: IEC text ASCII files with IL or ST programs can
be imported to FBD, SFC, IL or ST sections. ST and IL are able to have SFC
elements (when imported into SFC section). Both text languages must adhere to the
grammar of IEC text languages, shown in IEC 1131-3 and in the process tables 52
56 of IEC 1131-3.

Import units The minimum import unit is a program organization unit (POU) to IEC (PROGRAM
END_PROGRAM; FUNCTION_BLOCK ... END_FUNCTION_BLOCK).

The ASCII file can contain several POUs in Concept. From one POU, one or more
sections bearing the same name as the POU arise, which is provided with a current
number. A new section will be begun if too little graphic space is available to store
the logic. FUNCTION_BLOCK ... END_FUNCTION_BLOCK-POUs are imported as
DFBs.

In Concept DFB, the ASCII file can only contain a single POU. From this POU
(FUNCTION_BLOCK END_FUNCTION_BLOCK) one section arises.

Inserting POUs:

Type of POU Import into open project Import into open DFB

PROGRAM ... END_PROGRAM as a section into the current
project.

not possible

FUNCTION_BLOCK
...END_FUNCTION_BLOCK

as project DFB.
More than one POU can be
imported at the same time.

as a section into the
current DFB. Only one
POU can be imported.

FUNCTION ... END_FUNCTION is changed as DFB. The
function name becomes
the DFB output

is changed as DFB. The
function name becomes
the DFB output.
686 33002204

Import/Export
Behavior in the
Event of Error

In this case, sections are only stored if the ST/IL text is syntactically perfect. POUs
that cannot be reproduced are ignored completely, and an error message is
displayed in the message window.

Variables The variables declared in POUs appear after the import in the Variable Editor
(exceptions: SFCSTEP_STATE and SECT_CTRL type variables).

EFBs with
extended
parameter set

EFBs with extended parameter set (PRE_DIA, GRP_DIA, LOOKUP_TABLE, ..) are
only supported up to the predefined number of inputs/outputs.

 "Bracket
function" with
extended
number of inputs

If calls from a "bracket function" with extended number of inputs, such as
MUX_INT() are imported then all instances of this function work with the maximum
number of inputs that occur.

Changing from
IL/ST to FBD

The following restrictions occur when changing to FBD:
� The following restrictions occur when changing to FBD:
� Block items can only be called once
� only assignments and block calls

but none:
� RET (table 52, property 20)
� ELSIF (table 56, property 4)
� ELSIF (table 56, property 4)
� CASE (table 56, property 5)
� FOR (table 56, property 6)
� REPEAT (table 56, property 8)
� EXIT (table 56, property 9)

� IF not nesting (IEC 1131-3 table 56, property 4)

Note: If the file to be imported contains more than 200 declarations (declarations
of variables and FFBs, a program error is caused. If this is the case, the
declarations should be divided amongst several VAR...END_VAR blocks.
33002204 687

Import/Export
Changing from
IL/ST to SFC

The following limitations should be noted when making a SFC import from a text file:
� Only variables are permitted as actions. Direct addresses cannot be imported.
� Only literals are allowed as time variables for identifiers.
� Transition section names are changed to standard names.
� Step monitoring times and step delay times are lost when importing.

The following additional restrictions occur when changing to SFC (table = IEC 1131-
3-table):
� Transitions conditions are stored in special FBD sections (TC_secname) (table

41, property 7a ,7c, 7d). The textual import of transition conditions is not possible.
� Actions are converted into FBD sections and not linked to steps.
� no identifier SD and SL (table 45, property 8, 10), they are imported as MOVE.
� Structure components and directly addressed variables are allowed as SFC

actions. This can be seen as an extension of the IEC 1131-3 standard. ST and IL
exports support neither.

� Using step variables ’step.X’ , ’step.T’ cannot be imported or exported and must
be generated again.

Changing from
IL/ST to ST or IL

The following restrictions apply when changing to ST or IL, that were not created in
Concept.
� FB, DFB and direct address declarations occur at the start of the section

(VAREND_VAR)
� the source formatting (indents, comments etc) applied only to the "logic part" of

the sections, i.e. no comments for declarations (VAREND_VAR), for example
� Function Block counters must be made consistent, e.g. CTU must be changed to

CTU_INT
� no Keywords

� TYPE_...END_TYP
� VAR_INPUT...END_VAR
� VAR_OUTPUT...END_VAR
� VAR_IN_OUT...END_VAR
� VAR_EXTERNAL...END_VAR
� FUNCTION...END_FUNCTION
� FUNCTION_BLOCK...END_FUNCTIONBLOCK
� PROGRAM...END_PROGRAM
� STEP...END_STEP
� TRANSITION...END_TRANSITION
� ACTION...END_ACTION

� no RETURN instruction (ST Editor)
� no RET instruction (IL Editor)
688 33002204

Import/Export
Changing to
Variable
Declarations

When importing variable declarations the following restrictions occur:
� No comments are imported.
� VAR_CONSTANT is imported as located variable.

(VAR_CONSTANT
i : INT := 10;
END_VAR
becomes located variable "I" with the initial value of "10")

� VAR_INPUT and VAR_OUTPUT definitions are imported into the programs as
located variables (VAR).

� VAR_INPUT and VAR_OUTPUT definitions are imported into DFBs as input/
output variables (VAR_INPUT, VAR_OUTPUT).
33002204 689

Import/Export
Importing (insert file) IL and ST programs into IL or ST sections

At a Glance Using Edit → Insert text file... it is possible to import ASCII files with IL or ST
programs to IL or ST sections.

This import function is a pure text import function, which can also be performed via
the clipboard (cut/copy/paste). Data conversion does not take place. For this
reason, the necessary variable declarations for example (also if these are contained
in the ASCII file) are not automatically integrated into the Variable Editor. The
necessary variable declarations must be imported explicitly via File → Import from
a "variables file", or be newly created. If variable declarations are contained in the
section, they must be deleted, since they generate errors in the code generation of
the section. Apart from this, all information for the POU must be deleted from the
program (e.g. from the export of a graphic section using File → Export → Program:
IEC text).

Restrictions When importing IL and ST programs the following restrictions occur:
� no keywords

� TYPE_...END_TYP
� VAR_INPUT...END_VAR
� VAR_OUTPUT...END_VAR
� VAR_IN_OUT...END_VAR
� VAR_EXTERNAL...END_VAR
� FUNCTION...END_FUNCTION
� FUNCTION_BLOCK...END_FUNCTIONBLOCK
� PROGRAM...END_PROGRAM
� STEP...END_STEP
� TRANSITION...END_TRANSITION
� ACTION...END_ACTION

� VAR...END_VAR
� only for Function Block declarations and DFBs
� only at the start of the section for all Function Blocks and DFBs in the section
� not for variable declarations
� apart from this, for making direct addresses consistent: VAR %Q10:INT;

END_VAR
� no RETURN instruction (ST Editor)
� no RET instruction (IL Editor)
690 33002204

Import/Export
Procedure for "Copying" an IL section from an existing project into a new project

Procedure To "copy" an IL section from an existing project into an IL section of a new project,
perform the following steps:

Step Action

1 Open the IL section to be exported.

2 Using Edit → Save as text file... from the menu.

3 Select a directory for the export file and give it a name. Confirm with OK.

Reaction: The IL section contents are copied into a new ASCII file.

4 Execute the menu command File → Export → Variables: Text delimited.

5 Select the filter settings Export variables and Export constants. Select comma
as the text delimiter. Confirm with OK.

6 Select a directory for the export file and give it a name. Confirm with OK.

Reaction: The variable declarations of your project are exported to an ASCII file.

7 Using File → New project generate a new project.

8 Using Project → Configuration open the configurator.

9 Using Configure → PLC type select a PLC. Confirm with OK.

10 Using File → New section generate an IL section.

11 Using Edit → Insert text file... import the IL file.

12 Using File → Import → Variables: Text delimited(Warning: Text delimiter
must again be comma), import the variables file into the project’s Variable Editor.

13 Check the import process using Project → Analyze section.

Reaction: The import process is now completed and the new project can be
edited in the normal way (Create further sections, complete the configuration
etc.)
33002204 691

Import/Export
Procedure for converting FBD sections from an existing project into IL sections
of a new project

Procedure The process of converting FBD sections from an existing project into IL sections in
a new project consists of three main steps:

Exporting FBD
section

The procedure for exporting the FBD section is as follows:

Step Action

1 Exporting FBD section (see Exporting FBD section., p. 692).

2 Importing FBD section into an IL section (see Importing FBD section into an IL
section, p. 693).

3 Correcting the syntax (see Correcting the syntax, p. 693).

Step Action

1 Open the existing project.

2 Export the desired FBD section using File → Export... → Program: IEC text.

3 Select a directory for the export file and give it a name. Confirm with OK.

Reaction: The FBD section is exported into an ASCII file.

4 Execute the menu command File → Export → Variables: Text delimited.

5 Select the filter settings Export variables and Export constants. Select comma
as the text delimiter. Confirm with OK.

6 Select a directory for the export file and give it a name. Confirm with OK.

Reaction: The variable declarations are exported to an ASCII file.
692 33002204

Import/Export
Importing FBD
section into an IL
section

The procedure for importing the FBD section into an IL section is as follows:

Correcting the
syntax

The procedure for correcting the syntax is as follows:

Step Action

1 Using File → New project generate a new project.

2 Using Project → Configuration open the configurator.

3 Using Configure → PLC type select a PLC. Confirm with OK.

4 Using File → New section generate an IL section.

5 Using Edit → Insert text file... import the IL file.

6 Using File → Import → Variables: Text delimited(Warning: Text delimiter
must again be comma), import the variables file into the project’s Variable Editor.

Reaction: The FBD section (in IL format) and the variable declarations were
imported.

Step Action

1 Delete the line PROGRAM. (It contains the name of the old project.)

2 Delete any lines between VAR and END_VAR which do not contain Function
Block or DFB declarations (e.g. variable declarations).

3 Delete all lines from INITIAL_STEP to END_STEP. (They contain the sections
processing sequence of the old project.)

4 Change the ACTION lines to comment lines, e.g. (* ACTION xxx *). (They
contain the names of the FBD sections.)

5 Delete the END_ACTION line.

6 Delete the END_PROGRAM line.

7 Verify the import process using Project → Analyze section and correct any
errors.

Reaction: The import process is now completed and the new project can be
edited in the normal way (Create further sections, complete the configuration
etc.)
33002204 693

Import/Export
21.5 Variables import

At a Glance

Overview This section describes the importing of variables.

What's in this
Section?

This section contains the following topics:

Topic Page

Importing Variables in "Text Delimited" Format 695

Importing structured variables 698

Importing variables in Factory Link format 701

Multiple Address Assignment after Variable Import 702
694 33002204

Import/Export
Importing Variables in "Text Delimited" Format

Introduction Using File → Import → Variables: Text Delimited, the variable declarations can be
imported from an ASCII file into the variable editor in text delimited format.

Importing Initial
Values

Initial values of variables in derived data types cannot be imported with this import
format. If you wish to import initial values of variables in derived data types, select
the IEC text import export/import format.

General Format
Description

An ASCII file in "text delimited" format must conform to the following conditions:
� The character set used conforms to ANSI (Windows).
� The parameters of a variable are executed within one line.
� The individual parameters are separated from one another by a user-defined

character.
� Leading and following spaces are allowed in any field (Exception: if a space has

been used as a separator), the import function deletes the latter (with the
exception of the comment field).

� The selected separator must not be contained in the individual parameters.
� Concept is not case-sensitive, in accordance with IEC name conventions. This

should be adhered to for variable names.
� Overlapping between pre-existing addresses and addresses to be imported can

be prevented in the following way: in the Options → Preferences → Analysis...
→ Analysis Preferences dialog, activate the Treat Overlap of Addresses as
an Error option.

Order of
Parameters
within a Line

Order of Parameters within a Line:
� Variable flag
� Variable name (symbolic name)
� Data type
� Hardware address
� Initial value
� Comment
33002204 695

Import/Export
Meaning of
Variable Flags

Possible values for the variable flags are:
� 0 or N= the symbolic name refers to a non-exportable variable
� 1 or E= the symbolic name refers to an exportable variable
� 2 or C= the symbolic name refers to a constant
� 3 or I = the symbolic name refers to an Input (see Formal parameters, p. 465)

(Concept DFB only)
� 4 or O = the symbolic name refers to an Output (see Formal parameters, p. 465)

(Concept DFB only)
� 5 or M = the symbolic name refers to a VARINOUT variable (see Combined Input/

Output Variables (VARINOUT Variables), p. 466) (Concept DFB only)
� S = Structured variable, see Importing structured variables, p. 698.

Only variables with the 0/N or 1/E variable flag value are imported as located
variables. All others are imported as unlocated variables.

If the variable flag is set at 2/C, the hardware address is ignored.

The values 3/I and 4/O are only permitted in Concept DFB. In this case, the values
of the address fields are used for the position of the corresponding inputs and
outputs. The variable flag value 1/E is imported into Concept DFB as variable flag
value 0/N.

Structure of the
Hardware
Address Field

Structure of the Hardware Address Field (Example: %4:100):
� Characters for direct addresses "%" (may be missing)
� Address type

� 0 = output, discrete
� 1 = input
� 3 = input word
� 4 = output word, discrete word

� Separator ":" or ".".
If no separator is used, the address must be 6 characters long.

� Address

Examples of an
Address
Description

Output register 123 :
� %400123 or
� %4.123 or
� %4:123 or
� 400123 or
� 4.123 or
� 4:123
696 33002204

Import/Export
IEC Address
Conventions

The IEC address conventions can also be used (e.g. %QX100 corresponds to
000100):

Empty Fields Empty fields are represented by two consecutive separators.

The following fields are allowed to be empty:
� Hardware address
� Initial value
� Comment

Missing Fields The following fields are allowed to be missing:
� Comment
� Comment and initial value
� Comment and initial value and hardware address

Address Type Concept Designation IEC Designation

Output, discrete 0x %QX,%Q

Input 1x %IX,%I

Input register 2x %IW

Output register, discrete
register

3x %QW
33002204 697

Import/Export
Importing structured variables

At a Glance The basic structure of the file corresponds to that of the variables in text delimited
(see Importing Variables in "Text Delimited" Format, p. 695) format.

Additional usage
designations

In addition, the following points should be taken into account:
� Multiple rows are necessary to describe a variable.
� Each of these rows must correspond to the format of variables in delimited text

format.
� A structured variable with initial values is described by an introducing row with the

following structure:
1. Variable flag
2. Variable name (symbolic name)
3. Name of derived data type
4. Hardware address
5. Empty field
6. Comment

� This introductory line is followed by at least one component description. This
component description results from the description of the element components (
element data type) in the form of a row with the following structure (a component
does not have to be described if its initial value is the same as the standard
value). The sequence in which the individual components are executed is
insignificant.
1. Character "S" (S stands for structured)
2. Path of components (the variable name does not have to be included)
3. Field for IEC data type (this field can remain empty)
4. Empty field
5. Initial value
6. Empty field

Component
description error
trapping

Component description error trapping
� If a variable component is described more than once, the last description is used.
� If the specified component is not contained in the currently described variable, the

component description is ignored and a warning is given.
� If the field for the components path is empty, the component description is

ignored and a warning is given.
� If the field for the IEC data type is not empty, the specified data type is checked.

If the specified data type and the data type of the component are not the same,
the component description is ignored and a warning is given.

� Entries in the address field are ignored.
� Entries in the address field are ignored.
698 33002204

Import/Export
Example:
Structured
variables in "Text
delimited" format

Structured data type definition ESI_IN:

ESI_In: (* ESI - input data *)
 STRUCT
 in: ESI_InOut; (* ESI input data *)
 esi: ESI_Status;
 dummy: BYTE; (* supplement to modulo 16 *)
 slot: Exp_Status;
 END_STRUCT;

ESI_InOut: (* ESI input / output data structure *)
 STRUCT
 tstat: BYTE; (* transfer status, handshake *)
 blocks: BYTE; (* number of used blocks *)
 res: BYTE; (* reserved *)
 block: ESI_BlockArr14; (* data block *)
 END_STRUCT;

ESI_BlockArr14: ARRAY[1..14] OF ESI_Block;

ESI_Block: (* datas of ESI *)
 STRUCT
 func: BYTE; (* function *)
 mux: WORD; (* distribution *)
 attr: BYTE; (* attribute *)
 cause: BYTE; (* reason *)
 station: WORD; (* station number *)
 object: WORD; (* objekt number *)
 data: ByteArr9; (* data bytes *)
 END_STRUCT;

ByteArr9: ARRAY [1..9] OF BYTE; (* 9 bytes *)

ESI_Status: (* Status of ESI *)
 STRUCT
 wdog: BYTE; (* expert watchdog-counter *)
 stat1: BYTE; (* error status 1 *)
 stat2: BYTE; (* error status 2 *)
 stat3: BYTE; (* error status 3 *)
 slot: WORD; (* slot number *)
 user: WORD; (* virtual slot number *)
 esitime: DPM_Time; (* time stamp *)
 END_STRUCT;
33002204 699

Import/Export
DPM_Time: (* time stamp *)
 STRUCT
 sync: BOOL; (* sync clock *)
 ms: WORD; (* milli-seconds *)
 min: BYTE; (* minutes *)
 hour: BYTE; (* hours; (hour AND 16#80) *)
 (* = day light saving time *)
 day: BYTE; (* days of week *)
 mon: BYTE; (* month *)
 year: BYTE; (* year *)
 END_STRUCT;

STRUCT
 Exp_Status: (* error status of transfer *)
 ErrFlag1: BOOL; (* TRUE: epxert not pluged *)
 ErrFlag2: BOOL; (* TRUE: Bit 7 of DPM *)
 (* Identcode is set; *)
 (* logical DMP-access-error *)
 UserStatus: WORD; (* status of expert *)
 ErrNo: WORD; (* errornumber *)
END_STRUCT;

Representation of variables "demo" of ESP_IN data type in delimited text
format:

1;demo;ESI_In;400002;;structured data type
S;in.tstat;BYTE;;16#0F;
S;in.blocks;BYTE;;16#0F;
S;in.res;BYTE;;16#0F;
S;in.block[1].func;BYTE;;16#0F;
S;in.block[1].mux;WORD;;16#000F;
S;in.block[1].attr;BYTE;;16#0F;
S;in.block[1].cause;BYTE;;16#0F;
S;in.block[1].station;WORD;;16#000F;
S;in.block[1].object;WORD;;16#000F;
S;in.block[1].data[1];BYTE;;16#0F;
S;in.block[1].data[5];BYTE;;16#0F;
S;in.block[3].func;BYTE;;16#0F;
S;in.block[3].mux;WORD;;16#000F;
S;in.block[3].func;BYTE;;16#0F;
S;in.block[3].cause;BYTE;;16#0F
S;in.block[3].station;WORD;;16#000F
S;in.block[3].object;WORD;;16#000F
S;in.block[3].data[1];BYTE;;16#0F
S;in.block[3].data[2];BYTE;;16#0F
700 33002204

Import/Export
S;esi.wdog;BYTE;;16#0F
S;esi.stat1;BYTE;;16#0F
S;esi.stat2;BYTE;;16#0F
S;esi.stat3;BYTE;;16#0F
S;esi.slot;WORD;;16#000F
S;esi.user;WORD;;16#000F
S;esi.esitime.sync;BOOL;;TRUE
S;esi.esitime.ms;WORD;;16#000F
S;esi.esitime.min;BYTE;;16#0F
S;esi.esitime.hour;BYTE;;16#0F
S;esi.esitime.day;BYTE;;16#0F
S;esi.esitime.mon;BYTE;;16#0F;
S;esi.esitime.year;BYTE;;16#0F;
S;dummy;BYTE;;16#0F;
S;slot.ErrFlag1;BOOL;;FALSE;
S;slot.ErrFlag2;BOOL;;FALSE;
S;slot.UserStatus;WORD;;16#000F;
S;slot.ErrNo;WORD;;16#000F;

Importing variables in Factory Link format

Description Using File → Import → Variables: Factory Link variable declarations in Factory
Link format can be imported. In addition, carry out a Factory Link export and specify
the Factory Link version when importing into Concept.

If your Factory Link version of Concept is not supported, please call our hotline.

Note: Factory Link is case-sensitive with variable names. Concept does not
differentiate in accordance with IEC naming conventions. This should be adhered
to during import
33002204 701

Import/Export
Multiple Address Assignment after Variable Import

Description Via a Variables Import the multiple assignment of a single address by different
variable names is possible. This situation occurs if prior to the import, a variable that
has already been used in Concept is renamed in the list to be imported. In order to
not have to also manually perform this renaming in Concept, after the import you can
open the dialog box Multiple Address Assignment and perform the renaming or
replacement of the variable names automatically in the entire project (e.g. in
Variable Editor, Sections).

Note: In large projects and a corresponding number of multiple assignments, the
updating of the variable names can take some time.
702 33002204

Import/Export
21.6 Import/Export of PLC Configuration

Introduction

Overview This Section describes the import and export of the PLC configuration with Concept
or Concept Converter.

What's in this
Section?

This section contains the following topics:

Topic Page

Import/Export of PLC Configuration using Concept 704

Import/Export of PLC Configuration using Concept Converter 705
33002204 703

Import/Export
Import/Export of PLC Configuration using Concept

Introduction Using the Import/Export function a PLC configuration can be exported out of a
current (open) project and subsequently re-imported.

Config. Export
and Config.
Import

To export and subsequently import SPS configurations, proceed as follows:

Step Action

1 To export the PLC configuration from the current project, start Concept, open the
desired project and select File → Export → Configuration.

2 In the Folder field, select the target directory for the PLC configuration to be
exported.

3 In the File name field, enter a name for the Export file (NAME.CCF) and press
OK.
Response: The PLC configuration is stored in the selected directory as an ASCII
file.

4 To import a PLC configuration into a project, open the desired project.

5 In Concept select the File → Import → Configurationmenu command.

6 From the File type list select the Concept Configuration entry. (*.CCF).

7 In the Folder field, select the desired directory.

8 From the File name list select the PLC configuration to be imported
(NAME.CCF) and click on OK.

9 Warning: The current PLC configuration of the chosen project will be
overwritten.
Answer the question with OK.
Response: The PLC configuration is imported.
704 33002204

Import/Export
Import/Export of PLC Configuration using Concept Converter

Introduction The Concept Converter’s import/export function enables you to export the
configuration from one project (Project A) and import it into another project (Project
B).

Config Export
and Config
Import

In order to export and then import a PLC configuration, carry out the following steps:

Step Action

1 To export the PLC Configuration from project A, start the Concept Converter and
select File → Export → Configuration.

2 From the Folder field, select the Project A system directory.

3 Select the PLC configuration to be exported (PROJECTNAME.C1) and click on
OK.
Response: The PLC configuration is filed in the system directory in the form of
an ASCII file (PROJECTNAME.CON).

4 To import the PLC configuration into Project B, copy the exported file into the
system directory of Project B.

5 In Concept Converter select the File → Import menu command.

6 From the File Type list box select the Configuration (*.CON) entry.

7 From the Folder field, select the Project B system directory.

8 From the File Name list box, select the PLC configuration
(PROJEKTNAME.CON) to be imported and click on OK.

9 Caution: The current PLC configuration of the selected project will be
overwritten.
Answer the question with OK.
Response: The PLC configuration will be imported.
33002204 705

Import/Export
706 33002204

33002204
22

Documentation and Archiving
At a Glance

Overview This chapter describes the documentation, the archiving and deleting of projects,
DFBs and macros.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

22.1 Documentation of projects, DFBs and macros 709

22.2 Managing projects, DFBs and macros 719
707

Documentation and Archiving
708 33002204

Documentation and Archiving
22.1 Documentation of projects, DFBs and macros

At a Glance

Overview This section describes the documentation of projects, DFBs and macros.

What's in this
Section?

This section contains the following topics:

Topic Page

Documentation contents 710

Documentation Layout 711

Defining Page Breaks for Sections 713

Use of keywords 717
33002204 709

Documentation and Archiving
Documentation contents

At a Glance The contents of the documentation can range in length from one on-screen page to
the entire documentation of a project. The order in the first chapter is given as in the
dialog box File → Print → Documentation contents and cannot be changed.

Project
documentation

The following chapter can be printed for project documentation using the menu
command File → Print:
� Project description
� Derived data types
� Using state RAM
� State RAM values
� Using the DFBs
� Using the EFBs
� PLC configuration
� I/O Map
� Execution sequence of the sections
� Project structure
� Messages
� ASCII messages only with Concept for Quantum
� Variable lists
� Use of variables
� Contents of sections
� Contents directory for the printed documentation

DFB/macro
documentation

The following chapter can be printed for DFB/macro documentation using the menu
command File → Print :
� DFB/macro description
� Derived data types
� Using the DFBs
� Using the EFBs
� Execution sequence of the sections
� Messages
� Variable lists
� Use of variables
� Contents of the sections
� Contents directory for the printed documentation
710 33002204

Documentation and Archiving
Documentation Layout

Print Format The printout can be in either portrait or landscape mode. This is set up in the dialog
box File → Printer Setup → Select Printer.

Page Numbering The pages are numbered linearly. The starting page number can be selected by the
user.

Page Size The left margin is 12 characters wide. The area for text and graphics is
approximately 132 characters wide, the height depends on the header and footer
files. If the header and footer files are not activated or the keyword "%PAGENO" is
not contained in them, the page number will be printed automatically in the bottom
right corner of the page.

Page Breaks If a graphics section does not fit on a printed page, the section will be divided - like
a map - in the printout. In this case page references are printed in all four corners of
the graphics area to show which page the graphics are continued on. The View →
Page Break menu option displays the page break corresponding to the printer set
in File → Printer Setup and to the enlargement factor in the editor window.

Also see the Defining Page Breaks for Sections, p. 713 description.

Size and Fonts In text sections the font size in the printout cannot be altered. Emphasis of keywords
is represented in the printout using bold and italic typefaces.
33002204 711

Documentation and Archiving
Standard Layout Standard Layout:

Header It is possible to give your documentation a header. The header is stored as an ASCII
file and can be created using any ASCII editor. The maximum file size is 15 lines or
approx. 2 Kbytes.

A sample file called "HEADER.TXT" is available in the Concept directory. This file
can be modified as required. Keywords (see Use of keywords, p. 717) can also be
used with it.

Footer It is possible to give your documentation a footer. The footer is stored as an ASCII
file and can be created using any ASCII editor. The maximum file size is 15 lines or
approx. 2 Kbytes.

An sample file called "FOOTER.TXT" is available in the Concept directory. This file
can be modified as required. Keywords (see Use of keywords, p. 717) can also be
used with it.

Front Page It is possible to give your documentation a front page. The front page is stored as an
ASCII file and can be created using any ASCII editor. The size of the file is unlimited.

An sample file called "FRONTPG.TXT" is available in the Concept directory. This file
can be modified as required. Keywords (see Use of keywords, p. 717) can also be
used with it.

The printout of the front page also contains the header and footer if these are
switched on.

Header (max. 15 lines)

Area to be printed

of

texts, tables

and graphics

Blank line

upper border

Footer (max. 15 lines)

lower border

Blank line [%PAGENO]

left
border
712 33002204

Documentation and Archiving
Defining Page Breaks for Sections

Introduction For printing graphics in FBD, LD and SFC sections, you can define the values for
the page break and paper orientation of the graphics. The higher the value you
select, the smaller the graphics will be displayed. But in return more space is
available on a page.

Settings You can set the values for the page break for portrait and landscape. When
changing the paper format, the settings for the other format stay saved. Using the
Download standard values command button, the standard values from the
CONCEPT.INI file can be loaded.

When defining values for the width and height of the paper, you should make sure
that the different editors show different grid units.

The min. and max. values are:

Section 1 grid unit equals the value Paper Width Paper Height

FBD 10 30 - 300 30 - 230

LD 8 30 - 400 10 - 230

SFC 1 4 - 32 4 - 60
33002204 713

Documentation and Archiving
Example for FBD
section

Dialog setting

Page break settings (grid per page)

Section Options

FBD/LD/SFC

Description

Graphics

Object Description

Variable usage

State RAM usage

ST/IL

Description

Text

Variable usage

State RAM usage

FBD/LD/SFC

Description

Graphics

Network comm.

Variable usage

State RAM usage

Width

FBD

LD

SFC

OK Help

Portrait

Landscape

Cancel

Load standard values 11

70

75

Height

20

35

100 From Network

To Network
714 33002204

Documentation and Archiving
Representation in the FBD editor window

1 FBD section
2 Grid view (View -> Grid)
3a Page break, width: 75 (View -> Page break)
3b Page break, height: 100 (View -> Page break)

Concept [C:\CC25T1”1\TESTPAJ\TESTPAJ] - [FBD1]

File Edit View Objects Project Online Options Window Help

.1.1 (1)

AND_BOOL

LampTest1
LampTest2

FBI_1_2 (3)

LIGHTS

.1.4 (4)

OR_BOOL

%0:00017

.1.5 (5)

OR_BOOL

%0:00018

.1.6 (6)

OR_BOOL

%0:00019

.1.7 (7)

OR_BOOL

%0:00020

.1.8 (8)

OR_BOOL

%0:00021

.1.3 (2)

OR_BOOL

Manual1
ACT4

S 01
02
03
04
05

This section is used to demonstrate one instance of LIGHTS.

The output values of LIGHTS are mapped to LEDs.

The LEDs can be tested by switching on LampTest1 AND LampTest2.

For this purpose the output of LIGHTS and lamptest are ORed.

3a

1

2

3b
33002204 715

Documentation and Archiving
Print-out

.1.1 (1)

AND_BOOL

LampTest1
LampTest2

FBI_1_2 (3)

LIGHTS

.1.4 (4)

OR_BOOL

%0:00017

.1.5 (5)

OR_BOOL

%0:00018

.1.6 (6)

OR_BOOL

%0:00019

.1.7 (7)

OR_BOOL

%0:00020

.1.8 (8)

OR_BOOL

%0:00021

.1.3 (2)

OR_BOOL

Manual1
ACT4

S 01
02
03
04
05

10 20 30 40 50 60 70 75

10

20

30

40

50

60

70

80

90

100

This section is used to demonstrate one instance of LIGHTS.

The output values of LIGHTS are mapped to LEDs.

The LEDs can be tested by switching on LampTest1 AND LampTest2.

For this purpose the output of LIGHTS and lamptest are ORed.
716 33002204

Documentation and Archiving
Use of keywords

At a Glance Keywords allow project or object specific information to be inserted into the header,
footer and title page files.

Usable keywords Table of usable keywords:

%PROJNAME Project name

%SECTNAME Section name

%VERSION Program/DFB version

%CREDATE Creation date

%MODDATE Date of last project/DFB modification

%DATE_D Current date (European format, DD.MM.YY)

%DATE_US Current date (US format, DD.MM.YY)

%PAGENO Current page numbers

%RECT(Column,Width,Height) Draws a rectangle with its top left-hand
corner in the current line

%HLINE(Column,Length) Draws a horizontal line in the current line

%VLINE(Column,Length) Draws a vertical line starting in the current
line

Note: The total number of lines in the header, footer or title page file must agree
with the number of lines needed to print rectangles and vertical lines.
33002204 717

Documentation and Archiving
Example: Header
with keywords

Contents of the ASCII file:

%RECT (1,132,4) %VLINE (24,4) %VLINE (110,4)
 S A Project comment Name
 CONCEPT %DATE_D
¶

Expression:

Note: The symbol ¶ is not entered, it should only show that the file ends with a
blank line.

S A

CONCEPT

Project comment Name

 01.04.99
718 33002204

Documentation and Archiving
22.2 Managing projects, DFBs and macros

At a Glance

Overview This section describes the archiving and deletion of projects, DFBs and macros.

What's in this
Section?

This section contains the following topics:

Topic Page

Archiving projects, used DFBs, EFBs and data type files 720

Deleting projects, DFBs and macros 722
33002204 719

Documentation and Archiving
Archiving projects, used DFBs, EFBs and data type files

Introduction When archiving projects, used DFBs, EFBs and data type files, all data of the project
is collected and compressed. The *.PRZ file is created and put into the same
directory as the project itself. The file can be decompressed at any time thereafter.

Archiving
Projects

The procedure for archiving projects is as follows:

Note: When archiving DFBs, their help files (*.DOC, *.PDF, *.TXT), which are
located in the Concept directory or the defined path (see CONCEPT.INI (see
Defining the Path for Global DFBs and Help Files [Path], p. 1095)) are not
considered. However, if you want to archive these help files, you must copy these
files into the local/global DFB-directory.

Step Action

1 Start Concept.
Note: No project may be open during the archiving procedure, otherwise the
Archive...command cannot be selected.

2 To archive, select File → Archive....
Response: A window showing the Concept projects appears.

3 Select the project to be archived from the window and press OK.
Reaction 1: A check for whether a compressed *.PRZ file has the same name
is performed. If there is a file with the same name, you are requested to confirm
whether the existing file should be replaced by the new file.
Reaction 2: The project data is compressed and saved in the *.PRZ file and is
then found in the same directory as the project.
720 33002204

Documentation and Archiving
Unpacking
Archived
Projects

The procedure for unpacking archiving projects is as follows:

Archiving/
unpacking global
DFBs

When archiving or unpacking the used global DFBs, the following sequence should
be used:

The global DFBs from only one directory are used and/or are saved in only one
directory. i.e. if step 1 is unsuccessful, then step 2 follows, step 3 is only performed
if neither of the first two are successful.

Step Action

1 Select File → Open.
Result: A window showing all Concept projects appears.

2 Go to the list field File Type and select option Archived Projects (*.prz).
Result: The archived Concept projects are displayed.

3 Select the project that you want to open and press OK.
Reaction 1: A check for whether a *.PRJ file has the same name is performed.
If there is a file with the same name, you are requested to confirm whether the
existing file should be replaced by the new file.
Reaction 2: A check for whether DFBs, EFB libraries and data type files with the
same name exist, is performed. If there is a file with the same name, you are
requested to confirm whether the existing file should be replaced by the new file.
Reaction 3: The Archive content dialog is opened.

4 Select Decompress.
Reaction 1: The project data is decompressed and stored as a normal Concept
project. The project is then found in the same directory as the archived file.
Reaction 2: The project is automatically opened in Concept.

5 Establish a connection between the PC and the PLC with Online →
Connection.
Result: The PC and PLC have the same status as before the archive procedure.

Step Action

1 The project directory is searched for an existing GLB directory.

2 The relevant settings are checked in the CONCEPT.INI file.
For example:
[Path]: GlobalDFBPath=x:\DFB
[Upload]: PreserveGlobalDFBs=0
In this example, the DFB directory of the path defined is searched for global
DFBs.

3 The DFB directory in x:\CONCEPT\DFB is searched.
33002204 721

Documentation and Archiving
Diagnostic
Information

When downloading the project, diagnostic information is created and put into the
corresponding directory. Then, the status between PC and PLC becomes EQUAL.
When archiving the project, this diagnostic information is compressed with the other
project data and stored in a file.

To use the diagnostic information after it is decompressed, make sure that the status
between the PC and the PLC is EQUAL when archiving. Downloading is no longer
required and diagnostics can be run immediately.

If the status is anything else between the PC and the PLC, e.g. NOT EQUAL, then
this status will be displayed while decompressing and after the connection (Online
→ Connect...). Downloading is therefore required to put the system into operation.
Downloading also creates new diagnostic information while the old information is
lost however.

Deleting projects, DFBs and macros

Deleting
projects, DFBs
and macros

The procedure for deleting projects, DFBs and macros is as follows:

Step Action

1 Delete the project/DFB/macro directory (including the subdirectory "dfb").

If only certain DFBs/macros need to be deleted from this directory, open the
subdirectory and delete all files with the required DFB/macro name (name *).

2 Use global DFBs, and global macros in the project/DFB and if these also need
to be deleted, they must be deleted separately.

Open the subdirectory "dfb" of the Concept directory and delete all files carrying
the name DFBs/macros (name *).
722 33002204

33002204
23

Simulating a PLC
Preview

Overview This chapter describes how to simulate a PLC. By using a simulator the functions of
a program may be tested without the actual required hardware.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

23.1 Simulating a PLC (16-bit simulator) 725

23.2 Simulating a PLC (32-bit simulator) 727
723

Simulating a PLC
724 33002204

Simulating a PLC
23.1 Simulating a PLC (16-bit simulator)

Simulating a Controller

Introduction This section describes the 16-bit simulator Concept SIM.

Area of
Application

Concept SIM may be used to simulate any PLC (Quantum, Compact, Momentum,
Atrium) in order to test the user program "online" without hardware.

The simulator is only available for the IEC languages (FBD, SFC, LD, IL and ST).

The 16-bit simulator Concept SIM is used for testing programs containing Concept
EFB generated 16-bit EFB.

Max. Number of
Variables

When using the 16 bit simulator Concept SIM, a specific number of state RAM
references (Project → PLC configuration → Configuring → Memory Partitions)
may not be exceeded.

The table below shows the maximum number of these state RAM references:

Concept
vs. Concept SIM

Concept SIM and Concept may only be opened independently, i.e. when starting
Concept SIM, Concept cannot be open. It is therefore advisable to decide before
starting Concept, whether the simulator or the controller should perform the test. In
each case, make sure that the simulator is turned on or off as required.

Note: If your program does not contain 16-bit EFBs created with Concept EFB, you
should use the 32-bit simulator (PLCSIM) to simulate a PLC.

Reference type max. number

0x 60000

1x 5008

3x 4000

4x 24000
33002204 725

Simulating a PLC
Activating
Concept SIM

The procedure for activating Concept SIM is as follows:

Note

Disabling
Concept SIM

The procedure for disabling Concept SIM is as follows:

Step Action

1 Close Concept if it is open.

2 Open Concept-SIM by double-clicking on the Concept-SIM icon.

3 Click on the File main menu and activate the Simulation on menu command.
Response: The simulator is on.

4 Exit Concept SIM via the File main menu using the Exit menu command.

5 Start Concept.

6 From Online → Connect... open the Connect to PLC dialog window.

7 For Protocol type: always select Modbus Plus, even if your real PLC will be
coupled via a different bus at a later stage.
Response: The simulator will now be displayed as a PLC in the node list of the
Modbus Plus network.

8 Now create a link to the simulated PLC by double clicking on the list entry or via
OK.
Response: You may now test the behavior of your IEC user program.

Note: Please note that the simulator remains active even after rebooting the PC.
To build a link to a PLC the simulator must be explicitly terminated.

Step Action

1 Close Concept if it is open.

2 Open Concept-SIM by double-clicking on the Concept-SIM icon.

3 Click on the File main menu and select the Simulation Off menu command.
Response: The simulator is on.

4 Exit Concept SIM via the File main menu using the Exit menu command.
726 33002204

Simulating a PLC
23.2 Simulating a PLC (32-bit simulator)

At a Glance

Overview This Section describes how to simulate a PLC with the 32-bit simulator Concept
PLCSIM32.

What's in this
Section?

This section contains the following topics:

Topic Page

Concept-PLCSIM32 728

Simulating a PLC 730

Simulating a TCP/IP interface card in Windows 98 732

Simulating a TCP/IP interface card in Windows NT 733
33002204 727

Simulating a PLC
Concept-PLCSIM32

Introduction The Concept-PLCSIM32 program simulates any PLC unit (Quantum, Compact,
Momentum, Atrium) and its signal states.

Area of Use The simulator is presently only available for IEC languages (FBD, SFC, LD, IL and
ST).

Note for
Windows 98 and
Windows NT

Since the simulator is connected to Concept via a TCP/IP link, you need a card in
your computer to handle the TCP/IP interface (when using Windows 98 or Windows
NT). If your computer is not equipped with such a card, it can be simulated. Follow
the procedure described in Simulation of a TCP/IP interface card in Windows 98
(see Simulating a TCP/IP interface card in Windows 98, p. 732) or Simulation of a
TCP/IP interface card in Windows NT (see Simulating a TCP/IP interface card in
Windows NT, p. 733).

When using Windows 2000, simulating a TCP/IP interface card is not necessary
because all drivers needed for Concept PLCSIM32 are installed automatically.

Note: Not supported:
� LL984 language
� Loadables, e.g. ULEX
� 6x-Register (extended memory)
� RIO
� DIO
� Backplane Expander
728 33002204

Simulating a PLC
Structure of the
dialog box

The title bar shows the name of the application (PLC Sim32) and the address of your
PC-interface card.

The first text box in the simulator window shows the status of the simulated PLC.
This field is read-only. The displayed status is determined by Concept, as with a real
PLC.

The status may be shown as the following:
� DIM (Dim Awareness)

The simulator is in an undefined state.
� STOPPED

The simulator (the simulated PLC) is stopped.
� RUNNING

The simulator (the simulated PLC) is running.

The type of PLC to be simulated can be selected from the first list box.

The following registers are available:
� State RAM

Provides an overview of the signal memory.
� I/O Modules

Shows the configuration currently loaded or the signal memory of a selected
group of components.

� Connections
Displays connections between the simulator and programming device(s).
33002204 729

Simulating a PLC
Simulating a PLC

Overview A controller is simulated with the PLCSIM32 simulator using 4 main steps:

Program
creation and
controller
configuration

The following steps describe how to create programs and configure the controller.

Activating the
simulator

The following steps describe how to activate the simulator:

Construction of
the connection

The following steps describe how to construct the connection between Concept and
the simulator.

Step Action

1 Program creation and controller configuration.

2 Activating the simulator.

3 Construction of the connection between Concept and simulator.

4 Downloading the program.

Step Action

1 Create your program and your controller configuration in Concept.

2 Save your project with File → Save.

Step Action

1 Run PLCSIM32 simulator in the Concept program group.

2 Select the controller type appropriate to your project in the simulator.

Step Action

1 Using Online → Connect... open the Connect to PLC dialog in Concept.

2 Select the IEC Simulator (32-Bit) entry in the Protocol Type list box.

3 In the Access range, activate the Change configuration option button.

4 Confirm with OK.
Response: A connection has been made between the programming unit and the
simulator. A note then appears, saying that the configurations of the
programming unit and the simulator are different.
730 33002204

Simulating a PLC
Downloading the
program

The following steps describe how to download the program:

Step Action

1 Using Online → Download open the Download Controller dialog.

2 Confirm with Download.
Response: Your program and your configuration are loaded into the simulator.
You will be asked if you wish to start the controller.

3 Confirm with Yes.
Response: You may now test the behavior of your IEC user program.
33002204 731

Simulating a PLC
Simulating a TCP/IP interface card in Windows 98

Introduction As the coupling between Concept and the simulator PLCSIM32 is made via a TCP/
IP coupling, a TCP/IP interface card is needed in the PC. If your PC does not have
one of these cards, it may be simulated.

Simulating a
TCP/IP Interface
Card

Carry out the following steps to simulate a TCP/IP interface card in Windows 98:

Risk of PC problems

Do NOT complete this procedure if your PC already has a TCP/IP connection. The
software installation of the TCP/IP connection would be destroyed by this
procedure. Only carry out this procedure once, otherwise PC problems may arise.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

Step Action

1 In Windows 98 invoke Start → Settings → Control Panel.

2 From Software open software settings.

3 From the Windows Setup register select the Links entry and click on the
Details... command button.

4 Check the DFU network entry here and confirm with OK. (To do this, you may
require the Windows system CD.)

Response: The computer reboots.
The DFU network and the TCP/IP protocol are available to the system after the
reboot. (Concept can only connect to the simulator.)
732 33002204

Simulating a PLC
Simulating a TCP/IP interface card in Windows NT

Introduction As the coupling between Concept and the simulator PLCSIM32 is made via a TCP/
IP coupling, a TCP/IP interface card is needed in the PC. If your PC does not have
one of these cards, it may be simulated.

Simulating a
TCP/IP Interface
Card

The main steps for simulating a TCP/IP interface card in Windows NT are as follows:

Risk of PC problems

Do NOT complete this procedure if your PC already has a TCP/IP connection. The
software installation of the TCP/IP connection would be destroyed by this
procedure. Only carry out this procedure once, otherwise PC problems may arise.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

Step Action

1 Setting the basic settings.

2 Installing a new modem.

3 Setting the workgroup.
33002204 733

Simulating a PLC
Setting the Basic
Settings

The procedure for setting the basic settings is as follows:

Step Action

1 In Windows NT, invoke Start → Settings → Control Panel → Network and
answer Yes to the question.
Response: The Network Setup Wizard dialog is opened.

2 Deactivate the Wired to the network option.

3 Select the Remote access to the network option.
Response: The network card installation dialog will be opened.

4 Click on Next (without installing a network card).
Response: The dialog for selecting a network protocol will be opened.

5 Select the TCP/IP-Protocol option.

6 Deactivate all the other options and click on Next.
Response: The dialog for selecting services will be opened.

7 Click on Next (without making any changes in the dialog).

8 Answer the question with Next.
Response: The Windows NT Setup dialog is opened.
734 33002204

Simulating a PLC
Installing a New
Modem

The procedure for installing a new modem is as follows:

Setting the
Workgroup

The procedure for setting the workgroup is as follows:

Step Action

1 Insert the Windows NT CD and specify the path for the installation data files (for
example D:\i386). Click on Resume.
Response: The TCP/IP Setup dialog is opened.

2 Click on No.
Response: The Remote Access Setup dialog is opened.

3 Click on Yes.
Response: The Install New Modem dialog is opened.

4 Select the Don’t detect my modem; I will select it from a list. option and press
Next.
Response: The dialog for selecting a modem is opened.

5 Select a standard modem (for example Standard 28800 bps modem) and press
Next.
Response: The dialog for selecting the connection is opened.

6 Select the Selected ports option and the COM interface. Click on Next.
Response: The Standard information dialog is opened.

7 Select your country.

8 Enter the code for your town (your area code) and click on Next.
Response: The Install New Modem dialog is opened.

9 Click on Finish.
Response: The Add Remote Access Setup device dialog is opened.

10 Click on OK.
Response: The Remote Access Setup dialog is opened.

11 Click on Next.
Response: The Network installation assistant dialog is opened.

12 Click on Next twice.
Response: The dialog for setting the workgroup is opened.

Step Action

1 Select the Workgroup option and enter the WORKGROUP name. Click on Next.

2 Click on Finish.
Response: The Network Settings Changes dialog is opened.

3 Click on Yes to restart.
Response: Your PC now simulates a TCP/IP network and the 32-bit simulator
PLCSIM may be used.
33002204 735

Simulating a PLC
736 33002204

33002204
24

Concept Security
At a Glance

Overview This chapter describes Concept Security.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

General Description of Concept Security 738

Access Rights 740

Changing Passwords 748

Activating Access Rights 749

Protecting Projects/DFBs 750
737

Concept Security
General Description of Concept Security

At a Glance You can define access rights (see Access Rights, p. 740) (user definitions) using
Concept Security. The access rights limit the functionality of Concept and its utilities
for certain users.

Projects/DFBs can be protected (see Protecting Projects/DFBs, p. 750) from being
edited using Concept Security.

Scope The access rights defined for a user are valid for all projects within the Concept
installation. If a user edits projects in different Concept installations, he has to be
defined as a user in each Concept installation.

Max. number of
users

A maximum of 128 users can be defined.

Activating
Concept Security

After Concept is installed, Concept Security is inactive and must be activated by the
system administrator (Supervisor).

The system
administrator

Access rights are defined and Concept Security is switched on/off by the system
administrator (user name: Supervisor).

When Concept is installed, a password file is automatically created for the
"Supervisor" (system administrator) with an empty password. This user has
"Supervisor" access rights.

Changing the
access rights
online

Concept Security and Concept/Concept-DFB can be started at the same time, i.e.
the access rights can be changed while Concept/Concept-DFB is running and
become active immediately.

Note: The Editor LL984 cannot be protected with Concept Security.
738 33002204

Concept Security
Creating a log In Concept, if you go into the Options → Preferences → Common... → Common
Preferences dialog box in the Logging area and activate the File option (and enter
a path name), the log function is activated. A file with the name
YEARMONTHDAY.LOG (e.g. 19980926.LOG) is created in the folder you selected,
which contains a log of all system critical (runtime relevant) changes.

The following data (and other data) is logged in the ASCII file:
� Section name
� EFB/DFB instance name, FB type name
� Pin name
� [variable name] [literal] [address]
� Old value
� New value
� User name (if password protection is activated in Concept Security)
� Date and time (also see Options → Preferences → Common...)

The following logging can be carried out during log-on:
� Modification of the user rights
� Deleted user
� Aborted log-on

In Concept, you can view the current log using the menu command File → View
Logfile.

Encrypt Logfile Logging write access on the PLC can be stored in an encrypted
YEARMONTHDAY.ENC file (e.g. 20021025.ENC). To do this, go to the Project
Properties (main menu Project) dialog box and activate the control box Secure
Application. In Concept, you can view the current log using the menu command
File → View Logfile. If the current log is encrypted, the content of the ENC file is
automatically opened in a view tool and can viewed or printed there. Supervisor
rights are required to do this.
33002204 739

Concept Security
Access Rights

At a glance The access rights are set up in a hierarchy; if the user has the rights for a certain
level, he also has the rights to all lower levels.

Access Right
Levels

The following levels are defined (from lowest to highest):

Level Access rights Assigned Functionality

1 Read only The user can view projects offline and online, but cannot
change them. The user can establish a connection
between the programming device and PLC and casn
view variables online.

2 Reset SFC The same functionality as above and also: Animation
panel can be use for control (e.g. disable steps, disable
transitions, force steps, etc.).

3 Change data The same functionality as above and also: The user can
change literals online.

4 Force data The same functionality as above and also: Forcing
variables.

5 Download The same functionality as above and also: The user can
download the program to the PLC.
Note: To download the configuration, you at least need
the access rights Change configuration.

6 Change program The same functionality as above and also: The user can
make any changes to the program, but not to DFBs or
EFBs.

7 Change configuration The same functionality as above and also: The user can
change the PLC configuration.

8 Tools The same functionality as above and also: The user can
use Concept DFB, Concept EFB and Concept
Converter.

9 Supervisor The same functionality as above and also: The user can
use Concept Security in Supervisor mode (set up users,
activate/deactivate Concept Security).
740 33002204

Concept Security
Access Rights
for the Main
Menu File

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu File:

Menu commands in the main menu File Minimum access rights needed

New Project Change program

Open / Close Read only

Open / Close
(replacing/deleting EFBs/DFBs; error
messages: FFB does not exist; FFB formula
parameter was changed, DFB was changed
internally)

Change program

Save project Change data

Save project as.... Change data

Optimize project... Change program

New section... Change program

Open section... Read only

Delete section... Change program

Section properties... (read) Read only

Section properties... (write) Change program

Section Memory Read only

Import... Change program

Export... Read only

Print... Read only

Printer setup... Read only

Exit Read only
33002204 741

Concept Security
Access Rights
for the Main
Menu Edit

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu Edit:

Menu commands in the main menu Edit Minimum access rights needed

Undo: Delete Change program

Cut Change program

Copy Read only

Insert Change program

Delete Change program

Select all Read only

Deselect all Read only

Goto line... (text languages) Read only

Goto counterpart (text languages) Read only

Expand statement (text languages) Change program

Lookup variables (text languages) Change program

Search... (text languages) Read only

Find Next (text languages) Read only

Replace... (text languages) Change program

Insert text file... (text languages) Change program

Save as text file... (text languages) Read only

Open Column (LL984 Editor) Read only

Open Row (LL984 Editor) Read only

Close Column (LL984 Editor) Read only

Close Row (LL984 Editor) Read only

DX Zoom... (LL984 Editor) Read only

Reference Zoom (LL984 Editor) Read only

Offset References... (LL984 Editor) Read only

Replace References (LL984 Editor) Read only
742 33002204

Concept Security
Access Rights
for the Main
Menu View

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu View (only for FBD, LD and SFC):

Menu commands in the main menu View Minimum access rights needed

Overview Read only

Normal Read only

Expanded Read only

Zoom in Read only

Zoom out Read only

Grid Read only

Page breaks Read only
33002204 743

Concept Security
Access Rights
for the Main
Menu Objects

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu Objects:

Menu commands in the main menu
Objects

Minimum access rights needed

Properties (read) (only for FBD, LD and SFC) Read only

Properties (write) (only for FBD, LD and SFC) Change program

Select Read only

Text Change program

Replace variables... Change program

Link Change program

Vertical Link (LD Editor) Change program

FFB: Last Type (FBD, LD Editor) Change program

Invert input/output (FBD, LD Editor) Change program

Insert Macro... (FBD Editor) Change program

FFB selection... (FBD, LD Editor) Change program

Replace FFBs... (FBD, LD Editor) Change program

FFB Show execution order (FBD Editor) Read only

Reverse FFB execution order (FBD Editor) Change program

Insert contacts, coils (LD Editor) Change program

Select column structure (SFC Editor) Change program

Select row structure (SFC Editor) Change program

Insert steps, transitions (SFC Editor) Change program

Insert FFB, Download, Save etc. (IL Editor) Change program

Insert FFB, Assignment, Operators,
Declaration etc. (ST Editor)

Change program

Coils, Insert contacts (LL984 Editor) Change program
744 33002204

Concept Security
Access Rights
for the Main
Menu Project

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu Project:

Access Rights
for the Main
Menu Online

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu Online:

Menu commands in the main menu Project Minimum access rights needed

Properties (write) Change program

Memory Prediction Read only

PLC configuration Change configuration

Project Browser (write) Change program

Execution order... (write) Change program

Variable declarations... (write) Change program

ASCII Messages Read only

Search... Read only

Trace Read only

Find Next Read only

Search Results Read only

Used references... Read only

Analyze section Read only

Analyze program Read only

Synchronize versions of nested DFBs Read only

Code generation options... Supervisor

Menu commands in the main menu Online Minimum access rights needed

Connect... (view only) Read only

Connect... (change data) Reset SFC

Connect... (change program) Download

Connect... (change configuration) Download

Disconnect... Read only

Online control panel... (all commands) Download

Single sweep trigger Download

Controller status...... Read only

Online events... Read only

Online diagnostics (read) Read only

Online diagnostics (acknowledge entries) Change data

Record changes Change program
33002204 745

Concept Security
Object information... Read only

Memory statistics... Read only

Download... (IEC Program, 984 Ladder
Logic, ASCII Messages, Status-RAM,
Extended Memory)

Download

Download... (configuration) Change configuration

Download changes... Change program

Upload... (Status-RAM, Extended Memory) Change data

Upload... (IEC Program, 984 Ladder Logic,
ASCII Messages, Status-RAM)

Change program

Upload... (configuration) Change configuration

Reference Data Editor (read only) Read only

Reference Data Editor (write) Change data

Reference Data Editor (force) Force data

Disabled discretes... Change data

Activate animation Read only

Change literals during animation Change data

Animation Panel (SFC Editor) SFC Animation Panel

Animation Panel (forcing SFC steps) SFC Animation Panel

Animation Panel (Resetting an SFC string) SFC Animation Panel

Save animation (IL, ST Editor) Read only

Restore animation (IL, ST Editor) Read only

Direct-mode 984LL Editor... (LL984 Editor) Read only

power flow (LL984 Editor) Read only

Power flow with contact state (LL984
Editor)

Read only

Trace (LL984 Editor) Read only

ReTrace (LL984 Editor) Read only

Menu commands in the main menu Online Minimum access rights needed
746 33002204

Concept Security
Access Rights
for the Main
Menu Options

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu Options:

Access Rights
for the Main
Menu Window

The following table shows the minimum access rights required in Concept for the
menu commands in the main menu Window:

Menu commands in the main menu
Options

Minimum access rights needed

Confirmations... Change program

Preferences → Common... Change program

Preferences → Graphical Editor... Change program

Preferences → Analysis... Change program

Preferences → IEC Extensions... Change program

Save settings Change program

Save settings on close Change program

Menu commands in the main menu
Window

Minimum access rights needed

Cascade Read only

Slit window Read only

Tile Read only

Arrange icons Read only

Close all Read only

Messages Read only

Name of Open Sections Read only
33002204 747

Concept Security
Changing Passwords

Introduction This section describes the steps necessary to change the system administrator's
password and enter new users.

Changing the
System
Administrator's
password

The following steps are only necessary when you start Concept Security for the first
time after installing Concept. They describe the procedure for changing the system
administrator's password:

Entry for a user
and the access
rights

To enter users, assign access rights and activate Concept Security, follow these
steps:

Step Action

1 Start access management by double clicking on the Concept Security icon.

2 Enter the user name for the supervisor and confirm with OK. Entering a
password is not necessary in this case.

3 Press the Change Password command button.

4 Enter a password in the Password text box.
Note: The password is context sensitive.

5 To confirm the password, enter the same password in the Confirm New
Password text box.
Reaction: If the two entries are identical, the command button OK is enabled.

6 Confirm the change by pressing the OK button

7 Exit access management with the command button Exit.

Step Action

1 Start access management by double clicking on the Concept Security icon.

2 Enter a user name with supervisor access rights, enter the password and confirm
with OK.

3 Select the User tab.

4 Press the Add command button.

5 Enter the user name (at least 2, maximum 16 characters) and confirm with OK.

6 In the Access Rights: list box, select the desired access rights and confirm with
the command button OK.

7 Exit access management with the command button Exit.

8 To change the password for the new user, follow the procedure Changing the
System Administrator's password. Enter the user name for the user that was just
defined.
748 33002204

Concept Security
Activating Access Rights

Activating
access rights

To activate access rights, follow these steps:

Step Action

1 Start access management by double clicking on the Concept Security symbol.

2 Enter a user name with supervisor access rights, enter the password and
acknowledge with OK.

3 Select the register Options.

4 Activate the check box Password Required.

5 Exit access management with the command button Exit.
Reaction: Concept, Concept DFB, Concept EFB, etc. can only be started by
authorized users and with the access rights defined for them.
33002204 749

Concept Security
Protecting Projects/DFBs

Introduction With Concept Security, you can protect projects/DFBs from being changed.
Protected projects can only be loaded on the PLC but cannot be changed. Protected
DFBs can only be used and cannot be changed.

Protecting
projects/DFBs

To protect projects/DFBs, follow these steps:

Step Action

1 Start access management by double clicking on the Concept Security symbol.

2 Enter a user name with supervisor access rights, enter the password and confirm
with OK.

3 Select the Protect register.

4 Press the command button Select and select the project/DFB to be protected.
Confirm with OK.
Reaction: The selected project/DFB will appear in a list box.

5 Select the project/DFB in the list box and press Protect.
Reaction: The dialog box Enter Password is opened.

6 Enter a password for Password and acknowledge it by entering the same
password for Confirm Password. Press OK.
Reaction: The project/DFB is now protected. This is identified by a (c) in the list
box.

7 In order to locate protected projects/DFBs quickly, it is advisable to save the list
in the Program/DFB list box using Save list... .
750 33002204

Concept Security
Deactivate
protection for
projects/DFBs

To deactivate protection for projects/DFBs, follow these steps:

Step Action

1 Start access management by double clicking on the Concept Security symbol.

2 Enter a user name with supervisor access rights, enter the password and confirm
with OK.

3 Select the Protect register.

4 Press the command button Select and select the protected project/DFB that
should have protection deactivated. Confirm with OK.
Reaction: The selected project/DFB will appear in a list box.

or

Use Load list... to load a previously saved list.
Reaction: All projects/DFBs in the loaded list will appear in the list box.

5 Select the project/DFB from the list box (identified by (c)) and press Unprotect.
Reaction: The Enter Password dialog box is opened.

6 Enter the password for Password and press OK.
Reaction: The project/DFB is no longer protected. This is identified by the (c)
not being shown in the list box.
33002204 751

Concept Security
752 33002204

Appendices
At a Glance

Overview Additional information that is not necessarily required for an understanding of the
documentation.
33002204 753

Appendices
What's in this
Appendix?

The appendix contains the following chapters:

Chapter Chapter Name Page

A Tables of PLC-dependent Performance Attributes 755

B Windows interface 779

C List of symbols and short cut keys 799

D IEC conformity 827

E Configuration examples 855

F Convert Projects/DFBs/Macros 967

G Concept ModConnect 971

H Convertion of Modsoft Programs 979

I Modsoft and 984 References 985

J Presettings when using Modbus Plus for startup 989

K Presettings when using Modbus for startup 1003

L Startup when using Modbus with the EXECLoader 1009

M Startup when using Modbus with DOS Loader 1031

N Startup when using Modbus Plus with the EXECLoader 1045

O Startup when using Modbus Plus with DOS Loader 1067

P EXEC files 1085

Q INI Files 1089

R Interrupt Processing 1105

S Automatic Connection to the PLC 1131
754 33002204

33002204
A

Tables of PLC-dependent
Performance Attributes
Introduction

Overview The performance attributes of the different hardware platforms (Quantum, Compact,
Momentum and Atrium) can be found in the following tables.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Performance of Quantum 756

Performance Attributes of Compact 761

Performance Attributes of Momentum 766

Performance Attributes of Atrium 772
755

Performance
Performance of Quantum

IEC and LL984
Support

Availability of IEC and LL984 support:

Special
Performance
Attributes

Availability of special performance attributes:

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

LL984 only x - - - - -

IEC only (Stripped Exec) x x x - - -

IEC and LL984 - x x x x x

x = available
- = not available

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

LL984 Hot Standby x x x x x x

IEC Hot Standby - - - - x x

Interrupt processing with
HLI (LL984 only)

x x x x x x

Split memory (LL984 only
with separate software

- - - - - -

Support for XMIT
loadable (LL984 only)

x x x x x x

Support for XMIT EFB
(IEC only)

- - - - - -

Support for XXMIT EFB
(IEC only)

x x x x x x

Upload of the user
program

x x x x x x

Support of the Modbus
function codes 42 (IEC
only)

x x x x x x

Password protection of
connection structure with
PLC

- - - - - -

PCMCIA support - - - - - -
756 33002204

Performance
Flash memory for
program and
configuration

- - - - x x

Remote Terminal Unit
(RTU) configuration
extension

- - - - - -

Profibus DP configuration
extension

x x x x x x

Cyclical data exchange
for configuration
extension

x x x x x x

Code generation options:
Include diagnosis
information

x x x x x x

Code generation options:
Fastest code

- - x x x x

MMS Ethernet
configuration extension

x x x x x x

ASCII Messages x x x x x x

Peer Cop x x x x x x

RIO (Remote I/O) x x x x x x

DIO (Distributed I/O) x x x x x x

SYMAX I/O x x x x x x

800 I/O x x x x x x

LonWorks x x x x x x

A120 I/O - - - - - -

x = available
- = not available

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14
33002204 757

Performance
Buses Availability of the buses:

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

Modbus x x x x x x

Modbus Plus x x x x x x

Ethernet (TCP/IP) x x x x x x

Ethernet (SY/MAX) x x x x x x

Interbus x x x x x x

Interbus: PCP loadable
(LL984 only)

x x x x x x

Interbus: PCP-EFB
(IEC only)

x x x x - -

INTERBUS G4
(Generic Bus)

- x x - x x

LonWorks (Echelon) using
NOL 911
xx and
LL984

using
NOL 911
xx and
LL984

using
NOL 911
xx and
LL984

using
NOL 911
xx and
LL984

using
NOL 911
xx and
LL984

using
NOL 911
xx and
LL984

MVB (MultiVehicleBus) - - - - - -

x = available
- = not available
758 33002204

Performance
Block Libraries Availability of the block libraries:

Utilities Availability of utilities:

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

AKFEFB (IEC only) x x x x x x

ANA_IO (IEC only) x x x x x x

COMM (IEC only) x x x x x x

CONT_CTL (IEC only) x x x x x x

DIAGNO (IEC only) x x x x x x

EXPERTS (IEC only) x x x x x x

EXTENDED (IEC only) x x x x x x

FUZZY (IEC only) x x x x x x

HANDTABLEAU (IEC
only)

x x x x x x

IEC (IEC only x x x x x x

LIB984 (IEC only) x x x x x x

SYSTEM (IEC only) x x x x x x

LL984 (LL984 only) x x x x x x

x = available
- = not available

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

Concept DFB x x x x x x

Concept EFB x x x x x x

Concept SIM x x x x x x

Concept PLCSIM32 x x x x x x

Concept security x x x x x x

Concept EXECLoader x x x x x x

Concept-Converter x x x x x x

Modsoft converter x x x x x x

ModConnect tool x x x x x x

x = available
- = not available
33002204 759

Performance
Runtime System Runtime System

Available
Memory for User
Program

Available memory for user program

Different
Performance
Attributes

Availability of different performance attributes:

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

16 bit CPU x x x x - -

32 bit CPU - - - - x x

x = available
- = not available

Performance
CPU type

113 02 113 03 213 04 424 0x 434 12 534 14

IEC only runtime system 125k 375k 612k - - -

IEC and LL984 runtime
system

- 160k 330k 460k 800k 2500k

LL984 only runtime
system

- - - - - -

x = available
- = not available

Performance
CPU type

113 02 113 03 213 04 424 0x 534 14 534 14

Battery adapter required
for backing up IEC
programs

- - - - - -

Floating point processor - - x x x x

Floating point emulation
(IEC)

x x - - - -

x = available
- = not available
760 33002204

Performance
Performance Attributes of Compact

IEC and LL984
Support

Availability of IEC and LL984 support:

Special
Performance
Attributes

Availability of special performance attributes:

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

LL984 only - - - -

IEC only (Stripped Exec) - - - -

IEC and LL984 x x x x

x = available
- = not available

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

LL984 Hot Standby - - - -

IEC Hot Standby - - - -

Interrupt processing with HLI
(LL984 only)

- - - -

Split memory (LL984 only with
separate software

x x x x

Support for XMIT loadable
(LL984 only)

x x x x

Support for XMIT EFB (IEC
only)

- - - -

Support for XXMIT EFB (IEC
only)

x x x x

Upload of the user program x x x x

Support of Modbus function
code 42 (IEC only)

x x x x

Password protection of
connection structure with PLC

x x x x

PCMCIA support - - x x

Flash memory for program and
configuration

x x x x

Remote Terminal Unit (RTU)
configuration extension

x x x x
33002204 761

Performance
Profibus DP configuration
extension

- - - -

Cyclical data exchange for
configuration extension

- - - -

Code generation options:
Include diagnosis information

x x x x

Code generation options:
Fastest code

x x x x

MMS Ethernet configuration
extension

- - - -

ASCII Messages - - - -

Peer Cop - x x x

RIO (Remote I/O) - - - -

DIO (Distributed I/O) - - - -

SYMAX I/O - - - -

800 I/O - - - -

LonWorks - - - -

A120 I/O x x x x

x = available
- = not available

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)
762 33002204

Performance
Buses Availability of the buses:

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

Modbus x x x x

Modbus Plus using
BridgeModul
e

x x x

Ethernet (TCP/IP) using Bridge
Module

using Bridge
Module

using
Bridge
Module

using Bridge
Module

Ethernet (SY/MAX) - - - -

Interbus using BKF
xxx

using BKF
xxx

using BKF
xxx

using BKF
xxx

Interbus: PCP loadable (LL984
only)

- - - -

Interbus: PCP-EFB (IEC only) - - - -

LonWorks (Echelon) - - - -

MVB (MultiVehicleBus) x x x x

x = available
- = not available
33002204 763

Performance
Block Libraries Availability of block libraries:

Utilities Availability of utilities:

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

AKFEFB (IEC only) x x x x

ANA_IO (IEC only) x x x x

COMM (IEC only) - x x x

CONT_CTL (IEC only) x x x x

DIAGNO (IEC only) x x x x

EXPERTS (IEC only) x x x x

EXTENDED (IEC only) x x x x

FUZZY (IEC only) x x x x

HANDTABLEAU (IEC only) x x x x

IEC (IEC only) x x x x

LIB984 (IEC only) x x x x

SYSTEM (IEC only) x x x x

LL984 (LL984 only) x x x x

x = available
- = not available

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

Concept DFB x x x x

Concept EFB x x x x

Concept SIM x x x x

Concept PLCSIM32 x x x x

Concept Security x x x x

Concept EXECLoader x x x x

Concept-Converter x x x x

Modsoft converter x x x x

Concept-ModConnect - - - -

x = available
- = not available
764 33002204

Performance
Runtime System Runtime system

Different
Performance
Attributes

Availability of different performance attributes:

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

16 bit CPU - - - -

32 bit CPU x x x x

x = available
- = not available

Performance
CPU type

258 (512k) 265 (512k) 275 (512k) 285 (1M)

Battery adapter required for
backing up IEC programs

- - - -

Floating point processing - - - -

Floating point emulation x x x x

x = available
- = not available
33002204 765

Performance
Performance Attributes of Momentum

IEC and LL984
Support

Availability of IEC and LL984 support:

Special
Performance
Attributes

Availability of special performance attributes:

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

LL984 only x x x x x

IEC only - x x - x

IEC and LL984 - - - - -

x = available
- = not available

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

LL984 Hot Standby - - - - -

IEC Hot Standby - - - - -

Interrupt processing with HLI
(LL984 only)

- - - - -

Split memory (LL984 only with
separate software

- - - - -

Support for the XMIT blocks
(LL984 only)

x x x x x

Support for XMIT EFB (IEC
only)

- - - - -

Support for XXMIT EFB (IEC
only)

x x x x x

Upload of the user program x x x x x

Support of Modbus function
code 42 (IEC only)

- x x - x

Password protection of
connection structure with PLC

- - - x x

PCMCIA support - - - - -
766 33002204

Performance
Flash memory for program and
configuration (LL984)

x x x x x

Flash memory for program and
configuration (IEC)

- - x - x

Remote Terminal Unit (RTU)
configuration extension

- - - - -

Profibus DP configuration
extension

- - - - -

Cyclical data exchange for
configuration extension

- - - - -

Code generation options:
Include diagnosis information

- - - - -

Code generation options:
Fastest code

- - - - -

MMS Ethernet configuration
extension

- - - - -

ASCII Messages - - - - -

Peer Cop x x x x x

RIO (Remote I/O) - - - - -

DIO (Distributed I/O) - - - - -

TIO (Terminal I/O x x x x x

SYMAX I/O - - - - -

800 I/O - - - - -

LonWorks - - - - -

A120 I/O - - - - -

x = available
- = not available

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30
33002204 767

Performance
Buses Availability of the buses:

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

Modbus (with ring card) x x x x x

Modbus Plus (with ring card) x x x x x

Ethernet (TCP/IP) - - - x (LL984
only)

x

Ethernet (SY/MAX) - - - - -

Interbus x x x x x

Interbus: PCP loadable (LL984
only)

- - - - -

Interbus: PCP-EFB (IEC only) - - - - -

LonWorks (Echelon) - - - - -

MVB (MultiVehicleBus) - - - - -

x = available
- = not available
768 33002204

Performance
Block Libraries Availability of the block libraries:

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

AKFEFB (IEC only) - x x - x

ANA_IO (IEC only) - x x - x

COMM (IEC only) - - - - x

CONT_CTL (IEC only) - x x - x

DIAGNO (IEC only) - x x - x

EXPERTS (IEC only) - - - - x

EXTENDED (IEC only) - x x - x

FUZZY (IEC only) - x x - x

HANDTABLEAU (IEC only) - - - - x

IEC (IEC only) - x x - x

LIB984 (IEC only) - x x - x

SYSTEM (IEC only) - x x - x

LL984 (LL984 only) x x x x x

x = available
- = not available
33002204 769

Performance
Utilities Availability of utilities:

Runtime System Runtime System

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

Concept DFB - x x - x

Concept EFB - x x - x

Concept SIM - x x - x

Concept PLCSIM32 - x x - x

Concept security - x x - x

Concept EXECLoader x x x x x

Concept-Converter x x x x x

Modsoft converter x x x x x

Concept-ModConnect x x x x x

x = available
- = not available

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

16 bit CPU x x x x x

32 bit CPU - - - - -

x = available
- = not available
770 33002204

Performance
Different
Performance
Attributes

Availability of different performance attributes:

Performance
CPU type

700 00
700 10
780 00

760 00 760 10
780 10

960 20
980 20

960 30
980 30

Battery adapter required for
backing up IEC programs

- x - - -

Floating point processor - - - - -

Floating point emulation (IEC) - x x - x

x = available
- = not available
33002204 771

Performance
Performance Attributes of Atrium

IEC and LL984
Support

Availability of IEC and LL984 support:

Special
Performance
Attributes

Availability of special performance attributes:

Performance
CPU type

121 01 (2M)
241 01 (4M)
241 11 (4M)

LL984 only -

IEC only (Stripped Exec) x

IEC and LL984 -

x = available
- = not available

Performance
CPU type

121 01 (2M)
241 01 (4M)
241 11 (4M)

LL984 Hot Standby -

IEC Hot Standby -

Interrupt processing with HLI
(LL984 only)

-

Split memory (LL984 only with
separate software

-

Support for XMIT loadable
(LL984 only)

-

Support for XMIT EFB (IEC
only)

-

Support for XXMIT EFB (IEC
only)

-

Upload of the user program x

Support of Modbus function
code 42 (IEC only)

x

Password protection of
connection structure with PLC

-

PCMCIA support -
772 33002204

Performance
Flash memory for program and
configuration

-

Remote Terminal Unit (RTU)
configuration extension

-

Profibus DP configuration
extension

-

Cyclical data exchange for
configuration extension

-

Code generation options:
Include diagnosis information

-

Code generation options:
Fastest code

-

MMS Ethernet configuration
extension

-

ASCII Messages -

Peer Cop x

RIO (Remote I/O) -

DIO (Distributed I/O) -

SYMAX I/O -

800 I/O -

LonWorks -

A120 I/O -

x = available
- = not available

Performance
CPU type

121 01 (2M)
241 01 (4M)
241 11 (4M)
33002204 773

Performance
Buses Availability of the buses:

Performance
CPU type

121 01 (2M)
241 01 (2M)
241 11 (4M)

Modbus -

Modbus Plus x

Ethernet (TCP/IP) -

Ethernet (SY/MAX) -

Interbus x
x
x

Interbus: PCP loadable (LL984 only) -

Interbus: PCP-EFB (IEC only) -

Profibus -
-
-

LonWorks (Echelon) -

MVB (MultiVehicleBus) -

x = available
- = not available
774 33002204

Performance
Block Libraries Availability of block libraries:

Performance
CPU type

121 01 (2M)
241 01 (2M)
241 11 (4M)

AKFEFB (IEC only) x

ANA_IO (IEC only) x

COMM (IEC only) x

CONT_CTL (IEC only) x

DIAGNO (IEC only) x

EXPERTS (IEC only) x

EXTENDED (IEC only) x

FUZZY (IEC only) x

HANDTABLEAU (IEC only) x

IEC (IEC only) x

LIB984 (IEC only) x

SYSTEM (IEC only) x

LL984 (LL984 only) -

x = available
- = not available
33002204 775

Performance
Utilities Availability of utilities:

Runtime System Runtime system

Performance
CPU type

121 01 (2M)
241 01 (2M)
241 11 (4M)

Concept DFB x

Concept EFB x

Concept SIM x

Concept PLCSIM32 x

Concept Security x

Concept EXECLoader x

Concept-Converter x

Modsoft converter x

Concept-ModConnect -

x = available
- = not available

Performance
CPU type

121 01 (2M)
241 01 (2M)
241 11 (4M)

16 bit CPU -

32 bit CPU x

x = available
- = not available
776 33002204

Performance
Different
Performance
Attributes

Availability of different performance attributes:

Performance
CPU type

121 01 (2M)
241 01 (2M)
241 11 (4M)

Battery adapter required for backing up
IEC programs

-

Floating point processor -
x
x

Floating point emulation x
-
-

x = available
- = not available
33002204 777

Performance
778 33002204

33002204
B

Windows interface
At a Glance

Overview The chapter describes the most important properties of Concept’s Windows
interface. Further information can be found in the Microsoft Windows manuals.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

B.1 Window 781

B.2 Menu commands 787

B.3 Dialog boxes 789

B.4 Generating a project symbol 791

B.5 Online help 793
779

Windows interface
780 33002204

Windows interface
B.1 Window

At a Glance

Overview This section describes the types of windows and window elements in Windows.

What's in this
Section?

This section contains the following topics:

Topic Page

Window Types 782

Elements of a window 784
33002204 781

Windows interface
Window Types

Introduction In Windows there are two types of windows:
� Application Window
� Document Window

Types of window:

Application
Window

When Concept is started the application window is opened on your desktop. The
application window can be moved to any position on the desktop. Alternatively it can
be minimized to a button on the task bar.

A project can be opened or created in this application window. The name of the
project then appears in the title bar of the application window.

Concept [TESTPRJ]

File View Objects Project Online Options Window HelpEdit

- Step sets ACT1, ACT1 is mapped to I/O but not read by any logic. Has a delay time of 2 sec. NOT CONNECTED.

PLC configuration

PLC Selection
PLC Memory Partition
Loadables
Specials
Config. Extensions
I/O Map
Segment Scheduler
Modbus port settings
ASCII

Dialog to be opened Help

Type:

PLC

Disable IEC library
140 CPU 113 02 Available Logic Area;

Coils:

PLC Memory Partition

Discrete Inputs:
000001 - 001536

Input words:
Output/marker words:

100001 - 101872
300001 - 300512
400001 - 401872

Battery coil:

Specials

Timer Register:
..

Time of day:
..

..

Data protection:

Config. Extensions

Peer Cop:
Disable

Hot Standby:
Ethernet:
Profibus DP:

Disable
Disable
0
0

Number installed:

Loadables

0

Segments:

Segment Scheduler

32

Number of messages:

ASCII

Message Area Size:
0

Number of ports:
0
0

8191

SFC

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S_SFC_0001

S_SFC_0002

S_SFC_0003

S_SFC_0004

S_SFC_0102

S_SFC_0103

S_SFC_0104

S_SFC_0103

S_SFC_0104

S_SFC_0302

T3

T2

T1

T7

T6

T8

T9

Application window (project)

Document window (PLC configuration, section)
782 33002204

Windows interface
Document
Window

After opening or creating a project you can open different document windows.
Document windows are, for example, sections in which a user program is created or
the document window of the PLC configuration.

Several document windows can be open simultaneously, but only one of these can
be active. An active document window can be recognized by the color of the title bar.

Depending on the active document window the menu commands change in the pull
down menus and the tool bar of the application window.
33002204 783

Windows interface
Elements of a window

At a Glance This section describes the Concept specific elements of a window.

Elements of a window:

Title bar A project’s title bar shows the name of the active application (i.e. Concept) and the
name of the project. When coupled with a PLC the node address of the PLC is
indicated in angled brackets (<>). If this PLC is on another network the routing path
is also indicated.

If a document window (e.g. a section) is enlarged to full screen, i.e. the section takes
up the entire application window, the name of the document window (e.g. the section
name) appears in the title bar.

Document windows which are not enlarged to full screen have their own title bar in
which the name of the document window is indicated.

Concept [TESTPRJ]

File View Objects Project Online Options Window HelpEdit

- Step sets ACT1, ACT1 is mapped to I/O but not read by any logic. Has a delay time of 2 sec. NOT CONNECTED.

FBD

.1.1 (1)

AND_BOOL

LampTest2
LampTest1

.1.4 (4)

OR_BOOL

%0:00017

.1.5 (5)

OR_BOOL

%0:00018

.1.6 (6)

OR_BOOL

%0:00019

.1.7 (7)

OR_BOOL

%0:00020

.1.8 (8)

OR_BOOL

%0:00021

FBI 1 2 (3)

LIGHTS

S
01
02
03
04
05

.1.3 (2)

AND_BOOL

ACT4
Manual1

SFC

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S_SFC_0001

S_SFC_0002

S_SFC_0003

S_SFC_0004

S_SFC_0102

S_SFC_0103

S_SFC_0104

S_SFC_0103

S_SFC_0104

S_SFC_0302

T3

T2

T1

T7

T6

T8

T9

Toolbar

Status bar

Menu bar Title bar (project) Title bar (section)
784 33002204

Windows interface
Menu Bar The menu bar of the application window contains various main menus. The contents
of the menu bar depend on the active document window.

Toolbar The toolbar consists of buttons which correspond to a menu command on the pull-
down menus. The range and content of the toolbar depend on which window is
active.

There are three different ways a button can be represented:
� grayed

The command is currently unavailable. One or more other commands must be
executed before the desired button can be used.

� unpressed
The command can be selected.

� pressed
The command is active.

Status bar The appearance of the status bar depends on whether the project is open and the
programming language used in the section.

In the first part of the status bar various information is displayed depending on the
selected object.
� If a dialog box is open or a menu command or button has been selected some

help will be given about it. To display the help select a menu command or a button
with the left mouse button and hold it down. A short description of the menu
command or button appears in the status bar. To execute the menu command/
button release the mouse button. If execution of the menu command/button is not
required, move the pointer away from the active area (the description in the status
bar disappears) and then release the mouse button.

� If an FFB, a parameter to an input/output, a step or a transition has been selected,
a comment about the selected object is displayed. With parameters and
transitions the assigned direct address (only in case of located variables) is also
displayed.

The second part of the status bar (status of the active section) indicates whether the
section is in animation mode or the section is disabled.
� ANIMATED

The section is animated.
� INHIBITED

The section is inhibited and will not be processed.
33002204 785

Windows interface
The third part of the status bar indicates the status of the PLC.
� NOT CONNECTED.

The programming device is not coupled with a PLC.
� STOPPED

The program on the PLC is suspended.
� RUNNING: CHANGE CONFIG

The program on the PLC is running and was connected with the access Change
Configuration.

In the fourth part of the status bar the program status between the PLC and
programming device is displayed. This display only appears if a project is open and
the programming device with PLC is online.
� EQUAL

The program on the programming device and the PLC is consistent.
� UNEQUAL

The program on the programming device and the PLC is not consistent. To
establish consistency use the menu command Online → Load... .

� MODIFIED
The program on the programming device was modified. The modifications can be
made online in the PLC with the menu command Online → Load changes.

Status bar:

T1 AT %1:00001 Transition T1 EQUALANIMATED RUNNING:CHANGE CONFIG
786 33002204

Windows interface
B.2 Menu commands

Menu commands

At a Glance The titles of the individual menus are displayed in the menu bar. The menu
commands are listed in the pull-down menus. As in Windows, each Concept window
and dialog box has a system menu. This menu is opened using the small box in the
top left-hand corner of the window.

A pull-down menu is opened by left-clicking on the title of the menu. To go directly
to a menu command, drag the mouse pointer down the menu and then release the
mouse button.

The menu can be closed by clicking on the title of the menu or anywhere outside of
the menu.

Typical pull-down menu:

Underlined letter A main menu (menu title) and subsequently a menu command can be selected by
holding down Alt and simultaneously entering the underlined letter in the menu title
and then that of the menu command. If, for instance, from the menu Project you
want to execute the menu command Search... press Alt+P to open the menu and
then Alt+S to execute the menu command.

Grayed out menu
command

The command is currently unavailable. One or more other commands must be
executed before the desired menu command can be executed.

Properties...

PLC Configuration

Project Browser

Execution sequence...
Variable declaration...
ASCII reports...

Search...
Trance
Find Next
Search results...
References used...

Analyze section
Analyze program

Options for code generation...

F8

F3
SHIFT+F3
F6
F5

ALT+F9

Project Online Options Window Help
33002204 787

Windows interface
Suspension
points (…) after
the menu
command

On execution of this menu command a dialog box appears with options, which must
be selected before execution.

Check mark (√)
before the menu
command

The menu command is active. If the menu command is selected the check mark
disappears and the menu command is inactive. The check mark is mostly used to
identify active modes (e.g. normal display, dial in mode etc.).

Shortcut keys The key combinations (e.g. F8, Alt+F9, Ctrl+R) after the menu command are
shortcut keys for executing this menu command. Using this key or key combination
the menu command can be selected, without having to open the menu.
788 33002204

Windows interface
B.3 Dialog boxes

Dialog boxes

At a Glance In Concept dialog boxes are displayed if additional information is required from you
in order to perform a particular task. Potentially necessary information is also
communicated in this way.

Most dialog boxes contain options which can be selected, textboxes, in which text
can be entered, and buttons which can be pressed.

Grayed out options are currently not available. One or more other commands must
be executed, or options selected or deselected, before the desired option can be
activated.

Concept specific basics of a window:

Step properties

Cancel HelpOK

S_3_5 Comment…Initial stepStep name

Action

Time
LiteralVariableCdet:

None

Action
Variable Direct address

Look up Variable declaration Authorize section

Accept

New

Delete

Up

Down

Mon. times and delay time
Literals’SCFSTEP_TIMES’ variable

Maximum

Delay

Minimum

To selected variable…

ACT5

None ACT5

t#2S

One line list List Control box

Text box Option button Command button
33002204 789

Windows interface
Command
buttons

Command buttons are used to initiate actions immediately, e.g. executing or
aborting a command. Command buttons include e.g. OK, Abort and Help.

Command buttons followed by suspension points (…), open a further dialog box. A
command button with a "greater than" sign (>>) extends the active dialog box.

The standard setting is identified by a dark margin. This command button can be
selected by pressing Enter.

To close a dialog box without executing a command select the command button
Cancel.

Text boxes Information (text) is entered into a text box.

If you enter an empty text box an insertion point appears in the far left of the box.
The entered text begins at this insertion point. If text is already present within the
respective box, it will be selected and replaced by the new text automatically. The
text can, however, also be deleted by pressing Delete or Backspace.

Lists In a list the available selection possibilities are listed. If more possibilities are
available than fit into the list, the scrollbar or the arrow keys can be used to move
within the list.

As a rule only a single entry can be chosen form the list. There are, however, some
cases in which several entries can be chosen, e.g. when opening sections.

One line lists A single line list box initially appears as a rectangular box, in which the current
selection (the default value) is selected. If the arrow in the right of the box is selected,
a list of the available selection possibilities opens. If more possibilities are available
than fit into the list, then the scrollbar or arrow keys can be used to move around the
list.

Option buttons Option buttons represent mutually exclusive options. In each case only one option
can be chosen.

The selected option button is identified by a black dot.

If the option name contains an underlined letter, the option button can be activated
from any position in the dialog box by holding down Alt and entering the underlined
letter.

Check box A check box next to an option means that the option can be activated or deactivated.
Any number of check box options can be activated.

Activated options are identified by an X or a check mark (√).

If the option name contains an underlined letter, the check box can be activated or
deactivated from any position in the dialog box by holding down Alt and entering the
underlined letter.
790 33002204

Windows interface
B.4 Generating a project symbol

Creating a Project Symbol in a Program Group

Introduction Creating a project symbol allows you to immediately load a certain project and/or
connect to a PLC when opening Concept. In this way, one or more program groups
can be created, which e.g. contain all the projects in a system.

Creating a
symbol for
projects

Follow these steps to create a project symbol:

Note: A symbol can only be created for an existing project. Otherwise an error
message appears when starting.

Step Action

1 Under Start → Settings → Taskbar..., you can open the Taskbar Properties
dialog box.

2 In the register Start Menu Programs/Expanded (Win2000), select the Add...
command button.

3 In the Create Shortcut dialog box, select the Browse... command button.

4 In the Browse dialog box, go to the Concept installation path and double-click
on the file CONCEPT.EXE.
Result: The Browse dialog box is closed and the file CONCEPT.EXE is entered,
including the path, in the Command line: text box, e.g.
C:\CONCEPT\CONCEPT.EXE.

5 Now add the project path and project name to the command line, e.g.
C:\CONCEPT\CONCEPT.EXE PLANT1.PRJ and confirm the entry using Next>
command button.
Note: To create a connection to any PLC, add additional Parameters (see
Automatic Connection with Command Line Parameters (Modbus, Modbus +,
TCP/IP), p. 1132) to the command line.

6 In the Select program group dialog box, select an existing program group for
the symbol or create a new one using New folder....
Confirm the entry using the Next> command button.

7 In the Select program designation dialog box, select the project name and
confirm using the Finish command button.

8 Close the Taskbar Properties dialog box with OK.
Result: The properties dialog box is closed and the project symbol is available
in the start menu of the folder you selected.
33002204 791

Windows interface
Creating a
symbol for DFBs

In this way, symbols can also be created for DFBs. To do this, select the file
CCEPTDFB.EXE in step 4 and add the DFB name and path instead of the project
name and path in step 5.

9 Open the folder with the project symbol in the Start Menu.
Select the project symbol and click the right mouse button.
Result: A menu window is opened.

10 Select the Properties command button.
Result: The "Project Symbol Name" Properties dialog box is opened.

11 Go to the Connection register and complete the command line Working
directory/Target (Win2000) with the name of the project directory, e.g.
C:\CONCEPT\PROJECTS.
Confirm the entry using the Set command button.

12 Then exit the dialog box by selecting OK.

13 Open the project by clicking on the project symbol.

Step Action
792 33002204

Windows interface
B.5 Online help

At a Glance

Overview This section describes use of online help.

What's in this
Section?

This section contains the following topics:

Topic Page

At a Glance 794

How the Online Help is set out 795
33002204 793

Windows interface
At a Glance

General
information

The online help is used to quickly and easily obtain information about the task being
performed, the use of an unfamiliar command or the functions, Function Blocks and
modules.

The online help is available throughout Concept.

Starting the
online help

There are several methods of calling up the online help:
� Invoking the contents)

There are two methods of invoking the online help contents:
� To invoke the online help contents, select the menu command Help →

Contents.
� In the program group Concept open the help symbol.

� Help with the execution of a menu command
There are two methods of invoking help with a menu command:
� using the mouse)

To obtain an explanation select the menu command with the left mouse
button, hold down the mouse button, press F1, and then release the mouse
button.

� using the keyboard)
To obtain an explanation of a menu command, select it and then press F1.

� Help with a dialog
There are two methods of invoking help with a dialog:
� To obtain an explanation of a dialog, click on the command button Help in the

dialog itself.
� To obtain an explanation of a dialog, press F1in the dialog itself.

� Help with operating an EFB
To obtain an explanation of the operation of the EFB, click on the command
button Help with type within the dialog with the EFB properties.

� Help with the operation of a module
In the dialog I/O module selection click on the command button Help with
module, to obtain an explanation of the operation of a module.

Note: The option Use polygon acceleration may not be used if the graphics card
has hardware acceleration functions. Use of these may still lead to the graphics in
the online help being incomplete. A detailed description of how to switch off the
acceleration function will be found in the graphics card’s user manual.
794 33002204

Windows interface
How the Online Help is set out

Introduction If you start the online help, the Windows Help system opens, containing either
� a table of contents (if you started with Help → Contents or the icon),
� or containing a description of the dialog (if you started with the Help command

button),
� or containing a description of an EFB (if you started with the Help on Type

command button),
� or containing a description of a module (if you started with the Module Help

command button),

This section describes the Concept specific basics of the online help window.

Online help window:

Title Bar The title bar contains the active help file names, or in other words the help project.

Menu Bar A description of the standard menu bar can be found in the respective Microsoft
Windows manual.

Concept User Manual

Contents
File Edit Bookmark Options ?

Contents Back Print << >> History

Concept User Manual+

PLC Configuration+

Unconditional Configuration+

I/O Map+

Introduction
In the I/O map configure the drops with the
used modules. Next carry out the I/O addressing and
the parameterization of the configured modules .

Configuring the Backplane Expander
To extend the backplane the module 140 XBE 100 00
is required. This enables you to connect a second backplane
and obtain an additional 13 slots.

A more detailed description of the configuration of the extended
backplane with the 140 XBE 100 00 module can be found in
the chapter Configuring the Backplane Expander.

Title bar

Menu bar

Toolbar

Navigator

Topic title

Popup

Jump

?

33002204 795

Windows interface
Toolbar The following buttons are available in Concept:
� Contents

This button is used to invoke the online help contents directory.
Details about this function can be found in the corresponding Windows Manual.
Note: If you jump (see Jump, p. 796) between different help projects and click the
Contents button, the contents of the invoked help project (rather than the current
one) is displayed. This is a Microsoft error. The Navigator is available to allow you
to navigate within the current help project (related topics Navigator, p. 796).

� Index
This button is used to invoke an index for finding help texts.
Details about this function can be found in the corresponding Windows Manual.
Note: If you want to carry out a search of the whole text, press the Index
command button, select the Search index card, choose the desired search
function and type in the term you're looking for.

� Back
This button is used to invoke the previously read help text.

� Print
This button is used to print out the current topic (the current help topic).

� <<
This button is used to "browse" the previous help text. This button is used to read
the online help like a book. When you have reached the first "page" of the online
help (contents directory), the button is hidden.

� >>
This button is used to "browse" to the next help text. This button is used to read
the online help like a book. When you have reached the last "page" of the online
help, the button is hidden.

� History
When you use this button a window opens which displays all of the help topics
that are already open.

Title of Topic The topic title refers to the title of a chapter from paper documentation. This topic
title always remains visible, even if, in the case of long documents, the text is moved
in the window.

Navigator The Navigator is in the topic title. It serves as a navigator inside the help projects.

Jump A jump can be recognized by the fact it is written in green and is underlined. When
you click on a jump, the help text corresponding to this key word/ topic appears.
Jumps correspond to "related topics" entries in paper documents, the pages are
however removed for your convenience. The invoked help text is then replaced by
a new help text.
796 33002204

Windows interface
Popup A popup can be recognized by the fact it is written in green and has a dotted line
under it. When you click on a popup, the help text corresponding to this key word
appears. Popups correspond to glossary entries in paper documents, however, the
pages here are removed for your convenience. To display the text, a popup window
is opened. This popup window may contain further popups. The popup window is
cleared by re-clicking on it or pressing any key. This does not replace the present
help text.
33002204 797

Windows interface
798 33002204

33002204
C

List of symbols and short cut keys
At a Glance

Description Each editor and the PLC configuration have their own list of symbols available. This
facilitates access to frequently used functions. It is also possible to call up many
functions with short cut keys instead of menu commands.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

C.1 Icon bar 801

C.2 Short cut keys 810
799

List of symbols and short cut keys
800 33002204

List of symbols and short cut keys
C.1 Icon bar

At a Glance

Description This section describes the icon bar icons. In the icon bars there are editor
independent and editor dependent icons.

What's in this
Section?

This section contains the following topics:

Topic Page

General icon bar 802

Icon bar in the FBD editor 803

Icon bar in the SFC-Editor 804

Icon bar in the LD editor 805

List of Symbols in the IL and ST Editor 806

List of Symbols in the LL984-Editor 807

Icons in PLC Configuration 808

Toolbar in the RDE Editor 809

Toolbar in the Project Browser 809
33002204 801

List of symbols and short cut keys
General icon bar

Symbols The table below shows the available symbols and their corresponding menu entry
commands:

Symbol Menu entry command executed

File → Open...

File → New section... / New DFB section...

File → Open section...

File → Save

Project → Variable declaration...

Project → Search…

Online → Online control panel...

Online → Download changes...

Edit → Undo: Delete

Edit → Cut

Edit → Copy

Edit → Paste
802 33002204

List of symbols and short cut keys
Icon bar in the FBD editor

Symbols The table shows the additional icons available in the FBD editor and the
corresponding menu entry commands (see also General icon bar, p. 802):

Symbol Menu entry command executed

View → Zoom in

View → Zoom out

Objects → Select

Objects → Link

Objects → FFB: Last Type

Objects → Invert Input/Output

Objects → Text

Objects → FFB selection...

Online → Animate selected

Online → Animate booleans
33002204 803

List of symbols and short cut keys
Icon bar in the SFC-Editor

Symbols The table shows the additional icons available in the SFC editor and the
corresponding menu entry commands (see also General icon bar, p. 802):

Symbol Menu entry command executed

View → Zoom in

View → Zoom out

Objects → Select

Objects → Select column structure

Objects → Select row structure

Objects → Step

Objects → Transition

Objects → Parallel branch

Objects → Parallel joint

Objects → Alternative branch

Objects → Alternative joint

Objects → Jump

Objects → Link

Objects → Step - Transition sequence

Objects → Structured Parallel sequence

Objects → Structured Alternative sequence
804 33002204

List of symbols and short cut keys
Icon bar in the LD editor

Symbols The table shows the additional symbols available in the LD editor and the
corresponding menu entry commands (please also refer to the General icon bar,
p. 802):

Objects → Transition - Step sequence

Objects → Text

Online → Animate

Online → Animation Panel functions

Symbol Menu entry command executed

Symbol Menu entry command executed

View → Zoom in

View → Zoom out

Objects → Select

Objects → Link

Objects → Direct Link

Objects → Vertical Link

Objects → FFB: Last Type

Objects → Invert Input/Output

Objects → Text

Objects → FFB selection...
33002204 805

List of symbols and short cut keys
List of Symbols in the IL and ST Editor

Symbols The table shows the additional symbols available in the IL and ST editor and the
corresponding menu entry commands (see also General icon bar, p. 802):

Objects → Coil

Objects → Coil - Negated

Objects → Contact - Normally Open

Objects → Contact – Normally Closed

Online → Animate selected

Online → Animate booleans

Symbol Menu entry command executed

Symbol Menu Entry Command Executed

Objects → Insert FFB

Online → Watch Selected

Online → Animate booleans
806 33002204

List of symbols and short cut keys
List of Symbols in the LL984-Editor

Symbols The table shows the additional symbols available in the LL984 editor and the
corresponding menu entry commands (see also General icon bar, p. 802):

Symbol Menu Entry Command Executed

Objects → Select

Objects → Coil

Objects → Coil - Retentive

Objects → Horiz Short

Objects → Vertical Short

Objects → Contact – Normally Open

Objects → Contact – Normally Closed

Objects → Contact – Pos Trans

Objects → Contact – Neg Trans

Objects → Instruction: Last Type

Objects → List Instructions...
33002204 807

List of symbols and short cut keys
Icons in PLC Configuration

Icons The table shows the icons also available in PLC configuration and their allocated
menu commands (related topics: General icon bar, p. 802):

Icon Executed menu command

PLC configuration → PLC Selection...

PLC configuration → Memory Partitions...

PLC configuration → ASCII Setup...

PLC configuration → Loadables...

PLC configuration → Config. Extension...

PLC configuration → Segment scheduler...

PLC configuration → I/O Map...

PLC configuration → Data Protection...

PLC configuration → Peer Cop...

PLC configuration → Ethernet / I/O Scanner...

PLC configuration → Hot Standby...

PLC configuration → ASCII Port Settings...

PLC configuration → Modbus Port Settings...

PLC configuration → Specials...

MB
808 33002204

List of symbols and short cut keys
Toolbar in the RDE Editor

Icons The table shows the icons also available in the RDE Editor and their allocated menu
commands (see also General icon bar, p. 802):

Toolbar in the Project Browser

Icons The table shows the additional symbols available in the project browser and the
corresponding menu commands (also see General icon bar, p. 802):

Icon Executed menu command

Template → New Template...

Template → Open Template...

Template → Save Template

Online → Animate

Online → Download Reference Data

Online → Get CSL

Online → Delete CSL

Icon Menu command executed

Project Shortcut Menu → Animate Enable States

Project Shortcut Menu → Show Detailed View
33002204 809

List of symbols and short cut keys
C.2 Short cut keys

At a Glance

Description This section describes the available short cut keys. There are editor independent
and editor dependent short cut keys.

What's in this
Section?

This section contains the following topics:

Topic Page

General Short Cut Keys 811

Short Cut Keys in the IL, ST and Data Type Editor 812

Short Cut Keys in the FBD and SFC Editor 815

Shortcut keys in the LD-Editor 819

Short Cut Keys in the LL984-Editor 825
810 33002204

List of symbols and short cut keys
General Short Cut Keys

Short Cut Keys The table shows the short cut keys available and the corresponding menu entry
command:

Short Cut Keys Menu Entry Command Executed

F1 Calls the context-sensitive online help. Use this key to call up an
explanation of the menu entry command or dialog chosen. In
dialogs, this key corresponds to the menu entry command Help.

Ctrl+F4 System menu (for the document window) → Close document
window

Ctrl+F6 System menu (for the document window) → Next

Ctrl+S File → Save project/save DFB

Alt+F4 File → Quit the application window (Concept-Application)

F8 Project → Variable declarations...

F3 Project → Search

Shift+F3 Project → Trace

F5 Project → Search history...

F6 Project → Search next

Alt+F9 Project → Analyze section

Ctrl+P Online → Online control panel...

F9 Online → Single sweep trigger

Ctrl+R Online → Reference Data Editor

Shift+F5 Window → Cascade

Shift+F4 Window → Tile Vertically
33002204 811

List of symbols and short cut keys
Short Cut Keys in the IL, ST and Data Type Editor

Calling up menu
command
entries

The table shows the short cut keys available in the IL, ST and Data Type Editor and
the corresponding menu entry commands (see also General Short Cut Keys,
p. 811):

Key Menu Entry Command Executed

Ctrl+Z Edit → Undo delete

Ctrl+X Edit → Cut

Ctrl+C Edit → Copy

Ctrl+V Edit → Paste

Del Edit → Delete

Ctrl+G Edit → Goto line...

Ctrl+J Edit → Goto counterpart

Ctrl+E Edit → Expand statement

Alt+F8 Edit → Lookup variables

Ctrl+F Edit → Find next

Ctrl+H Edit → Replace...

Ctrl+Y Online → Animate Booleans

Ctrl+I Online → Inspect Selected

Ctrl+W Online → Watch Selected
812 33002204

List of symbols and short cut keys
Moving insertion
marks in the text

Moving insertion marks in the text:

Deleting text Deleting text:

Key Moving

Down Onto the next line

Up Onto the previous line

Ctrl+G Onto a specific line

End To the end of the line

Home To the beginning of the line

Picture up Into the next window

Picture up Into the previous window

Ctrl+Right To the next word

Ctrl+Left To the previous word

Ctrl+End To the end of the document

Ctrl+Home To the beginning of the document

Key Function

Backspace Key (Delete backwards) Deleting a mark (or deleting marked text) to
the left of the insertion mark.

Del Deleting a character (or deleting marked
text) to the right of the insertion mark.

Ctrl+Backspace key (Delete backwards) Deleting a line
33002204 813

List of symbols and short cut keys
Marking text Marking text:

Editing text Editing text:

Key Extending the marking

Shift+Right to the next character

Shift+Left to the previous character

Ctrl+Shift+Right to the next word

Ctrl+Shift+Left to the previous word

Shift+Down to the next line

Shift+Up to the previous line

Shift+End to the end of the line

Shift+Home to the beginning of the line

Shift+Picture down to a window underneath

Shift+Picture up to a window above

Ctrl+Shift+Picture down to the end of the current window

Ctrl+Shift+Picture up to the beginning of the current window

Ctrl+Shift+End to the end of the document

Ctrl+Shift+Home to the beginning of the document

Key Function

Ctrl+X Deleting marked text and saving in the
clipboard

Ctrl+C Copying marked text and saving in the
clipboard

Entering the new text Replacing marked text

Del Deleting marked text without saving in the
clipboard

Ctrl+V Replacing marked text with text from the
clipboard.

Ctrl+F Searching for text

Ctrl+R Replacing text
814 33002204

List of symbols and short cut keys
Short Cut Keys in the FBD and SFC Editor

At a Glance Concept supports the work with the keyboard in the graphic editors. Although the
mouse is a more appropriate input tool, it is nevertheless possible to operate
Concept with the keyboard alone – especially in machine environments. The editors
behave in the same way regardless of whether they are operated with the mouse or
with the keyboard.

Rules The following general rules need to be observed:
� The space bar corresponds to the left mouse button, i.e. the space bar is used for

selecting and moving.
� The enter key corresponds to the double click with the left mouse button – for

example, the input key is used to call up the properties dialog of objects.
� The shift key is used in conjunction with the keyboard exactly as it is with the

mouse – for example, the shift key is used to extend an object selection or to
reselect a few objects from a number which have already been selected.

Calling up menu
command
entries

The table shows the short cut keys available in the FBD and SFC editor and the
corresponding menu entry commands (see also General Short Cut Keys, p. 811):

Key Menu Entry Command Executed

Ctrl+A Edit → Select All

Ctrl+Z Edit → Undo delete

Ctrl+X Edit → Cut

Ctrl+C Edit → Copy

Ctrl+V Edit → Paste

Del Edit → Delete

Ctrl+O View → Overview

Ctrl+N View → Normal

Ctrl+E View → Expanded (only in SFC)

Ctrl++ View → Zoom in

Ctrl+- View → Zoom out

Ctrl+Y In the FBD Editor: Online → Animate booleans
In SFC-Editor: Online → Animate

Ctrl+W Online → Animate selected (in FBD)
33002204 815

List of symbols and short cut keys
Moving the
cursor

Moving the cursor:

Scrolling Scrolling:

Key Function

Cursor keys The cursor keys move the cursor inside the document window. The
cursor is moved further around a Pixel. If the cursor is at the edge of
the document window, pressing the cursor keys again will page the
document window in the corresponding direction.

Ctrl+Cursor Keys When the Strg key is pressed, the cursor keys move the cursor
inside the document window. The cursor is moved further around a
logical unit (depending on the active editor). If the cursor is at the
edge of the document window, pressing the cursor keys again will
page the document window in the corresponding direction

Home The Pos1 key moves the cursor to the left-hand edge of the document
window.

End The End key moves the cursor to the right-hand edge of the
document window.

Key Function

Ctrl+Home When the Ctrl key is pressed, the Pos1 key moves the document
window to the upper left-hand corner of the section.

Ctrl+End When the Ctrl key is pressed, the End key moves the document
window to the lower right-hand corner of the section.

Picture up The picture up key scrolls the document window one screen page
upwards, while the cursor remains in the same position in the
document window.

Picture down The picture down key scrolls the document window one screen page
downwards, while the cursor remains in the same position in the
document window.

Ctrl+Picture up When the Ctrl key is pressed, the Picture up key scrolls the
document window one page to the left while the cursor remains in the
same place in the document window.

Ctrl+Picture down When the Ctrl key is pressed, the Picture down key scrolls the
document window one page to the right while the cursor remains in
the same place in the document window.
816 33002204

List of symbols and short cut keys
Edit Edit

Allocating
variables onto an
FFB

To allocate variables onto an FFB, do the following:

Key Function

Space bar In select mode, the object at the cursor position is selected and all
other objects are deselected.
In placing mode the corresponding object is placed where the cursor
is.

Shift key+Space
bar

In selection mode, when the Shift key is pressed, objects which have
not previously been selected in the cursor position are selected, or
vice versa. The selection of all other objects is not affected.
In placing mode the corresponding object is placed where the cursor
is.

Space bar+Cursor
Keys

In selection mode – if there is no selected object where the cursor is
– the cursor moves and a selection rectangle is displayed. If a
selected object is in the cursor position, all objects will be shifted
according to how the cursor is moved.
The number of inputs of an FFB with a variable input number can be
changed in the FB Editor’s Selection Mode by placing the cursor on
the rectangle in the middle of the lower edge of the selection frame,
which holds down the Space bar and presses the Up or Down keys.
The width of the branches or connections can be changed in the SFC
Editor’s Selection Mode by placing the cursor on the rectangle of the
selection frame, which holds down the Space bar and presses the
Right or Left keys.
In Link Mode, a link is produced by dragging the mouse.

Shift key+Space
bar+Cursor keys

In Selection Mode, this key combination creates a selection frame as
described above, and the selection of all other objects is retained.

Step Action

1 Use the cursor keys or Shift+cursor keys to move the cursor to the input/
output of the FFB.

2 Press Enter.

Reaction: The Connect FFB dialog for the selected input/output opens.
33002204 817

List of symbols and short cut keys
Changing
variables onto an
FFB

To change variables onto an FFB, do the following:

Changing the
number of
inputs/outputs

To change the number of inputs/outputs with extendable FFBs, do the following:

Step Action

1 Use the cursor keys or Shift+cursor keys to move the cursor to the FFB
variables to be changed.

2 Press Enter.

Reaction: The Connect FFB dialog for the selected input/output opens.

Step Action

1 Use the cursor keys or Shift+cursor keys to move the cursor to the centre of
the lower edge of the FFB’s block frame.

2 Press Space bar+Down cursor key to generate further inputs/outputs.
Press Space bar+Up cursor key to hide further inputs/outputs.

Reaction: The number of inputs/outputs is changed.
818 33002204

List of symbols and short cut keys
Shortcut keys in the LD-Editor

At a Glance Concept supports the work with the keyboard in the graphic editors. Although the
mouse is a more appropriate input tool, it is nevertheless possible to operate
Concept with the keyboard alone – especially in machine environments. The Editors
behave in the same way regardless of whether they are operated with the mouse or
with the keyboard.

Rules The following general rules need to be observed:
� The space bar corresponds to the left mouse button, i.e. the space bar is used for

selecting and moving.
� The Enter key corresponds to the double click with the left mouse button – for

example, the input key is used to call up the properties dialog of objects.
� The Shift key is used in conjunction with the keyboard exactly as it is with the

mouse – for example, the Shift key is used to extend an object selection or to
reselect a few objects from a number which have already been selected.

� Pressing a key only once only affects the element in the center of the current cell.
� Pressing a key together with Ctrl affects the right side of the current cell..
� Striking a key together with Shift afects the left side of the current cell
33002204 819

List of symbols and short cut keys
Calling up menu
command

The table shows the additional shortcut keys and their corresponding menu
commands avialable in LD Editor (see also General Short Cut Keys, p. 811):

Key Menu Entry Command Executed

Ctrl+A Edit → Select All

Ctrl+Z Edit → Undo delete

Ctrl+X Edit → Cut

Ctrl+C Edit → Copy

Ctrl+V Edit → Paste

Del Edit → Delete

Ctrl+O View → Overview

Ctrl+N View → Normal

Ctrl++ View → Zoom in

Ctrl+- View → Zoom out

Esc Objects → Select

Shift+H Objekts → Link

H Objects → Direct Link

V Objects → Vertical Link

F Objects → FFB: Last Type

I Objects → Invert Input/Output

T Objects → Text

Shift+F Objects → FFB selection...

C Objects → Contact Normally Open

L Objects → Contact – Normally Closed

P Objects → Contact - Rising Edge (Positive)

N Objects → Contact - Falling Edge (Negative)

Shift+C Objects → Coil

Shift+L Objects → Coil - Negated

Shift+S Objects → Coil - Set

Shift+R Objects → Coil - Reset

Shift+P Objects → Coil - Rising Edge (Positive)

Shift+N Objects → Coil - Falling Edge (Negative)

Ctrl+Y Online → Animate booleans

Ctrl+W Online → Animate selected
820 33002204

List of symbols and short cut keys
Placing objects In order to place objects in the LD Editor by using the keyboard, please carry out the
following steps:

Moving the gray
field (selecting a
field)

Moving the gray field (selecting a field)

Step Action

1 Move the field with a gray background onto the field where the object is to be
placed (move gray field (selecting a field)).

2 Strike the key assigned to the object (see Creating objects, p. 824).

Reaction: Adjoining boolean objects are automatically connected.

3 Links between non-adjoining objects and non-boolean in/outputs have to be
made with the mouse pointer (see Moving the mouse pointer, p. 823).

4 The mouse pointer must also be used to invert in/outputs (see Moving the mouse
pointer, p. 823).

Key Function

Up Moves the gray field up by one field

Down Moves the gray field down by one field

To the right Movesthe gray fields to the right by one field

To the left Moves the gray fields to the left by one field

Home Moves the gray field to the left margin

Shift+Home Moves the gray field to the left margin

End Moves the gray field to the right margin

Shift+End Moves the gray field to the right margin

Ctrl+Home Moves the gray field to the top left-hand
corner

Ctrl+End Moves the gray field to the top right-hand
corner
33002204 821

List of symbols and short cut keys
Selecting objects Selecting objects

Moving a
selected object

Moving a selected object

Allocating
variables onto an
FFB

To allocate variables onto an FFB, do the following:

Key Function

Space character Selects object in the middle of the gray field

Ctrl+Space character Selects object on the right-hand side of the
gray field

Shift+Space character Selects object on the left-hand side of the
gray field

Enter In select mode: Selects object in the middle
of the gray field and opens its Select dialog (if
available)

Ctrl+Enter In select mode: Selects object from the right-
hand side of the gray field and opens its
Select dialog (if available)

Shift+Enter In select mode: Selects object from the left-
hand side of the gray field and opens its
Select dialog (if available)

Key Function

Shift+Up Moves the selected object up by one field

Shift+Down Moves the selected object down by one field

Shift+Right Moves the selected object to the right by one
field

Shift+Left Moves the selected object to the left by one
field

Step Action

1 Move the gray field onto the cell containing the in/output.

2 To allocate variables to inputs, press Ctrl+Enter.
To allocate variables to outputs press Ctrl+Enter.

Reaction: The dialog Connect FFB of the selected in/output is opened.
822 33002204

List of symbols and short cut keys
Changing
variables onto an
FFB

To change variables onto an FFB, do the following:

Deleting vertical
links

To delete vertical variables, carry out the following step:

Moving the
mouse pointer

Moving the mouse pointer

Scrolling Scrolling:

Step Action

1 Move the gray field onto the cell containing the variable to be changed.

2 To select the variable press Shift+Enter.

Reaction: The dialog Connect FFB of the selected in/output is opened.

Step Action

1 Move the gray field onto the cell running through the vertical link.

2 Press Ctrl+Delete.

Reaction: The vertical link is deleted.

Key Function

Ctrl+Up Moving the mouse pointer up by one step

Ctrl+Down Moving the mouse pointer down by one step

Ctrl+Right Moving the mouse pointer to the right by one
step

Ctrl+Left Moving the mouse pointer to the left by one
step

Key Function

Picture up Scrolls the display sector one page up

Shift+Picture up Scrolls the display sector one page up

Picture down Scrolls the display sector one page down

Shift+Picture down Scrolls the display sector one page down

Ctrl+Picture up Scrolls the display sector one page to the
right

Ctrl+Picture down Scrolls the display sector one page to the
right
33002204 823

List of symbols and short cut keys
Creating objects Creating objects

Creating links Creating links

Activating the
different modes

Activating the different modes

Key Function

C Creates a N.O. in the gray field

L Creates an opener in the gray field

P Creates a contract for the recognition of
positive flanks in the gray field

N Creates a contract for the recognition of
negative flanks in the gray field

Shift+C Creates a coil in the gray field

Shift+L Creates a negated coil in the gray field

Shift+S Creates a coil set in the gray field

Shift+R Creates a reset coil in the gray field

Shift+P Creates a coil for the recognition of positive
flanks in the gray field

Shift+N Creates a coil for the recognition of negative
flanks in the gray field

Shift+F Opens FFB selection dialog

F Creates current FFB in the gray field

Key Function

H Activates the link mode

V Creates a vertical link in the right-hand
bottom corner of the gray field (and then
moves the gray field to the right by one field)

Shift+V Creates a vertical link in the bottom left-hand
corner of the gray field.

Key Function

Space character Activates the selection mode

Esc Activates the selection mode

H Activates the link mode

I Activates the mode for inverting in/outputs

T Activates the text mode
824 33002204

List of symbols and short cut keys
Short Cut Keys in the LL984-Editor

Short Cut Keys The table shows the additional short cut keys available in the LL984 editor and the
corresponding menu entry commands (see also General Short Cut Keys, p. 811):

Short Cut Keys Menu Entry Command Executed

Ctrl+Z Edit → Undo delete

Ctrl+X Edit → Cut

Ctrl+C Edit → Copy

Ctrl+V Edit → Paste

Del Edit → Delete

Ctrl+D Edit → DX Zoom...

Ctrl+H Edit → Offset References...

Ctrl+O View → Overview

Ctrl+N View → Normal

Ctrl+E View → Expanded

Ctrl++ View → Zoom in

Ctrl+- View → Zoom out

(Objects → Coil

Ctrl+L Objects → Coil - Retentive

" Objects → Contact – Normally Open

/ Objects → Contact – Normally Closed

P Objects → Contact – Pos Trans

N Objects → Contact – Neg Trans

= Objects → Horiz Short

I Objects → Vertical Short

Ctrl+F Objects → Instruction by name...

Ctrl+G Network → Goto...

Ctrl+I Networks → Insert

Ctrl+Q Networks → Insert Equation

Ctrl+A Networks → Append

Ctrl+U Networks → Attach formula

Ctrl+K Networks → Delete

Picture up Networks → Next

Picture up Networks → Previous

Ctrl+M Networks → Comment...
33002204 825

List of symbols and short cut keys
Ctrl+T Online → Trace

Ctrl+B Online → ReTrace

Short Cut Keys Menu Entry Command Executed
826 33002204

33002204
D

IEC conformity
At a Glance

Overview This Chapter contains the standards tables required by IEC 1131-1.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

D.1 What is the IEC 1131-3 standard? 829

D.2 IEC standards tables 832

D.3 Expansions of IEC 1131-3 852

D.4 Text language syntax 853
827

IEC conformity
828 33002204

IEC conformity
D.1 What is the IEC 1131-3 standard?

At a Glance

Overview This section contains general information about IEC 1131-3 and the implemented
IEC conformity test.

What's in this
Section?

This section contains the following topics:

Topic Page

General information about IEC conformity 830

IEC Conformity Test 831
33002204 829

IEC conformity
General information about IEC conformity

At a Glance The IEC standard 1131-3 (compare chapter 1.4) specifies the syntax and semantics
of a standardized series of programming languages for Programmable Logic
Controls (PLC). These include the two text languages IL (Instruction List) and ST
(Structured Text) and the two graphical languages LD (Ladder Diagram) and FBD
(Function Block Diagram).

It also defines the elements of the sequential function chart (SFC) language for
structuring the internal organization of PLC programs and Function Blocks.
Configuration elements, used for installing PLC programs onto PLC systems, are
also defined.

Furthermore, it defines methods to enable communication between the PLC and
other automated system components.

Concept
standard
accordance

In accordance with the standard, the present version of the programming system
Concept supports a subset of language elements, which are defined in the standard.

In this context, accordance with the standard means the following:
� The standard allows the individual implementing an IEC program system to select

or deselect certain language properties or even complete languages from the
selection tables, which represent an integrated part of the standard
specifications. A system, which itself accords with the standard, may only
implement the selected properties exactly as they are given in the standard.

� In addition, the standard enables the individual implementing to introduce defined
language elements into an interactive programming environment. As the
standard expressly emphasizes that the specification of such environments lies
outside of its area of application, the person implementing has a certain degree
of freedom to offer optimized forms of display and implementation mechanisms
for the benefit of the user.

� Concept uses these degrees of freedom e.g. when introducing the term "Project"
to implement the IEC language elements "Configuration", "Resource" and
"Program" all together (Concept only supports one single cyclically running
program within a single resource within the configuration). Apart from this, it uses
them, for example, with implementation mechanisms made available for
declaring variables and authorizing Function Blocks.

IEC standards
tables

Information on which properties are supported and other implementation specific
details can be found in the following statements on standard fulfilment and the
associated standards tables.

Note: Concept uses the English acronyms for the programming languages.
830 33002204

IEC conformity
IEC Conformity Test

Testing the
Import/Export
Interface

An interface for importing standard IEC programs and DFBs from ASCII files (menu
File → Import) and exporting these programs into graphical languages in ASCII
format (menu File → Export) is available in Concept. The conformity of this interface
can be tested using files which can be obtained from IFAK (Institut für Automation
und Kommunikation e.V. Magdeburg).

IEC conformity test scripts:

(c) 1994, IFAK Institut für Automation und Kommunikation e.V.

Magdeburg

Steinfeldstraße 3

D-39179 Barleben

Notes The following points must be considered with regard to the conformity of the import
interface:
� In Concept, IL operators are permitted as identifiers.

R, S, LD, S1 and R1 are possible parameter names. Therefore, there will be no
changes made to the standard functions/function blocks. Concept requires no
change in the IEC table 54 with S to SET, R to RESET, S1 to SET1, R1 to
RESET1.

� All IL operators not in conflict with functions are permitted as variable names in
Concept (N, S, R, S1, R1, CLK, CU, CD, PV, IN, PT) – contrary to IEC table 54.

� Counter EFBs must be typified in Concept, e.g. CTU must become CTU_INT.
� Function block instances cannot be called up more than once; a restriction that is

self-evident if IEC table 53, property 3 is required.
� An overflow of time span variables (e.g. t#100s) is not detected. The system

calculates the time correctly, so that detection of an overflow is not necessary.
� IEC IL comments are only permitted as the last element in a line. Concept allows

comments to be made everywhere.
33002204 831

IEC conformity
D.2 IEC standards tables

At a Glance

Overview This system fulfils the requirements of the IEC 1131-3 in the following properties of
the language.

What's in this
Section?

This section contains the following topics:

Topic Page

Common elements 833

IL (AWL) language elements 840

ST language elements 842

Common graphic elements 843

LD (KOP) language elements 844

Implementation-dependent parameters 846

Error causes 850
832 33002204

IEC conformity
Common elements

IEC standards
table

IEC standards table for common elements:

Table
number

Property
number

Property description

1 1 For required character set – see Chapter 2.1.1 of 1131-3

1 2 Lower case characters

1 3a Hash key (#)

1 4a Dollar sign ($)

1 5a Vertical line (|)

1 6a Left and right square brackets "[]"

2 1 Upper case character and numbers

2 2 Upper and lower case characters, numbers, embedded
underscore

2 3 Upper and lower case characters, numbers, leading and
embedded underscore

3 1 Comments

4 1 Integer (whole number) literals

4 2 Real literals

4 3 Real literals with exponents

4 4 Base 2 literals

4 5 Base 8 literals

4 6 Base 16 literals

4 7 Boolean zero and one

4 8 Boolean FALSE and TRUE

7 1a Time span without underscores: short prefix

7 1b Time span without underscores: long prefix

7 2a Time span with underscores short prefix

7 2b Time span with underscores long prefix

10 1 BOOL: Boolean

10 3 INT: Integer

10 4 DINT: Double integer

10 7 UINT: Signed integer

10 8 UDINT: Signed double integer

10 10 REAL: Floating point number
33002204 833

IEC conformity
10 12 TIME: Time span

10 17 BYTE: Bit sequence 8

10 18 WORD: Bit sequence 16

12 4 Data types for fields

12 5 Data types for structures

15 1 I: Input (Note 1, p. 838)

15 2 Q: Output (Note 2, p. 838)

15 4 X: Bit size (Note 2, p. 838, Note 1, p. 838)

15 5 no prefix: Bit size (Note 2, p. 838, Note 1, p. 838)

15 6 B: Byte size (Note 2, p. 838, Note 1, p. 838)

15 7 W: Word size (Note 2, p. 838, Note 1, p. 838)

15 8 D: Double word size (Note 2, p. 838, Note 1, p. 838)

17 2 Declaration of directly displayed buffered variables (Note 5,
p. 839, Note 9, p. 839)

17 3 Declaration of storage locations with symbolic variables (Note
5, p. 839)

17 4 Assignment of storage locations with fields (Note 5, p. 839,
Note 11, p. 839)

17 5 Automatic storage allocation for symbolic variables (Note 5,
p. 839)

17 7 Declaration for buffered fields (Note 5, p. 839, Note 11,
p. 839)

17 8 Declaration for structured variables (Note 5, p. 839)

18 2 Initialization of directly displayed buffered variables (Note 5,
p. 839, Note 9, p. 839, Note 10, p. 839)

18 3 Assignment of storage locations and start values for
fields(Note 5, p. 839)

18 4 Assignment of storage locations and start values for fields
(Note 5, p. 839, Note 11, p. 839)

18 5 Initialization of symbolic variables (Note 5, p. 839)

18 7 Declaration and initialization of buffered variables (Note 5,
p. 839, Note 11, p. 839)

18 8 Initialization of structured variables (Note 5, p. 839)

18 9 Initialization of constants

19 1 Negated input

Table
number

Property
number

Property description
834 33002204

IEC conformity
19 2 Negated output

20 1 Use of "EN" and "ENO" - REQUIRED for LD (Note 6, p. 839)

20 2 Use of "EN" and "ENO" – OPTIONAL for FBD

20 3 FBD without "EN" and "ENO"

21 2 Standardized functions (Note 3, p. 838)

22 1 (*-TO-**) Type conversion functions (Note 4, p. 838

22 2 Truncation towards zero: TRUNC (Note 3, p. 838))

23 1 ABS: Absolute value

23 2 SQRT: Square root

23 3 LN: Natural logarithm

23 4 LOG: Base 10 logarithm

23 5 EXP: Exponential function

23 6 SIN: Sine, input in radians

23 7 COS: Cosine, input in radians

23 8 TAN: Tangent, input in radians

23 9 ASIN: Arc sine, principal value

23 10 ACOS: Arc cosine, principal value

23 11 ATAN: Arc tangent, principal value

24 12 ADD: Add

24 13 MUL: Multiply

24 14 SUB: Subtract

24 15 DIV: Divide

24 16 MOD: Modulo

24 17 EXPT: Exponentiation

24 18 MOVE: Assignment

25 1 SHL: move to the left

25 2 SHR: Move to the right

25 3 ROR: Rotate to the right

25 4 ROL: Rotate to the left

26 5 AND: LLogical And

26 6 OR: Logical Or

26 7 XOR Logical exclusive Or

26 8 NOT: Negation

27 1 SEL: Binary selection

Table
number

Property
number

Property description
33002204 835

IEC conformity
27 2a MAX: Extendable maximum

27 2b MIN: Extendable minimum

27 3 LIMIT: Limit

27 4 MUX: Extendable multiplexer

28 5 GT: Falling sequence

28 6 GE: Monotonic sequence (decreasing)

28 7 EQ: Equality

28 8 LE: Monotonic sequence (increasing)

28 9 LT: Rising seqence

28 10 NE: Inequality

30 1 ADD: Adding TIME to TIME

30 4 SUB: Subtracting TIME from TIME

30 10 MUL: Multiplying TIME by ANY_NUM

30 11 DIV: Dividing TIME by ANY_NUM

33 1 RETAIN identifier for internal variables (Note 5, p. 839)

33 2 RETAIN identifier for output variables (Note 5, p. 839)

33 3 RETAIN identifier for internal Function Blocks (Note 5, p. 839)

34 1 Bistable Function Block (set priority)

34 2 Bistable Function Block (reset priority)

35 1 Detecting the rising edge

35 2 Detecting the falling edge

36 1 Up counter

36 2 Down counter

36 3 Up/Down counter

37 1 TP: Pulse (timer)

37 2a TON: Switch-on delay

37 3a TOF: Switch-off delay

39 1 RETAIN identifier for internal variables (Note 5, p. 839)

39 2 RETAIN identifier for output variables (Note 5, p. 839)

39 3 RETAIN identifier for internal Function Blocks (Note 5, p. 839)

39 14 Assignment of storage locations with fields (Note 5, p. 839)

39 18 Assignment of storage locations and start values for
fields(Note 5, p. 839)

Table
number

Property
number

Property description
836 33002204

IEC conformity
39 19 Use of directly displayed variables (Note 2, p. 838, Note 1,
p. 838)

40 1 Step/Start step – graphical form with directional links

40 2 Step/Start step – text form without directional links (Note 8)

40 3a Step marker – general form

40 4 Step time elapsed – general form

41 1 Transition condition in ST language within the graphic (Note
8, p. 839)

41 5 Transition condition in ST language – textual reference (Note
9, p. 839)

41 6 Transition condition in IL language – textual reference (Note
9, p. 839)

41 7 Use of the transition name

41 7b Transition condition in FBD language

41 7c Transition condition in IL language

41 7d Transition condition in ST language

42 1 Each Boolean variable can be an action

43 1 Action block

43 2 Concatenated action blocks

43 3 Step body in text form (Note 8, p. 839)

44 1 Identifier

44 2 Action name

45 1 Not saved (no identifier)

45 2 N: not saved

45 3 R: Overriding reset

45 4 S: Set (saved)

45 5 L: Time limited

45 6 D: Delayed

45 7 P: Pulse

45 9 DS: Delayed and saved

46 1 Simple string

46 2a Branching in string selection (priority from left to right)

46 3 Merging a string selection

46 4 Parallel strings - branch and merge

Table
number

Property
number

Property description
33002204 837

IEC conformity
Note 1 Modicon TSX Quantum Präfix 3 is used in the prefix IB, ID position in all graphical
languages.

Note 2 Modicon TSX Quantum Präfix 4 is used in the prefix QB, QD position in all graphical
languages.

Note 3 The following functions are overloaded with reference to the data which is selected,
multiplexed or assigned; the type statement refers to the selection parameters.

List of overloaded functions:
� SEL
� MUX
� MOVE

All other functions are standardized, e.g. REAL_TRUNC_INT.

Note 4 List of type conversion functions:
� BOOL_TO_BYTE, BOOL_TO_DINT, BOOL_TO_INT, BOOL_TO_REAL,

BOOL_TO_TIME, BOOL_TO_UDINT, BOOL_TO_UINT, BOOL_TO_WORD,
� BYTE_TO_BOOL, BYTE_TO_DINT, BYTE_TO_INT, BYTE_TO_REAL,

BYTE_TO_TIME, BYTE_TO_UDINT, BYTE_TO_UINT, BYTE_TO_WORD,
� DINT_TO_BOOL, DINT_TO_BYTE, DINT_TO_INT, DINT_TO_REAL,

DINT_TO_TIME, DINT_TO_UDINT, DINT_TO_UINT, DINT_TO_WORD,
� INT_TO_BOOL, INT_TO_BYTE, INT_TO_DINT, INT_TO_REAL,

INT_TO_TIME, INT_TO_UDINT, INT_TO_UINT, INT_TO_WORD,
� REAL_TO_BOOL, REAL_TO_BYTE, REAL_TO_DINT, REAL_TO_INT,

REAL_TO_TIME, REAL_TO_UDINT, REAL_TO_UINT, REAL_TO_WORD,
� TIME_TO_BOOL, TIME_TO_BYTE, TIME_TO_DINT, TIME_TO_INT,

TIME_TO_REAL, TIME_TO_UDINT, TIME_TO_UINT, TIME_TO_WORD,
� UDINT_TO_BOOL, UDINT_TO_BYTE, UDINT_TO_DINT, UDINT_TO_INT,

UDINT_TO_REAL, UDINT_TO_TIME, UDINT_TO_UINT, UDINT_TO_WORD,
� UINT_TO_BOOL, UINT_TO_BYTE, UINT_TO_DINT, UINT_TO_INT,

UINT_TO_REAL, UINT_TO_TIME, UINT_TO_UDINT, UINT_TO_WORD,
� WORD_TO_BOOL, WORD_TO_BYTE, WORD_TO_DINT, WORD_TO_INT,

WORD_TO_REAL, WORD_TO_TIME, WORD_TO_UDINT, WORD_TO_UINT

The consequences of each conversion are described in the block library and the
help texts, which are available for the library of IEC standard functions.

46 5a String jump (priority from left to right)

46 6a String loop (priority from left to right)

Table
number

Property
number

Property description
838 33002204

IEC conformity
Note 5 The RETAIN identifier is implicitly required; no language elements displayed in non-
buffered memory areas are supported.

Note 6 "EN" and "ENO" are offered as standard; they can, however, be hidden and any
other input or output of data type BOOL can be used for links.

Note 7 Expressions are restricted to individual simple Boolean variables.

Note 8 Only available on import of IEC text form in graphical SFC representation.

Note 9 Only available in textual declaration in IL or ST sections.

Note 10 Initialization only possible for non Boolean outputs.

Note 11 Declaration of field variables only possible when using previously defined field data
type names.
33002204 839

IEC conformity
IL (AWL) language elements

IEC standards
table

IEC standards table for IL (AWL) language elements:

Note 1 Jumps are only allowed within sections, not across section boundaries.

Table
number

Property
number

Property description

52 1 LD operator: sets the current result to that of the operand

52 2 ST operator: saves the current result to the operand address

52 3 S operator: sets Boolean operands to "1"
R operator: sets Boolean operands to "0"

52 4 AND operator

52 6 OR operator

52 7 XOR operator

52 8 ADD operator

52 9 SUB operator

52 10 MUL operator

52 11 DIV operator

52 12 GT operator: Comparison >

52 13 GE operator: Comparison >=

52 14 EQ operator: Comparison =

52 15 NE operator: Comparison <>

52 16 LE operator: Comparison <=

52 17 LT operator: Comparison <

52 18 JMP operator: Jump to tag (Note 1, p. 840)

52 19 CAL operator: Calls Function Block

52 21 Closing bracket ")": Editing deferred operations

53 1 CAL operator with list of input parameters

53 2 CAL operator with loading/saving of input parameters
840 33002204

IEC conformity
Note 2 The following keywords are not available:
� TYPE...END_TYP
� VAR_INPUT...END_VAR
� VAR_OUTPUT...END_VAR
� VAR_IN_OUT...END_VAR
� VAR_EXTERNAL...END_VAR
� FUNCTION...END_FUNCTION
� FUNCTION_BLOCK...END_FUNCTION_BLOCK
� PROGRAM...END_PROGRAM
� STEP...END_STEP
� TRANSITION...END_TRANSITION
� ACTION...END_ACTION
� SEGMENT_SCHEDULER
� RET
� &
33002204 841

IEC conformity
ST language elements

IEC standards
table

IEC standards table for ST language elements:

Table
number

Property
number

Property description

55 1 Placing in brackets: (Expression)

55 2 Function calls: Function name (list of arguments)

55 3 Exponentiation: **

55 4 Negation: -

55 5 Complement: NOT

55 6 Multiplication: *

55 7 Division: /

55 8 Modulo: MOD

55 9 Addition: +

55 10 Subtraction: -

55 11 Comparison: <, >, <=, >=

55 12 Equality: =

55 13 Inequality: <>

55 14 Boolean AND: &

55 15 Boolean AND: AND

55 16 Boolean exclusive OR: XOR

55 17 Boolean OR: OR

56 1 Assignment

56 2 Function Block calls and use of FB outputs

56 4 IF instruction

56 5 CASE instruction

56 6 FOR instruction

56 7 WHILE instruction

56 8 REPEAT instruction

56 9 EXIT instruction

56 10 Empty instruction
842 33002204

IEC conformity
Note 1 The following keywords are not available:
� TYPE...END_TYP
� VAR_INPUT...END_VAR
� VAR_OUTPUT...END_VAR
� VAR_IN_OUT...END_VAR
� VAR_EXTERNAL...END_VAR
� FUNCTION...END_FUNCTION
� FUNCTION_BLOCK...END_FUNCTION_BLOCK
� PROGRAM...END_PROGRAM
� STEP...END_STEP
� TRANSITION...END_TRANSITION
� ACTION...END_ACTION
� SEGMENT_SCHEDULER
� RETURN

Common graphic elements

IEC standards
table

IEC standards table for common graphic elements:

Table
number

Property
number

Property description

57 2 Horizontal lines: Graphic or semi-graphic

57 4 Vertical lines: Graphic or semi-graphic

57 6 Horizontal/vertical connection: Graphic or semi-graphic

57 8 Line intersection without connection: Graphic or semi-graphic

57 10 Connected and unconnected corners: Graphic or semi-
graphic

57 12 Blocks with connecting lines: Graphic or semi-graphic
33002204 843

IEC conformity
LD (KOP) language elements

IEC standards
table

IEC standards table for LD (KOP) language elements:

Table
number

Property
number

Property description

59 1 Left power rail (with linked horizontal connection)

60 1 Horizontal connection

60 2 Vertical connection (with linked horizontal connections)

61 1 Closer

61 3 Opener

61 5 Contact for detection of positive transition

61 7 Contact for detection of negative transition

62 1 Coil (Note 1, p. 845)

62 2 Negative coil (Note 1, p. 845)-{}-

62 3 SET coil (Note 1, p. 845)

62 4 RESET coil (Note 1, p. 845)

62 8 Coil for detection of positive transition

62 9 Coil for detection of negative transition
844 33002204

IEC conformity
Note 1 In start behavior of PLCs there is a distinction between cold starts and warm starts:
� Cold start

Following a cold start (loading the program with Online → Load) all variables
(irrespective of type) are set to "0" or, if available, their initial value.

� Warm start
In a warm start (stopping and starting the program or Online → Load changes)
different start behaviors are valid for located variables/direct addresses and
unlocated variables:
� Located variables/direct addresses

In a warm start all 0x, 1x and 3x registers are set to "0" or, if available, their
initial value.
4x registers retain their current value (storage behavior).

� Unlocated variables
In a warm start all unlocated variables retain their current value (storing
behavior).

This varying behavior in a warm start leads to peculiarities in the warm start behavior
of set and reset functions.
� Set and Reset in LD and IL

Warm start behavior is dependent on the variable type used (storage behavior in
use of unlocated variables; non storage behavior in use of located variables/
direct addresses)

� SR and RS Function Blocks in FBD, LD, IL and ST
These Function Blocks work with internal unlocated variables and therefore
always have a storage behavior.
33002204 845

IEC conformity
Implementation-dependent parameters

IEC standards
table

IEC standards table for implementation-dependent parameters:

Parameters Threshold values/behavior

Error-handling procedure See Error causes, p. 850 & EFB help

National characters used All characters in the Windows ANSI
character set are supported.

Maximum length of identifiers Program name: 8
Formal parameter names: 8
DFB type names: 8
EFB type names: 17
Data type names: 24
all others: 32

Maximum comment length: Limited only by Windows resources

Range of values for time span literals 0s to 49d_17h_2m_47.295s

Range of values for variables of type TIME
0s to 49d_17h_2m_47.295s

Accuracy of the seconds display with types
TIME_OF_DAY and DATE_AND_TIME

not applicable

Maximum number of field indices Practically no limit

Maximum field size 64 kB

Maximum number of structure elements Only limited by Windows or PLC
resources

Maximum structure size 64 kB

Maximum number of variables per declaration Only limited by Windows or PLC
resources

Maximum number of enumerated values not applicable

Default maximum length of STRING variables not applicable

Maximum authorized length of STRING variables not applicable

Maximum number of hierarchy tiers 1

Configured or physical illustration Configured illustration, physical
illustration through separate I/O
projection

Parameters Threshold values/behavior

Maximum number of indices Practically no limit

Maximum range of index values Range of data type INT
846 33002204

IEC conformity
Maximum number of structure levels Only limited by Windows or PLC
resources

Initialization of system inputs System zero; no user-definable start
values

Maximum number of variables per declaration Only limited by Windows or PLC
resources

Information for the determination of execution times
of program organization units

In preparation

Methods of function display (names or symbols) Names

Maximum number of function specifications not applicable

Maximum number of inputs for extendable functions 32

Type conversion accuracy See EFB help

Accuracy of functions of a variable INTEL floating point processor or
emulator

Arithmetic function implementation INTEL floating point processor or
emulator

Maximum number of Function Block specifications Only limited by Windows or PLC
resources

Maximum number of Function Block authorizations 512 per section; number of sections
per program organization unit is only
limited by Windows or PLC resources

Pvmin, Pvmax of counters Limited by rangess of the INT or
DINT data types

Effect of a change in the value of a PT input during a
time measurement operation

Directly affects the timer’s default
time

Program size limits Only limited by available PLC
memory

Time behavior and porting effects of the execution
control elements

The execution of SFC networks in
different sections occurs
sequentially, in the order given in
these sections.

Accuracy of elapsed step time 10 ms

Maximum number of steps per SFC Limited by the available area for
entering characters within the
section; number of sections per
program organization unit only
limited by Windows or PLC
resources; the upper limit for the total
number of objects per SFC is 2000

Parameters Threshold values/behavior
33002204 847

IEC conformity
Parameters Threshold values/behavior

Maximum number of transitions per SFC and per step Limited by the available area for
entering characters within the
section; number of sections per
program organization unit only
limited by Windows or PLC
resources; the upper limit for the total
number of objects per SFC is 2000

Action control mechanism Functionally equivalent to the
specification in the standard

Maximum number of actions per step Only limited by Windows or PLC
resources

Graphical display of the step situation Green = active
Red = inactive

Transition switch time Of the magnitude of 10 ms

Maximum width of branches/connections Limited by the available area for
entering characters 32

Contents of the RESOURCE libraries See EFB libraries & help

Maximum number of tasks 1

Task interval resolution not applicable

Pre-justified and non pre-justified schedules not applicable

Maximum length of expressions Practically no limit

Partial evaluation of Boolean expressions no partial evaluation

Maximum length of instructions Practically no limit

Maximum number of CASE selections Practically no limit

Value of the control variables on completion of FOR
loops

undefined

Graphic/semi-graphic display Graphic

Network topology restrictions no restrictions

Evaluation sequence of feedback loops Within a network, the starting point of
the FFB execution sequence is
determined by the "single" available
feedback variable

Parameters Threshold values/behavior
848 33002204

IEC conformity
Means of specifying the network execution sequence 1: Execution sequence of program
organization unit sections
2: The network execution sequence
can be changed within sections; this
is done by using a menu command to
switch between the execution
sequences of two selected FFB
items

Parameters Threshold values/behavior
33002204 849

IEC conformity
Error causes

IEC standards
table

IEC standards table for error causes:

Error cause Handling (see Note 1, p. 851)

Variable value exceeds the specified range not applicable

Initialization list length and number of field
elements do not agree

2) Error message during programming

Incorrect use of directly displayed or external
variables in functions

not applicable

Type conversion error 4) Error message during execution

Numerical result exceeds the range for data
type

4) Error message during execution

Division by zero 4) Error message during execution

Mixed input data types in a selection function 2) Error message during programming

Selector (K) outside MUX function range 4) Error message during execution

Invalid character position not applicable

Result exceeds maximum sequence length not applicable

Numerical result exceeds the range for data
type

4) Error message during execution

Zero or more than one starting step in SFC
network

3) Error message during analysis/loading/
connection

User program attempting to change step
situation or step time

2) Error message during programming

Simultaneously completed transitions without
priority in a selection branch

not applicable

Side effects of evaluation of a transition
condition

3) Error message during analysis/loading/
connection

Action control error 1) Error not reported

Unsafe or unreachable SFCs 3) Error message during analysis/loading/
connection

Data type conflict in VAR_ACCESS not applicable

Tasks demanding too many processor
resources

3) Error message during analysis/loading/
connect

Scan time overrun 4) Error message during execution

Error cause Handling (see note 1)

Further task schedule conflicts not applicable
850 33002204

IEC conformity
Note 1 Identification for the handling of error causes according to IEC 1131-3, chapter
1.5.1, d):
� 1) Error not reported
� 2) Error message during programming
� 3) Error message during analysis/loading/binding
� 4) Error message during execution

Numerical result exceeds the range for data
type

4) Error message during execution

Division by zero 4) Error message during execution

Invalid data type for operation 3) Error message during analysis/loading/
binding

Return from function without assigned value not applicable

Occurrence arrives at no outcome 4) Error message during execution

The same identifier as connector tag and
element name use

not applicable

Non-initialized feedback variable (initialized
with system zero)

1) Error not reported

Error cause Handling (see Note 1, p. 851)
33002204 851

IEC conformity
D.3 Expansions of IEC 1131-3

Expansions of IEC 1131-3

At a Glance The Concept programming environment makes the construct of the so-called
section available in all programming languages permitting the subdivision of a
program organization unit. This construct provides the opportunity to mix several
languages in the body of a POU (e.g. FBD sections, SFC sections), a property,
which, if used for this purpose, represents an expansion of the IEC syntax. Sections
do not generate their own name space; the name space for all language elements
is the POU.

Sections appearing in the body of a POU written only in the FBD language are not
to be viewed as an expansion, rather as a permitted means of specifying the
execution sequences of several FBD networks furnished with tags, as specified in
the corrigendum to 1131-3.

Purpose of
sections

Sections serve various purposes
� Sections permit the functional division of an expansive POU body: The body of a

POU can be divided into sensible functional parts. The section list represents a
kind of functional table of contents for a large, otherwise unstructured POU body.

� Sections permit the graphical division of an expansive POU body: in accordance
with an intentionally graphic form of representation, sub-structures of an
expansive body can be established. Smaller or larger partial structures may be
chosen.

� The division of an expansive POU body enables faster online changes: the
section serves as the unit for online changes in Concept. If the POU body is
changed in various places during the program runtime, all sections affected by
the changes are taken into account if explicitly initiated reloading occurs.

� Sections permit the execution sequence to influence particular marked parts of
the POU body: the section name serves as a marking for the part of the body
contained in the section, and the execution sequence of the sections can be
changed by ranking the sections (see also the last part of the "implementation-
dependent parameters" table for information on the execution sequence of
networks in the FBD language).

� Sections permit the parallel use of different languages in the same POU: this
property is a considerable expansion of the syntax of the IEC 1131-3 standard,
which only permits the use of a single IEC language for a POU body. Only the
SFC language also provides the opportunity to formulate parts of the body in
different languages, because transitions and actions can be expressed in any
language, in as far as the corresponding properties are supported by the
programming system.
852 33002204

IEC conformity
D.4 Text language syntax

Text Language Syntax

Description The programming system Concept supports the complete language syntax, as
specified in appendix B of the IEC language standard 1131-3, with the following
exceptions:
� Syntax productions in appendix B of 1131-3, belonging to properties, which

according to the IEC standards tables in IEC standards tables, p. 832 in this
document are not supported by Concept, are not implemented.

� The use of some Concept supported properties is, according to the associated
remarks in the IEC standards table, only possible in a restricted or modified form.
The associated syntax productions are therefore only occasionally or somewhat
differently implemented.

� Concept supports the NOT Operator for inverting Boolean battery content in IL.
� The implementation of some faulty syntax productions in appendix B of 1131-3,

improved upon either in the corrigendum to 1131-3 or in the planned amendment
to 1131-3, uses the suggestions in these documents for orientation.
The improved productions are implemented in Concept as follows (chapter
numbers refer to appendix B of 1131-3):
� B.1.3.3:

array_initialization ::= ’[’ array_initial_elements {’,’
array_initial_elements} ’]’

initialized_structure ::= structure_type_name [’:=’
structure_initialization]

� B.2.1:
il_operand_list ::= il_operand [’,’ [EOL] il_operand]

il_fb_call ::= (’CAL’ | ’CALC’ | ’CALCN’) fb_name ’(’
il_operand_list ’)’

� B.2.2:
il_operator ::= ’LD’ | ’LDN’ | ’ST’ | ’STN’ | ’S’ | ’R’
| (’AND’ | ’ANDN’ | ’OR’ | ’ORN’ | ’XOR’ | ’XORN’) [’(’]
| (’ADD’ | ’SUB’ | ’MUL’ | ’DIV’) [’(’]
| (’GT’ | ’GE’ | ’EQ’ | ’NE’ | ’LT’ | ’LE’) [’(’]
| ’JMP’ | ’JMPC’ | ’JMPCN’ | ’)’ | function_name
33002204 853

IEC conformity
854 33002204

33002204
E

Configuration examples
At a Glance

Overview This section contains various configuration examples, given as step-by-step
instructions.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

E.1 Quantum Example - Remote Control with RIO 857

E.2 Quantum Example - Remote control with RIO (series 800) 865

E.3 Quantum Example - Remote Control with DIO 878

E.4 Quantum Example – INTERBUS Control 887

E.5 Quantum Example - SY/MAX Controller 893

E.6 Quantum Example - Profibus DP Controller 902

E.7 Quantum-Example - Peer Cop 918

E.8 Compact Example 927

E.9 Atrium Example – INTERBUS Controller 932

E.10 Momentum Example - Remote I/O Bus 942

E.11 Momentum Example - Ethernet Bus System 951
855

Configuration examples
856 33002204

Configuration examples
E.1 Quantum Example - Remote Control with RIO

Introduction

Overview This Chapter contains the step-by-step process for the configuration of remote
control with RIO (Remote I/O).

What's in this
Section?

This section contains the following topics:

Topic Page

Editing local drop 858

Editing Remote Drop 863
33002204 857

Configuration examples
Editing local drop

Introduction This section describes the configuration of the first (local) drop. The processing
sequence begins first of all with the definition of all drops.

When editing the first (local) drop the modules must be set with their I/O references
before the individual modules can be parameterized.

Quantum – remote controller with RIO

1 Local Quantum drop 1
2 RIO master module
3 RIO slave module
4 RIO drop 2

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

S908

A
V
O

4

I/O
C
R
P

858 33002204

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the Quantum PLC family and a CPU x113 xx. Using OK return to the
PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.

4 Select the Head Setup command button.
Response: The Head Setup dialog is opened.

5 Enter a 7 in RIO Slot and quit the dialog using OK.
Response: The CRP-93x-00 module is automatically inserted in the component
list (in slot 7) of the selected drop. In the Go To list box, the Local/RIO (Slot 7)
network link is displayed.

6 Select the last line in the table.
Select the Insert command button.
Response: The second drop is entered in the Type column.
Note: The number of drops to be inserted is defined in the segment scheduler
dialog. The default predetermines a maximum number of 32.
Dialog display

7 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for

Cancel HelpOK

Drop

1

Remote I/O...

Go To

Delete Expand

Copy Paste

Quantum I/O

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

2 Quantum I/O 3 0 0 Edit…

To insert at the end of the list, select this line

Cut

144

RIO (slot 4)

Time
33002204 859

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the CPS-214-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
860 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for the individual modules, proceed as follows in the Local
Quantum Drop dialog:

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPS-214-00 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

DC SUMMABLE PS 2

CPU-x13-0x 1-2 CPU 1xMB+

DDI-353-00 1000011-3 100032 DC IN 24V 4x8

DDO-353-00 0000321-4 000001 DC OUT 24V 4x8

AVI-030-00 300001 1-5 300009 AN IN 8CH BIPOLAR

AVO-020-00 1-6 400001 400004 AN OUT 4CH VOLT

CPR-93x-00 1-7 RIO Head S908

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

7

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

None

Step Action

1 From the Rack Slot column select the 1-3 line.
Response: The 1-3 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.
Note: Parameters are not set for the CPS-214-00 and CPU-x13-0x modules.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
33002204 861

Configuration examples
Editing Remote
Drop

Editing of the I/O st. (Drop) defined second takes place in the dialog RIO (Slot 7) -
quantum I/O-St. 2.

This dialog can be reached in two ways:
� In the I/O Map dialog, using the Edit.... command button, or

� in the Local Quantum Drop dialog, using the Next command button.
862 33002204

Configuration examples
Editing Remote Drop

Introduction This section describes the configuration of the second (remote) drop. The drop has
already been defined in Editing the First (local) Drop (see Editing local drop, p. 858).

To edit the second (remote) drop, the modules must be specified with their I/O
references before parameters for the individual modules can be set.

Quantum – remote controller with RIO

1 Local Quantum drop 1
2 RIO master module
3 RIO slave module
4 RIO drop 2

Mapping
Modules and
Specifying I/O
References

To allocate the modules and specify the address ranges use the dialog RIO (slot 7)
- quantum I/O-St. 2 and proceed as follows:

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

S908

A
V
O

4

I/O
C
R
P

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column select the CRA-93x-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see dialog representation
RIO (Slot 7) Quantum Drop 2).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
33002204 863

Configuration examples
Set module
parameters

To set parameters for individual modules use the dialog RIO (slot 7) - Quantum
I/O-St. 2 and proceed as follows:

Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Step Action

1 From the Rack Slot column select the 1-2 line.
Response: The 1-2 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.

Input bits:

RIO (slot 7) - Quantum Drop 2

Drop

Cancel HelpOK

Module Detected In Ref

CRA-93x-00 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

RIO DROP S908

DDI-353-00 100033 1-2 100064 DC IN 24V 4x8

DDO-353-00 1-3 000033 DC OUT 24V 4x8

AVI-030-00 300033 1-4 300041 AN IN 8CH BIPOLAR

AVO-020-00 1-5 400033 400036 AN OUT 4CH VOLT

... 1-6

... 1-7

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

5

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

000064

None
864 33002204

Configuration examples
E.2 Quantum Example - Remote control with RIO
(series 800)

Introduction

Overview This Chapter contains the step-by-step process for the configuration of remote
control with RIO (Remote I/O) and series 800 modules.

What's in this
Section?

This section contains the following topics:

Topic Page

Editing Local Drop 866

Editing Remote Drop 871

Editing Remote Drop 875
33002204 865

Configuration examples
Editing Local Drop

Introduction This section describes the configuration of the first (local) drop. The processing
sequence begins first of all with the definition of all drops.

When editing the first (local) drop the modules must be set with their I/O references
before parameters can be set forindividual modules.

Quantum – remote controller with RIO (Series 800)

1 Local Quantum drop 1
2 RIO master module
3 RIO slave module
4 RIO drop 2
5 Adapter module
6 RIO drop 3 with series 800 modules

Defining Drops To define drops proceed as follows in the PLC Configuration window:

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

S908

A
V
O

4

I/O
C
R
P

J
8
9

I/O

0

B
8
1
0

B
8
0
4

5 6

S908

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the Quantum PLC family and a CPU x113 xx. Using OK return to the
PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.

4 Select the Head Setup command button.
Response: The Head Setup dialog is opened.

5 Enter a 7 in RIO Slot and quit the dialog using OK.
Response: The CRP-93x-00 module is automatically inserted in the I/O map (in
slot 7) of the selected drop. In the Go To list box, the Local/RIO (Slot 7) network
link is displayed.
866 33002204

Configuration examples
6 Select the last free row in the table, and insert the second drop with the
command button Insert.
Response: The second drop is entered in the Type column of the table.
Note: The number of drops to be inserted is defined in the segment scheduler
dialog. The default predetermines the maximum number of 32, so that settings
are not necessary.

7 Select the last free row in the table again, and insert the third drop with the Insert
command button.
Response: The second drop is entered in the Type column of the table.

8 Select the third drop and open the list box in the Type column.
Select the 800 I/O option.
Dialog display

9 Select the first drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

Step Action

I/O Map

Reserve for expansion:

Cancel HelpOK

144

Drop

1

Remote I/O...

Go To

Delete Expand

Copy Paste

Quantum I/O

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

2 Quantum I/O 3 0 0 Edit…

3 800 I/O 3 0 0 Edit…

To insert at the end of the list, select this line

Cut Local/ RIO (slot 7)

Time
33002204 867

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the CPS-214-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
868 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for the individual modules, proceed as follows in the Local
Quantum Drop dialog:

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPS-214-00 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

DC SUMMABLE PS 2

CPU-x13-0x 1-2 CPU 1xMB+

DDI-353-00 1000011-3 100032 DC IN 24V 4x8

DDO-353-00 0000321-4 000001 DC OUT 24V 4x8

AVI-030-00 300001 1-5 300009 AN IN 8CH BIPOLAR

AVO-020-00 1-6 400001 400004 AN OUT 4CH VOLT

CPR-93x-00 1-7 RIO Head S908

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

7

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

None

Step Action

1 From the Rack Slot column select the 1-3 line.
Response: The 1-3 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.
Note: Parameters are not set for the CPS-214-00 and CPU-x13-0x modules.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
33002204 869

Configuration examples
Editing Remote
Drop

Editing of the I/O st. (Drop) defined second takes place in the dialog RIO (Slot 7) -
quantum I/O-St. 2.

This dialog can be reached in two ways:
� In the I/O Map dialog, using the Edit.... command button, or

� in the Local Quantum Drop dialog, using the Next command button.
870 33002204

Configuration examples
Editing Remote Drop

Introduction This section describes the configuration of the second (remote) drop. The drop has
already been defined in Editing the First (local) Drop (see Editing Local Drop,
p. 866).

To edit the second (remote) drop, the modules must be specified with their I/O
references before parameters for the individual modules can be set.

Quantum – remote controller with RIO (Series 800)

1 Local Quantum drop 1
2 RIO master module
3 RIO slave module
4 RIO drop 2
5 Adapter module
6 RIO drop 3 with series 800 modules

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

S908

A
V
O

4

I/O
C
R
P

J
8
9

I/O

0

B
8
1
0

B
8
0
4

5 6

S908
33002204 871

Configuration examples
Mapping
Modules and
Specifying I/O
References

To allocate the modules and specify the address ranges use the dialog RIO (slot 7)
- quantum I/O-St. 2 and proceed as follows:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column select the CRA-93x-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see dialog representation
RIO (Slot 7) Quantum Drop 2).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
872 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for individual modules use the dialog RIO (slot 7) - Quantum
I/O-St. 2 and proceed as follows:

Input bits:

RIO (slot 7) - Quantum Drop 2

Drop

Cancel HelpOK

Module Detected In Ref

CRA-93x-00 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

RIO DROP S908

DDI-353-00 100033 1-2 100064 DC IN 24V 4x8

DDO-353-00 1-3 000033 DC OUT 24V 4x8

AVI-030-00 300033 1-4 300041 AN IN 8CH BIPOLAR

AVO-020-00 1-5 400033 400036 AN OUT 4CH VOLT

... 1-6

... 1-7

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

5

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

000064

None

Step Action

1 From the Rack Slot column select the 1-2 line.
Response: The 1-2 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
33002204 873

Configuration examples
Editing Remote
800 Drops

The third defined drop is edited in the RIO (Slot 7) - 800 Drop 3 dialog.

This dialog can be reached in two ways:
� In the I/O Map dialog, using the Edit.... command button, or

� in the RIO (Slot 7) - Quantum Drop 2 dialog using the Next command button.
874 33002204

Configuration examples
Editing Remote Drop

Introduction This Section describes the configuration of the third (remote) drop. The drop has
already been defined in Editing the First (local) Drop (see Editing Local Drop,
p. 866).

To edit the third (remote) drop, the modules must be specified with their I/O
references before the individual modules can be parameterized.

Quantum – remote controller with RIO (Series 800)

1 Local Quantum drop 1
2 RIO master module
3 RIO slave module
4 RIO drop 2
5 Adapter module
6 RIO drop 3 with series 800 modules

Note: The J890 adapter module must be mounted in the rack of the third drop.
However, this module is not visible either in the software or in the dialogs.

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

S908

A
V
O

4

I/O
C
R
P

J
8
9

I/O

0

B
8
1
0

B
8
0
4

5 6

S908
33002204 875

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges go to the RIO (slot 7) - 800
drop 3 dialog and proceed as follows:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column select the B810 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see dialog representation
RIO (slot 7) 800 drop 3).

5 In the Out Ref. column, enter the start references for the output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference of the available address range (Out End column)
is entered automatically.
876 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for individual modules go to the RIO (slot 7) - 800 drop 3 dialog
and proceed as follows:

Input bits:

RIO (slot 7) - 800 drop 3

Drop

Cancel HelpOK

Module Detected In Ref

B810 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

000065

Out End Description

8-OUT ISO

B804 1-2 400065 16-OUT

... 1-3

... 1-4

... 1-5

... 1-6

... 1-7

... 1-8

... 1-9

... 1-10

... 1-11

... 2-1

... 2-2

... 2-3

Poll

2

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

0
24

000072

400065

None

Step Action

1 From the Rack Slot column select the 1-1 line.
Response: The 1-1 text box has a dark background, i.e. the B810 module has
been selected for editing.

2 Select the Params command button.
Response: The B810 dialog is opened.

3 Select the option button Discrete
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
33002204 877

Configuration examples
E.3 Quantum Example - Remote Control with DIO

Introduction

Overview This Chapter contains the step-by-step process for the configuration of remote
control with DIO (Distributed I/O).

What's in this
Section?

This section contains the following topics:

Topic Page

Editing Local Drop 879

Editing Local Drop 883
878 33002204

Configuration examples
Editing Local Drop

Introduction This section describes the configuration of the first (local) drop. The processing
sequence begins first of all with the definition of the drop.

When editing the first (local) drop the modules must be set with their I/O references
before parameters can be set forindividual modules.

Quantum – remote controller with DIO

1 Local Quantum drop 1
2 DIO master module
3 DIO slave module
4 DIO drop 2

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

N
O
M

MB+

A
V
O

4

I/O
33002204 879

Configuration examples
Defining the
Drop

To define the drop use Configure from the main menu and proceed as follows:

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the Quantum PLC family and a CPU x113 xx. Using OK return to the
PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.

4 Select the Head Setup command button.
Response: The Head Setup dialog is opened.

5 Enter a 7 in NOM Slot 1 and quit the dialog using OK.
Response: The NOM module NOM-2xx-00 is automatically inserted in the I/O
map (in slot 7) of the selected drop. In the Go to list box, the network link Local/
RIO (Slot ?) is displayed.
Dialog display

6 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for

Cancel HelpOK

144

Drop

1

Remote I/O...

Go To Local/RIO (slot ?)

Delete Expand

Copy Paste

Quantum I/O

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

To insert at the end of the list, select this line

Cut

Time
880 33002204

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the CPS-214-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
33002204 881

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for the individual modules, proceed as follows in the Local
Quantum Drop dialog:

Editing Remote
Drop

To edit the remote drop with DIO, you must return to the I/O Map dialog and define
the drop.

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPS-214-00 1-1

Delete

Modules:

Module

4272

Copy

Params

Rack-Slot In End

Out Ref

Out End Description

DC SUMMABLE PS 2

CPU-x13-0x 1-2 CPU 1xMB+

DDI-353-00 1000011-3 DC IN 24V 4x8

DDO-353-00 1-4 000001 000032 DC OUT 24V 4x8

AVI-030-00 300001 1-5 300009 AN IN 8CH BIPOLAR

AVO-020-00 1-6 400001 400004 AN OUT 4CH VOLT

NOM-2xx-00 1-7 MN1 MB+

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

7

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

100032

None

Step Action

1 From the Rack Slot column select the 1-3 line.
Response: The 1-3 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.
Note: Parameters are not set for the CPS-214-00 and CPU-x13-0x modules.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
882 33002204

Configuration examples
Editing Local Drop

Introduction This section describes the configuration of the second (remote) drop. The
processing sequence begins first of all with the definition of the drop.

To edit the second (remote) drop, the modules must be specified with their I/O
references before parameters for the individual modules can be set.

Quantum – remote controller with DIO

1 Local Quantum drop 1
2 DIO master module
3 DIO slave module
4 DIO drop 2

Note: To link to the remote network, the coupling module CRA-21x-x0 must be
entered during module mapping.

C
P
S

C
P
U

D
D
I

D
D
O

C
R
A

D
D
I

D
D
O

A
V
I

1 32

A
V
I

A
V
O

N
O
M

MB+

A
V
O

4

I/O
33002204 883

Configuration examples
Defining the
Drop

To define the drop go to the I/O map dialog and proceed as follows:

Step Action

1 From the Go to list box, select the DIO 1 (Slot 7) network link.
Response: The drop entered in the table is no longer displayed.

2 Select the Insert command button.
Response: In the Type column, the Read/Write type is entered.
Dialog display

3 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for

Cancel HelpOK

144

Drop

1

Remote I/O...

Go To

Delete Expand

Copy Paste

Read/Write

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

To insert at the end of the list, select this line

Cut DIO1 (slot ?)

Time
884 33002204

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges use the DIO 1 (slot 7) -
drop 1 dialog and proceed as follows:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column select the CRA-21x-x0 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see dialog representation
DIO (slot 7) Quantum drop 1).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
33002204 885

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for individual modules use the DIO 1 (slot 7) - Drop 1 dialog and
proceed as follows:

Input bits:

RIO (slot 7) - Quantum Drop 2

Drop

Cancel HelpOK

Module Detected In Ref

CRA-21x-x0 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

DIO DROP MB+

DDI-353-00 100033 1-2 100064 DC IN 24V 4x8

DDO-353-00 1-3 000033 DC OUT 24V 4x8

AVI-030-00 300033 1-4 300041 AN IN 8CH BIPOLAR

AVO-020-00 1-5 400033 400036 AN OUT 4CH VOLT

... 1-6

... 1-7

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

5

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

000064

None

Step Action

1 From the Rack Slot column select the 1-2 line.
Response: The 1-2 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
886 33002204

Configuration examples
E.4 Quantum Example – INTERBUS Control

Introduction

Overview This Chapter contains the step-by-step process for the configuration of INTERBUS
control with the Quantum.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information 888

Editing Local Drop 889
33002204 887

Configuration examples
General Information

Introduction INTERBUS control using Quantum occurs via module NOA-611-10. During this
process the module collects the words of all remote bus nodes and creates a
telegram with status information and I/O words. The telegram is then transferred to
the CPU, so that the NOA behaves like an I/O module.

Parameterization Command sequence parameterization (restart procedure) occurs in the CMD Tool,
produced by the PHÖNIX firm (see also " NOA 611 1 restart procedure" with an
example for parameterizing the command sequence in CMD Tool).

Note: Using branch interfaces in the remote bus, remote bus branches with further
remote bus nodes (TIOs) can be constructed. However, the branch interfaces can
only be inserted in the remote bus, not in the remote bus branch.
888 33002204

Configuration examples
Editing Local Drop

Introduction This section describes the configuration of the first (local) drop. The processing
sequence begins first of all with the definition of the drop.

When editing the first (local) drop the modules must be set with their I/O references
before parameters can be set for individual modules.

Quantum - INTERBUS controller

1 Local Quantum Drop
2 INTERBUS master module
3 Remote bus without branch interface

Note: When the NOA-611-00 module is entered in the I/O map, the loadable ULEX
is automatically installed.

Note: The configuration of remote bus nodes does not take place in Concept and
is therefore not apparent in the I/O map. To edit the remote bus nodes, you must
use the CMD tool produced by the PHÖNIX firm (Configuration Monitoring and
Diagnostic Software).

C
P
S

C
P
U

D
D
I

D
D
O

1

3

2

A
V
I

A
V
O

N
O
A

TIO 1

TIO 2

 TIO
33002204 889

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the Quantum PLC family and a CPU x113 xx. Use OK return to the PLC
Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.
Dialog display

4 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for

Cancel HelpOK

144

Drop

1

Remote I/O...

Go To

Delete Expand

Copy Paste

Quantum I/O

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

To insert at the end of the list, select this line

Cut Local/RIO (slot ?)

Time
890 33002204

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the CPS-214-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
33002204 891

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for the individual modules, proceed as follows in the Local
Quantum Drop dialog:

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPS-214-00 1-1

Delete

Modules:

Module

4272

Copy

Params

Rack-Slot In End

Out Ref

Out End Description

DC SUMMABLE PS 2

CPU-x13-0x 1-2 CPU 1xMB+

DDI-353-00 1000011-3 DC IN 24V 4x8

DDO-353-00 1-4 000001 000032 DC OUT 24V 4x8

AVI-030-00 300001 1-5 300009 AN IN 8CH BIPOLAR

AVO-020-00 1-6 400001 400004 AN OUT 4CH VOLT

NOA-611-00 3000101-7 300276 400005 400268 IBS-Head (Mode2)

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

7

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

100032

None

Step Action

1 From the Rack Slot column select the 1-3 line.
Response: The 1-3 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.
Note: Parameters are not set for the CPS-214-00 and CPU-x13-0x modules.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
892 33002204

Configuration examples
E.5 Quantum Example - SY/MAX Controller

Introduction

Overview This Chapter contains the step-by-step process for the configuration of a SY/MAX
controller.

What's in this
Section?

This section contains the following topics:

Topic Page

Editing Local Drop 894

Editing Remote Drop 899
33002204 893

Configuration examples
Editing Local Drop

Introduction This section describes the configuration of the first (local) drop. The processing
sequence begins first of all with the definition of all drops.

When editing the first (local) drop the modules must be set with their I/O references
before parameters can be set forindividual modules.

Quantum – SY/MAX controller

1 Local Quantum drop 1
2 RIO master module
3 SY/MAX drop 2

C
P
S

C
P
U

D
D
I

D
D
O

C
R
M

R
I
M

R
O
M

S
I
M

1 32

A
V
I

A
V
O

C
R
P

894 33002204

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the Quantum PLC family and a CPU x113 xx. Using OK return to the
PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.

4 Select the Head Setup command button.
Response: The Head Setup dialog is opened.

5 Enter a 7 in RIO Slot and quit the dialog using OK.
Response: The CRP-93x-00 module is automatically inserted in the I/O map (in
slot 7) of the selected drop. In the Go To list box, the Local/RIO (Slot 7) network
link is displayed.

6 Select the last line in the table.
Select the Insert command button.
Response: The second drop is entered in the Type column.
Note: The number of drops to be inserted is defined in the segment scheduler
dialog. The default defines a maximum number of 32.

7 Select the second drop and in the Type column, open the list box.
Select the SY/MAXoption.
Dialog display

8 Select the first drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for expansion:

Cancel HelpOK

144

Drop

1

Remote I/O...

Go To

Delete Expand

Copy Paste

Quantum I/O

Type Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

2 SY/MAX 3 0 0 Edit…

To insert at the end of the list, select this line

Cut Local/RIO (slot 7)

Time
33002204 895

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the CPS-214-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
896 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for the individual modules, proceed as follows in the Local
Quantum Drop dialog:

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPS-214-00 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

DC SUMMABLE PS 2

CPU-x13-0x 1-2 CPU 1xMB+

DDI-353-00 1000011-3 100032 DC IN 24V 4x8

DDO-353-00 0000321-4 000001 DC OUT 24V 4x8

AVI-030-00 300001 1-5 300009 AN IN 8CH BIPOLAR

AVO-020-00 1-6 400001 400004 AN OUT 4CH VOLT

CPR-93x-00 1-7 RIO Head S908

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

7

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

None

Step Action

1 From the Rack Slot column select the 1-3 line.
Response: The 1-3 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.
Note: Parameters are not set for the CPS-214-00 and CPU-x13-0x modules.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
33002204 897

Configuration examples
Editing Remote
Drop

Editing the drop defined second takes place in the dialog RIO (slot 7) – SY/MAX
I/O-St. 2.

This dialog can be reached in two ways:
� In the I/O Map dialog, using the Edit.... command button, or

� in the Local Quantum Drop dialog, using the Next command button.
898 33002204

Configuration examples
Editing Remote Drop

Introduction This section describes the configuration of the second (remote) drop. The drop has
already been defined in Editing the First (local) Drop (see Editing Local Drop,
p. 894).

To edit the second (remote) drop, the modules must be specified with their I/O
references before parameters for the individual modules can be set.

Quantum – SY/MAX controller

1 Local Quantum drop 1
2 RIO master module
3 SY/MAX drop 2

Note: To link to the remote network, the coupling module CRM-931-RG must be
entered during module mapping.

C
P
S

C
P
U

D
D
I

D
D
O

C
R
M

R
I
M

R
O
M

S
I
M

1 32

A
V
I

A
V
O

C
R
P

33002204 899

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the RIO
(slot 7) – SY/MAX I/O-St. 2 dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column select the CRM-931-RG module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see dialog representation
RIO (Slot 7) SY/MAX drop 2).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
900 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To parameter the individual modules use the dialog RIO (slot 7) – SY/MAX I/O-
St. 2 and proceed as follows:

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CRM-931-RG 1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End Description

REG RMT IF

RIM-101/361 100033 2 100048 16 IN AC/DC

ROM-121 3 400005 4 OUT ANLG

SIM-116 100049 4 100064 16 IN SIM

... 5

... 6

... 7

... 8

... 9

... 10

... 11

... 12

... 13

... 14

Poll

4

Previous Next

ASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

32
64

400008

None

Step Action

1 In the Slot column, select line 2.
Response: The 2 text box has a dark background, i.e. the RIM-101/361 module
has been selected for editing.

2 Select the Params command button.
Response: The 8030-RIM-101/361 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes set with different parameters. Help with this
can be obtained from the corresponding help texts in the parameter dialog.
33002204 901

Configuration examples
E.6 Quantum Example - Profibus DP Controller

Introduction

Overview This Chapter contains the step-by-step process for the configuration of a Profibus
DP controller with the Quantum.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information 903

Profibus DP Export Settings in SyCon 904

Editing Local Drop 906

Importing Profibus DP Configuration 911
902 33002204

Configuration examples
General Information

Introduction Configuring Profibus DP is done using the SyCon (System Configurator) software
produced by Hilscher GmbH. It is initially stored there as a file (*.CNF). This
generated file is loaded into Concept and is visible in the I/O map of the configurator.

Before the Profibus DP nodes (max. 32) can be imported, a bus controller (CRP 811
00) must be mapped in the drop (Quantum I/O). Depending on the CPU selection in
the Select Extensions dialog box, a maximum of two to six bus controllers can be
inserted.
33002204 903

Configuration examples
Profibus DP Export Settings in SyCon

Introduction SyCon is used to configure Profibus DP. The procedure for this is to be found in the
user manual provided by the manufacturer. The settings for the export of the *.CNF
file are explained in the following step-by-step instructions.

Preconditions For CRP-811-00 diagnostics the serial interface of the host computer and the
diagnostic interface of the bus controller must be linked with a V24 cable.

To display this diagnostic data, terminal emulation software must be started (e.g.
PROCOMM using the settings: 19.2 kBd, 8 data bits, 1 stop bit, no parity).

Defining the
Destination
Directory

Firstly, specify the destination directory in which all files are to be saved:

Generating an
Export File

To generate an export file (*.CNF) proceed as follows:

Step Action

1 Select in the main menu Settings → Search Path....
Response: The Search Path dialog is opened and is pre-set with the SyCon
directory path as the project directory (e.g. C:\HILSCHER
GMBH\SYCON\FIELDBUS\PROFIBUS).

2 Enter the path of the Concept directory (e.g. C:\CONCEPT\PROFIBUS) in the
Project Directory text box.
Note: You can also accept the default.
Response: Execution of the Save and Export menu commands (in the File
main menu) saves all files in the entered Concept directory.

Step Action

1 Select in the main menu File → Save → *.PB.
Response: The configuration is stored as a database file *.PB in the specified
directory.

2 Select in the main menu File → Export → ASCII.
Response: The configuration is stored as an ASCII file *.CNF in the specified
directory.

3 Exit SyCon and start Concept.
904 33002204

Configuration examples
Note about
Saving

The configuration must always be saved as a database file *.PB first, only then can
an ASCII file be generated from the saved *.PB file. Every change must therefore
also be saved as a *.PB file first, before an ASCII file can be generated for export.

The files *.PB and *.CNF should always be saved in the same project directory.

Profibus DP
Configuration in
Concept

After the Profibus DP nodes have been configured in SyCon, the Profibus DP
configuration is imported into the Concept I/O map.

An example of configuration and import is described in the chapter "Editing a Local
Drop (see Editing Local Drop, p. 906)".
33002204 905

Configuration examples
Editing Local Drop

Introduction This section describes the configuration of the first (local) drop.

For Profibus DP configuration the CRP-811-00 coupling module must be registered
in the I/O map. The configuration defined in SyCon is loaded into Concept as the
generated *.CNF file is imported into the parameter dialog of the CRP-811-00
coupling module.

When editing the first (local) drop the modules must be set with their I/O references
before the individual modules can be parameterized.

Quantum – Profibus DP controller

1 Device data base for CRP-811-00 (load onto SyCon)
2 Host computer for Concept and SyCon
3 V24 cable
4 Local Quantum drop 1
5 RIO master module
6 Profibus DP configuration (External modules)

Note: For an error free transfer of the Profibus DP configuration, it should be
ensured that sufficient memory is available. To optimize storage occupancy open
the dialog PLC Memory Partition (PLC Configuration → PLC Memory
Partition).

2

MB+
C
P
S

C
P
U

D
D
I

D
D
O

A
V
I

A
V
O

C
R
P

PROFIBUS

4 53 61
906 33002204

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Step Action

1 Select PLC Selection.
Response: The PLC Selection dialog is opened.

2 Select the Quantum PLC family and a CPU x113 xx. Using OK return to the
PLC Configuration window.

3 Select Config. Extensions → Select Extensions list.
Response: The Select Extensions dialog is opened.

4 In the Profibus DP list box select the 1 option.
Response: The coupling module then appears in the I/O Module Selection
dialog and can be used in the I/O map.

5 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.
Dialog Representation

6 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for

Cancel HelpOK

144

Drop

1

Head setup...

Go To Local/RIO (slot ?)

Delete Expand

Copy Insert

Quantum I/O

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

To insert at the end of the list, select this line

Cut

Time
33002204 907

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the CPS-214-00 module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference of the available address range (In End or Out
End column) is entered automatically.
908 33002204

Configuration examples
Dialog
Representation

Following module mapping and I/O reference specification, the dialog looks like this:

Parameter-
ization of
Modules

To parameterize the individual modules, proceed as follows in the Local Quantum
Drop dialog:

Input bits:

Local Quantum Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPS-214-00 1-1

Delete

Modules:

Module

0

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

DC SUMMABLE PS 2

CPU-x13-0x 1-2 CPU 1xMB+

DDI-353-00 1000011-3 100032 DC IN 24V 4x8

DDO-353-00 0000321-4 000001 DC OUT 24V 4x8

AVI-030-00 300001 1-5 300009 AN IN 8CH BIPOLAR

AVO-020-00 1-6 400001 400004 AN OUT 4CH VOLT

CRP -811 -00 1-7 PROFIBUS DP

... 1-8

... 1-9

... 1-10

... 1-11

... 1-12

... 1-13

... 1-14

Poll

7

Previous Next

NoneASCII Port No.:

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

176
96

Step Action

1 From the Rack Slot column, select line 1-3.
Response: The 1-3 text box has a dark background, i.e. the DDI-353-00 module
has been selected for editing.
Note: The CPS-214-00 and CPU-x13-0x modules are not parameterized.

2 Select the Params command button.
Response: The 140-DDI-353-00 dialog is opened.

3 Select the Discrete option button.
Response: You return to the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example.
Note: The modules are sometimes parameterized differently. Help with this can
be obtained from the corresponding help texts in the parameter dialog.
33002204 909

Configuration examples
Importing a
Profibus DP
Configuration

Importing configured Profibus DP nodes occurs in the parameter dialog of the
CRP-811-00 coupling module. This dialog opens when you select the CRP-811-00
row from the I/O map and press the Params command button.
910 33002204

Configuration examples
Importing Profibus DP Configuration

Introduction This section describes the import of the Profibus DP configuration. After that, further
parameter settings for the master take place and the I/O map can be established.

Downloading a
Profibus DP
Configuration to
Concept

To import, proceed as follows:

Step Action

1 Select the Import... command button.
Response: The Select Import File standard window is opened.

2 Enter the path of the previously generated *.CNF file and exit the dialog with OK.
Response: The transfer of the *.CNF file is displayed in the Import Status
dialog.

3 Close the dialog after the transfer (100%).
Response: The imported configuration is displayed in the CRP-811-00
(Profibus DP) dialog.
33002204 911

Configuration examples
Dialog
Representation

Following the import of the configuration, the dialog looks like this (view scrolled all
the way to the left):

Cut

CRP-811-00 (Profibus DP)

Master

Cancel HelpOK

Delete

Bus address: Slot: 7 Delete

Copy

Parameters...

Paste

Poll

1

Module In Ref

170 DNT 110 10 11

Bus-Adr.

 100081

170 BDM 344 00/01 10016112

170 DNT 110 10 13

 100177

170 DNT 110 10 14

 100193

170 DNT 110 10 15

 100209

170 DNT 110 10 16

 100465

Module

1

1

1

1

1

In Type Out Type

Import... Presettings

Out Ref

000081

000161

000177

000193

Out End

000160

000176

000192

000448

In End

100160

100176

100192

100208

100464

100480

Parameters...

Slave

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL
912 33002204

Configuration examples
Following the import of the configuration, the dialog looks like this (view scrolled all
the way to the right):

Note: In the Slave range, the Parameter... command button is used for displaying
slave parameters. The slave modules are, however, parameterized in SyCon (see
SyCon software user manual).

CRP-811-00 (Profibus DP)

Cancel HelpOK Poll

Out TypeEnd Out Ref

000081

000161

000177

000193

Out End

000160

000176

000192

000448

Diag Diag

6

6

6

6

6

6

Diag Ref Diag End

160

176

192

208

464

480

Cut

Master

Delete

Bus address: Slot: 7 Delete

Copy

Parameters...

Paste

1

Import... Presettings

Description

170 AMM 090 00 4AI+2AO 4 DI

170 ADI 740 50 16DI 230V AC

170 ARM 370 30 10DI+8DO 12

170 ADM 540 80 Modbus Gate

170 ADI 340 00 16DI 24 V DC

Parameters...

Slave

UINT8

BOOL

BOOL

BOOL

BOOL

UINT8

UINT8

UINT8

UINT8

UINT8

300043

300037

300031

300025

300019

300013

300048

300042

300036

300030

300024

300018

LengthType
33002204 913

Configuration examples
Parameterizing
the Master

To parameterize the master, proceed as follows:

Step Action

1 In the Master range, select the Parameters... command button.
Response: The DP Master Parameters dialog is opened.
Dialog Representation

2 Accept the defaults, as shown in the figure above, or redefine them.

3 Close the dialog using OK.
Response: You return to the CRP-811-00 (Profibus DP) dialog.

Cancel HelpOK

DP-Master-Parameter

1Bus-Address

12 MBaudBaudrate

100Max. Diag. inputs

32Max. Diag. lengths

467Live character 3x:
914 33002204

Configuration examples
Setting I/O
References

To set the I/O references proceed as follows:

Step Action

1 Select the command button Preset.
The Preset dialog is opened.
Dialog Representation

2 Accept the defaults, as shown in the figure above, or redefine them.

3 Close the dialog using OK.
Response: You return to the CRP-811-00 (Profibus DP) dialog, in which the
defined reference ranges have automatically been entered.

Cancel HelpOK

Presetting

Input Refs

1x 1

3x 1

I/O assignment
Output Refs

0x 1

4x 1

Diag Ref

3x 1
33002204 915

Configuration examples
Dialog
Representation

After the I/O references have been set the dialog looks like this (view scrolled all the
way to the left):

Cut

CRP-811-00 (Profibus DP)

Master

Cancel HelpOK

Delete

Bus address: Slot: 7 Delete

Copy

Parameters...

Paste

Poll

1

Module In Ref

170 DNT 110 10 11

Bus-Adr.

 100081

170 BDM 344 00/01 10016112

170 DNT 110 10 13

 100177

170 DNT 110 10 14

 100193

170 DNT 110 10 15

 100209

170 DNT 110 10 16

 100465

Module

1

1

1

1

1

In Type Out Type

Import... Presettings

Out Ref

000081

000161

000177

000193

Out End

000160

000176

000192

000448

In End

100160

100176

100192

100208

100464

100480

Parameters...

Slave

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL
916 33002204

Configuration examples
After the I/O references have been set the dialog looks like this (view scrolled all the
way to the right):

CRP-811-00 (Profibus DP)

Cancel HelpOK Poll

Out TypeEnd Out Ref

000081

000161

000177

000193

Out End

000160

000176

000192

000448

Diag Diag

6

6

6

6

6

6

Diag Ref Diag End

160

176

192

208

464

480

Cut

Master

Delete

Bus address: Slot: 7 Delete

Copy

Parameters...

Paste

1

Import... Presettings

Description

170 AMM 090 00 4AI+2AO 4 DI

170 ADI 740 50 16DI 230V AC

170 ARM 370 30 10DI+8DO 12

170 ADM 540 80 Modbus Gate

170 ADI 340 00 16DI 24 V DC

Parameters...

Slave

UINT8

BOOL

BOOL

BOOL

BOOL

UINT8

UINT8

UINT8

UINT8

UINT8

300043

300037

300031

300025

300019

300013

300048

300042

300036

300030

300024

300018

Type Length
33002204 917

Configuration examples
E.7 Quantum-Example - Peer Cop

At a glance

Introduction In this chapter the configuration of Peer Cop is described step by step.

What's in this
Section?

This section contains the following topics:

Topic Page

Generals to Peer Cop 919

Configuration of Peer Cop 921

Global data transfer 923

Specific data transfer 925
918 33002204

Configuration examples
Generals to Peer Cop

Introduction Peer Cop is a data exchange service provided by the Modbus Plus network. As an
overview, imagine that every Modbus Plus network segment (max. 64 nodes) has a
global memory, i.e. a certain number of global variables can be read by every node
connected to the same segment. The total amount of global variables depends on
the number. of connected (and active) nodes, every node can provide up to 32
words (16 bit) to the global memory. Only the 32 words provided by a node can be
written by the same node, all other nodes have read only access to these variables.
So by definition, there is a maximum of 64 * 32 words of global memory available to
a Modbus Plus network segment. Nodes connected to different (through bridges or
gateways) segment cannot share global memory.

When a PLC provides 32 words of global memory it does so by assigning holding
registers for broadcast, and when the PLC wants to read global variables provided
by another Peer Cop node, assigning holding registers to receive them. These
registers are called Global Input (from other nodes) and Global Output (what this
node provides) get updated cyclically (in case of a PLC after every scan).

To pass Routing
Paths

Actually every Modbus Plus node has its own communication processor (the so
called Peer processor), in addition to the processor that controls the node specific
work (in case of a PLC: solving user logic).

This leads to some routing paths the global data has to pass to traverse from one
node to the other:
� From the data provider (e.g. user logic) to the local (most times embedded peer

processor).
� From the local peer processor to the other peer processors (this takes the token

cycle time of the Modbus Plus network segment, that depends directly on the
number of connected nodes).

� From the peer processor of the data receiver to the data receiver itself, (that is
usually the user logic in the receiver PLC).

The actual update time depends on the speed of the Modbus Plus network segment
and (that’s the big time consumer) the scan times of the data provider and the data
receiver.
33002204 919

Configuration examples
Send directly But the sharing of global memory is just the first part of the full Peer Cop service.
Since the gobal memory architecture requires a setup (or configuration) for both
communication partners, there is another subservice to communicate directly with
rather than Configure nodes. This service is somewhat like a master to slave
communication, where the master knows what data to send and the slave expects
data in a fixed layout and uses this data in a fixed manner (like Terminal I/O). The
limit of data that can be sent from the master to the slave is also 32 words. This
mode is not global data, since it is sent from one node directly and explicitly to one
other node. The sender specifies this as specific output and the receiver as specific
input (this specification is hardwired on nonintelligent modules like Terminal I/O).
The specific output and input words are also assigned to holding registers when a
PLC makes use of this Peer Cop service.

Since both, global and specific data transfer, depend on scan time of the PLC’s
which provide and use this data in their logic, there is no big performance difference
with the transfer from one holding register to the other registers.
920 33002204

Configuration examples
Configuration of Peer Cop

Define Peer Cop
functionality

Before configure a Peer Cop you must activate the check box Peer Cop in the dialog
box Select Extensions.

Note: Since every PLC can be connected to up to 3 different Modbus Plus network
segments, you can setup Peer Cop for every connection separately (remember
Peer Cop is reduced to one segment, it doesn’t work through bridges).
33002204 921

Configuration examples
Peer Cop
settings

To configure a Peer Cop, proceed with the following steps:

Step Action

1 In the window PLC Configuration with the menu command Config. Extensions
→ Peer Cop open the dialog box Peer Cop.

2 Assume the default value 100 in the text field Expansion Size:.
Note: This text field is just a space of memory (in words) that gets reserved for
future changes (in offline mode) that shall not cause the necessity for a complete
download (this is especially importent for direct application setup at a plant).

3 Select the option button Link 0 (CPU) in the area Go To.

4 Assume the default value 500 in the text field Health timeout (msec.):.
Note: The Health timeout value has the same meaning as it has in the I/O map
for local and remote I/O.

5 Select the option button Hold on timeout in the area Last value.
Representation of the dialog:

Peer Cop

Cancel HelpOK

Expansion Size: 100

Last value

Hold on timeout

Clear on timeout

Global

Input...

Output...

Specific

Input...

Output...

Go To

Link 1 [Head Slot ?]

Link 0 [CPU]

Health timeout [msec.]: 500

Link 2 [Head Slot ?]

0

0

922 33002204

Configuration examples
Global data transfer

Global Input For Global Input proceed as follows:

Step Action

1 For global data transfer open the dialog box Gobal Input by clicking the
command button Input... in the area Global.

2 Select node 10 in the list box of the left side of the dialog box.

3 Enter the Destination register, the index, the length and the Bin/BCD Code in the
text field of the dialog box, as shown in the figure.
Representation of the dialog box:

Result: The holding register 400040 gets the first word of global output data of
node 10, therefore this is global input data for this PLC. If the length value is
higher, lets say 2, register 400041 would get the second word of global output
data of node 10. The index value declares with what word the assignment shall
start, in this case with the first word. The BIN/BCD column gives you the choice
of getting the global data formatted either into the usual binary format or into
binary coded decimals.
The index value may not be higher than 32, since every node can provide a
maximum of 32 word only for global output data. The lenght value may also not
be higher than 32 for the same reason.

4 Close the dialog box Global Input with the command button OK.

Global Input

(1-64)

7
8
9
10*
11
12

14
15
16

Clear Subfields

Cancel HelpOK

Range:

Subfield

1

2

3

4

5

6

7

8

400001-401872

400040

1-32

Index

1

Length

1

1-32

Bin/BCD

BIN

13

Dest. Ref.
33002204 923

Configuration examples
Global Output For Global Output proceed as follows:

Step Action

1 Open the dialog box Gobal Output by clicking the command button Output... in
the area Global.

2 Enter the Source register, the length and the Bin/BCD Code in the text field of
the dialog box, as shown in the figure.
Representation of the dialog box:

3 Close the dialog box Global Output with the command button OK.

Global Output

Cancel HelpOK

Range:

Dest. Node

All Nodes

300001-300512

300020

Length

10

1-32

Bin/BCD

BIN

Source Ref.
924 33002204

Configuration examples
Specific data transfer

Specific Input For Specific Input proceed as follows:

Step Action

1 For specific data transfer open the dialog box Specific Input by clicking the
command button Input... in the area Specific.

2 Enter the Destination register, the length and the Bin/BCD Code in the text field
of the dialog box, as shown in the figure.
Representation of the dialog box:

Result: If node 10 has declared some specific output, which gets delivered with
every token cycle on the Modbus Plus network segment (which is usually faster
than the updating by the controller’s user logic), that gets sent to holding register
400040. And if it is more than one word, it gets stored in the following holding
register, up to 400019 in this example. The formatting can also be either binary
or binary coded decimals.

3 Close the dialog box with the command button OK.

Specific Input

Cancel HelpOK

Range: 400001-401872 1-32

Source Dest. Ref. Length Bin/BCD

1

2

3

4

5

6

7

8

9

10 400040 20 BIN

11

12
33002204 925

Configuration examples
Specific Output For Specific Output proceed as follows:

Step Action

1 Open the dialog box Specific Output by clicking the command button Output...
in the area Specific.

2 Enter the Destination Reference register, the length and the Bin/BCD Code
option in the text field of the dialog box, as shown in the figure.
Representation of the dialog box:

Result: The values or registers 300030 to 300032 will be sent to node 20 (Target
Source) in binary format.

3 Close the dialog box with the command button OK.

Specific Output

Cancel HelpOK

Range: 300001-300512 1-32

Dest. Node Source Ref. Length Bin/BCD

13

14

15

16

17

18

19

20

21

22

300030 3 BIN

23

24
926 33002204

Configuration examples
E.8 Compact Example

Editing Local Drop

Introduction This section describes the configuration of the first (local) drop.

When editing the first (local) drop the modules must be set with their I/O references
before the individual modules can be parameterized.

Compact controller

Note: The communication module MVB258A is parameterized in the TCN tool
(Train Communication Network). A parameterization file (binary file) is generated
and imported into the Concept parameter dialog.

C
P
U

M
V
B

N
U
L

D
E
P

D
E
P

D
A
P

D
A
P

N
U
L

N
U
L

DTA200 DTA201

A
D
U

D
A
U

DTA202
33002204 927

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Step Action

1 Select PLC Selection.
Response: The PLC Selection dialog is opened.

2 Select the Compact PLC family and a PC-E984-258. Using OK return to the
PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.
Dialog Representation

4 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for

Cancel HelpOK

144

Drop

1

Head setup...

Go To Lokal/RIO

Delete Expand

Copy Paste

Compact I/O

Type
Supervision

3

In bits

0

Out bits

0

Status Edit

Edit…

Cut

Time
928 33002204

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
TSX Compact Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 In the Modules column, select the MVB258A module.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Dialog
Representation Local TSX Compact Drop).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference of the available address range (In End or Out
End column) is entered automatically.
33002204 929

Configuration examples
Dialog
Representation

Following module mapping and I/O reference specification, the dialog looks like this:

Input bits:

Local TSX Compact Drop

Drop

Cancel HelpOK

Module Detected In Ref

CPU 1-1

Delete

Modules:

Module

16

Copy

Params

Rack-Slot In End

Out Ref

Out End

Description

TSX COMPACT

CPU 1-2 TSX COMPACT

MVB258A 3000011-3 300001 400001 400001 MVB Controller w/RS232

... 1-4

... 1-5

DEP214/254 1000012-1 100016 DC 16-IN 12-60V

DEP2x6/2x7 1000172-2 100032 DC 16-IN

DAP210 2-3 000001 000008 AC 8-OUT 115/230V

DAP208/258 2-4 000009 000016 8-OUT 24..110VDC/24

... 2-5

ADU206/256 3000653-1 300069 Analog 4 In

DAU2x2 3-2 400002 400003 An Out 2 ch Volt or Cu

... 3-3

... 3-4

Poll

7

Previous Next

NoneASCII Port No.:

Cut Paste Delete

16Output bits:Input bits:
Output bits:
Status table:

128
64
930 33002204

Configuration examples
Parameter-
ization of
Modules

To parameterize the individual modules proceed as follows in the Local TSX
Compact Drop dialog:

Step Action

1 From the Rack Slot column, select line 1-3.
Response: The 1-3 text box has a dark background, i.e. the MVB258A module
has been selected for editing.
Note: The CPU module is not parameterized.

2 Select the Params command button.
Response: The AS-BMVB258A dialog is opened.

3 Select the Select command button.
Response: The Select MVB Import File dialog is opened.

4 Set the path of the parameterization file generated in the TCN tool, and exit the
dialog using OK.
Response: The selected parameterization file is displayed in the text box in the
AS-BMVB258A dialog.

5 Select the Do Import command button.
Response: The project data of the parameterization file is transferred to
Concept and displayed in the lower list box.
Dialog Representation

6 Exit the dialog using OK.

7 Repeat steps 1 to 2 for all the modules in the example.
Note: The modules are sometimes parameterized differently. Help with this can
be obtained from the corresponding help texts in the parameter dialog.

AS-BMVB258A

Cancel HelpOK

Select...

001:0000 0000 0000 0000 0000 0000 0000 0000

*.mv1

009:0000 0000 0000 0000 0000 0000 0000 0000
017:0000 0000 0000 0000 0000 0000 0000 0000
025:0000 0000 0000 0000 0000 0000 0000 0000

Start import

Project:

Version:

Generation Date:

Traffic Store:

SW Version:

Device address:

1

157

7

24/12/96

test examp.tool
33002204 931

Configuration examples
E.9 Atrium Example – INTERBUS Controller

Introduction

Overview This Chapter contains the step-by-step process for the configuration of an
INTERBUS controller with Atrium (PC based).

What's in this
Section?

This section contains the following topics:

Topic Page

General 933

INTERBUS export settings in CMD 934

Edit local I/O drop 935

Edit remote I/O drop (import INTERBUS configuration) 939
932 33002204

Configuration examples
General

Introduction The configuration of the INTERBUS is done using the PHOENIX software CMD. It
is initially stored as a file (*.SVC). This generated file is imported into Concept and
is visible in the I/O map of the Configurator.

Before the INTERBUS nodes are imported, set up the first drop (Atrium I/O) with the
CPU board (180-CCO-121-01, 180-CCO-241-01 and 180 CCO 241 11) and the
INTERBUS master (CRP-660-00/01). A maximum of two INTERBUS masters may
be inserted. The diagnostics of the field bus can take place with the CRP-660-0x
register in Concept.
33002204 933

Configuration examples
INTERBUS export settings in CMD

Introduction The CMD tool (Configuration Monitoring and Diagnostic tool) is used to configure the
INTERBUS. For information about this, refer to the corresponding chapter in the
PHOENIX user manual

Preconditions The serial interface of the host computer and the diagnostic interface of a PC104
board (RS232, to connect to the CMD tool) must be linked with a V24 cable.

Implementing
Export Settings

Before you import the configuration into Concept, carry out the following settings in
the CMD tool:

Step Action

1 Select Configuration → Controller Board → Type....

2 Select IBS PC104 SC-T.

3 Deactivate the control button Automatic Recognition, select version≤ 4.40
firmware from the list and confirm your selection with OK.

4 Select File → Operating Mode...
Response: The Operating Mode dialog is opened.

5 Activate the Configuration (Online) option button and exit the dialog using OK.

6 Select from Configuration → Controller Board → Control the command
Activate Configuration Frame.
Confirm with Yes.
Result: A configuration frame is generated.

7 Select Configuration → Configuration Frame → Read Again (from Memory).
Result: The configuration is read into the frame.

8 Under Configuration → Parameterization Memory → Write ASCII File select
the command INTERBUS Data (*.SVC)....
Response: The INTERBUS data is stored in a file.

9 Enter the directory and the file name in the open dialog and confirm the entry
using OK.

10 Select File → Save As....
Response: The INTERBUS project is saved.
934 33002204

Configuration examples
Edit local I/O drop

Introduction In this section the configuration of the first (local) I/O station (drop) is described. The
processing sequence begins first with the definition of all I/O drops.

When editing the first (local) drop the modules must be set with their I/O references
before parameters can be set for individual modules.

Atrium INTERBUS Controller

1 Programming device for Concept and CMD
2 V24 cable
3 PC104 board on a standard AT platine
4 INTERBUS configuration with the INTERBUS nodes

Note: To guarantee an error free transfer of the INTERBUS configuration, make
sure that sufficient memory is available. To optimise the storage allocation open
the PLC Memory Partition dialog (PLC Configuration → PLC Memory
Partition).

1

2 INTERBUS INTERBUS INTERBUS

3

4

C
C
O

C
R
P

MB+
33002204 935

Configuration examples
Define I/O drops To define the I/O drops, in the PLC Configuration window carry out the following
steps :

Step Action

1 Select PLC Selection.
Result: The PLC Selection dialog is opened.

2 Select the PLC family Atrium and under CPU 180-CCO-241-01. Clicking OK will
return you to the PLC Configuration window.

3 Select I/O Map.
Result: The I/O Map dialog is opened and the first entry in the table is the I/O
drop which is automatically entered as Atrium I/O.

4 Select the last row in the table.
Select the command button Insert.
Result: In the Type column the second I/O drop Interbus S is entered.
Dialog display

5 Under Type you can still select the following for Interbus S:
� Interbus S
� Interbus S (PCP)

6 Select the line 1 (Atrium I/O).
Select the command button Edit.
Result: The module mapping appears.

I/O Map

Expansion Size:

Cancel HelpOK

Drop

1

Go To LocalRemote

DeleteInsert

Copy Paste

Atrium I/O

Type Holdup

3

In bits

0

Out bits

0

Status Edit

Edit…

2 Interbus S 3 0 0 Edit…

To insert at the end of the list, select this line

Cut

144
936 33002204

Configuration examples
Setting I/O
references

In the dialog field Local Atrium I/O Drop the INTERBUS Master CRP-660-00 is
automatically entered in the I/O map.

To specify the I/O references, in columns In Ref and Out Ref enter the start
references. After the start references have been entered, the end reference for the
available address area of the component is shown.

Dialog display

Note: Input register references have the prefix 3 (e.g. 300001) and output register
references have the prefix 4 (e.g. 400001).

Bits In:

Local Atrium I/O Drop

Drop

Cancel HelpOK

Module Detected In Ref

CCO-24000 1

Clear

Modules:

Module

480

Copy

Params...

Slot In End

Out Ref

Out End

CRP-660-00 300001 2 300030 400001

... 3

... 4

Poll

2

Prev Next

NoneASCII port #:

Cut PasteDelete

32Bits Out:Bits In:
Bits Out:
Status table:

480
32

400002
33002204 937

Configuration examples
Set Module
Parameters

To set parameters for the INTERBUS master in the Local Atrium I/O Dropdialog
proceed in the following way:

Edit remote I/O
drop

To edit the remote I/O drop open the dialog box INTERBUS Drop 2. This dialog box
will take you to the I/O Map dialog box, when you click on the command button
Edit... of the second I/O drop (INTERBUS).

Step Action

1 In column Slot select the line 2.
Result: The text field 2 will then have a dark background, i.e.. the module CRP-
660-00 is selected for editing.
Note: Parameters are not set for CCO-24000 module.

2 Select the Params... command button.
Result: The CRP-660-00 dialog is opened.

3 Press the options button, as shown in the following picture, and exit the dialog
by clicking on OK.
Note: Help with setting parameters is obtained via the dialog box’s help text.
Dialog display

4 Leave the Local Atrium I/O Drop dialog by clicking on OK.

CRP 660 00

Cancel HelpOK

Output timeout state

Set to zero Hold last value

Bit orientation mode

MSB on left (IBS) MSB on right (984)

IBS start behavior

Full config needed Partial config allowed
938 33002204

Configuration examples
Edit remote I/O drop (import INTERBUS configuration)

Introduction The INTERBUS configuration import process is described in this section. The map
for the I/O reference is in the import dialog, before the transfer of the configuration
file is run.

Atrium INTERBUS Controller

1 Programming device for Concept and CMD
2 V24 cable
3 PC104 board on a standard AT platine
4 INTERBUS configuration with the INTERBUS nodes

Note: The module parameters are set in the CMD tool (see CMD tool user
manual), because the imported modules are not recognized in Concept.

1

2 INTERBUS INTERBUS INTERBUS

3

4

C
C
O

C
R
P

MB+
33002204 939

Configuration examples
Setting I/O
references

To set the address area follow the following steps in the INTERBUS Drop 2 dialog :

Step Action

1 Select the command button Import....
Result: The Import IBS Configuation is opened.

2 Activate the checkbox Overwrite IBS drop.
Result: The checkbox Do I/O mapping is made available.

3 Activate the Do I/O mapping checkbox.
Result: The Map Discretes to 3x/4x area checkbox and the text fields Input 3x
and Output 4x are made available.

4 Deactivate the checkbox Map Discretes to 3x/4x.
Result: The textfields Input 1x and Output 0x are made available.

5 In the textfields Input 3x and Output 4x enter the value 100.
Result: The 3x and 4x address areas of the imported components start with the
references 300100 and 400100.
Note: The 1x- and 0x address areas contain the predefined value 1, i.e. these
address area begin with 100001 and 000001.
Dialog display

6 You can exit the dialog with OK.
Result: The dialog Select Import File is opened.

7 Enter the path in the *.SVC configuration file.
Select OK.
Result: The dialog Import Status is opened, the file transfer starts and the
import status is shown.

8 After the transfer (100%) close the dialog.
Result: The imported INTERBUS configuration is shown in the INTERBUS
Drop 2 in the I/O map.

Cancel HelpOK

Import IBS configuration

Overwrite IBS Drop

Do I/O Mapping

Options
Input

1x 1

3x 100

Output

0x 1

4x 100
Map Discretes to 3x/4x

Start Refs. I/O map
940 33002204

Configuration examples
Dialog display After the INTERBUS configuration the dialog looks, for example, as follows:

Bits In:

Interbus 8 Drop 2

Drop

Cancel HelpOK

Module Detected In Ref

BK-012-00 1

Clear

Modules:

Module

0

Copy

Params...

Seq. No. In End

Out Ref

Out End Description

DIO-003-16 100001 2 100016 000001

DIO-011-16 1000173 000017

DI-130-16 100033 4 100048

AD-065-64 5 400100 400103

DO-129-16 6 000033 000048

BK-052-00 7

AIO-067-64 300100 8 300103 400104

PCP-203-00 9

DI-002-16 100049 10 100064

DO-001-16 11 000049

DIO-003-16 100065 12 100080 000065

... 13

... 14

Poll

12

Prev Next

NoneASCII Port #:

Cut PasteDelete

16Bits Out:Bits In:
Bits Out:
Status table:

144
206

000032

000016

100032

400107

000064

000080
33002204 941

Configuration examples
E.10 Momentum Example - Remote I/O Bus

Introduction

Overview This Chapter contains the step-by-step process for the configuration of a remote I/
O bus (Momentum).

What's in this
Section?

This section contains the following topics:

Topic Page

General Information 943

Editing local drop 943

Example 10 – Editing Remote Drops (I/O Bus) 947
942 33002204

Configuration examples
General Information

Introduction TSX Momentum is a modular system. Bus adapters (e.g. 170 INT 110 00) and CPU
adapters (e.g. 171-CCC-760-10-IEC) work in conjunction with an I/O unit as
independent modules. In order to function properly, each I/O unit must be equipped
with an adapter.

Editing local drop

Introduction This section describes the configuration of the first (local) drop. The processing
sequence begins first of all with the definition of all drops.

When editing the first (local) drop the modules must be set with their I/O references
before parameters can be set forindividual modules.

Momentum – remote controller with I/O bus

1 Host Computer
2 I/O unit e.g. 170-AAI-030-00
3 Interface adapter
4 CPU adapter e.g. 171-CCC-760-10-IEC
5 I/O bus interface e.g. 172-PNN-210-22
6 Bus adapter e.g. 170-INT-110-00
7 I/O unit e.g. 170-AMM-090-00

1

MB+

2 3 4 5 6 7
33002204 943

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the PLC family Momentum and CPU 171-CCC-760-10-IEC. Use OK
return to the PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.

4 Select the last line in the table.
Select the Insert command button.
Response: The second drop is entered in the Type column.
Note: Only one I/O bus can be configured.
Dialog display

5 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

I/O Map

Reserve for expansion:

Cancel HelpOK

144

Drop

1

DeleteExpand

Momentum I/O

Type Supervision In bits

0

Out bits

0

Status Edit

....

2 I/O bus 0 0

Time
944 33002204

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 Select from the column Modules, the moduleAAI-030-00.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Momentum
drop).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.

Note: With this addressing the 8 measurements of the AAI-030-00 are to be found
in the words 300001-300008. The parameters are in the words 400001 and
400002.

Input bits:

Local Momentum Drop

Drop

Cancel HelpOK

Module Detected In Ref

AAI 030 00 300001

Delete

Modules:

Module

0

Copy

Params

In End

300008

Out Ref

400001

Out End Description

Poll

1

Cut Paste Delete

0Output bits:Input bits:
Output bits:
Status table:

0
0

400002

I/O BASE, ANALOG-8CH DI
33002204 945

Configuration examples
Set Module
Parameters

To set parameters for the module proceed as follows in the Local Momentum Drop
dialog:

Editing Remote
Drops (I/O bus)

To edit the remote drop open the RIO I/O Bus Drop dialog. This dialog is reached
via the I/O Map dialog by pressing the Edit... command button in the second drop
(I/O bus).

Step Action

1 Select the Params command button.
Response: The 170-DDI-353-00 dialog is opened.

2 Select the signal conditions for the input and output channels from the list boxes
and exit the dialog using OK.
Note: Help with this can be obtained from the corresponding help text in the
parameter dialog.
Response: The parameter settings are automatically allocated to the addresses
400001 and 400002.
Dialog display

3 Exit the dialog using OK.
Response: You return automatically to the I/O Map dialog.

Input selection

DisableChannel 1:

 Channel 2:

DisableChannel 3:

DisableChannel 4:

Disable
-10 V to + 10 V
+/-5V and +/-20mA

Cancel HelpOK

Parameter words

Word 1: 4444 Word 2: 4444

170 AAI 030 00

1..5V and 4..20mA

DisableChannel 5:

DisableChannel 6:

DisableChannel 7:

DisableChannel 8:

Disable
946 33002204

Configuration examples
Example 10 – Editing Remote Drops (I/O Bus)

Introduction This section describes the configuration of the Momentum I/O bus. The drop has
already been defined in Editing the First (local) Drop (see Editing local drop, p. 943).

When editing the I/O bus the modules must be specified with their I/O references
before the individuals modules can be parameterized.

Momentum – remote controller with I/O bus

1 Host Computer
2 I/O unit e.g. 170-AAI-030-00
3 Interface adapter e.g. 172-PNN-210-22
4 CPU adapter e.g. 171-CCC-760-10-984
5 I/O bus interface
6 Bus adapter e.g. 170-INT-110-00
7 I/O unit e.g. 170-AMM-090-00

1

MB+

2 3 4 5 6 7
33002204 947

Configuration examples
Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
TSX Compact Drop dialog:

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 Select from the column Modules, the moduleAMM-090-00.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 Repeat steps 1 to 3 for all the modules in the example (see Local Quantum
Drop dialog representation).

5 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
948 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Note: With this addressing, the 4 measurements of the AMM-090-00 are to be
found in the words 300009-300013. The parameters are in the words 400009-
400013.

Input bits:

RIO I/O Bus Drop

Drop

Cancel HelpOK

Module Detected In Ref

AMM-090-00 300009 1

Delete

Modules:

Module

80

Copy

Params

No. In End

300013

Out Ref

400003

Out End Description

... 2

... 3

Poll

1

Cut Paste Delete

80Output bits:Input bits:
Output bits:
Status table:

80
80

400007

Analog 4 Ch 4 - 20

Used I/O points: 80
33002204 949

Configuration examples
Set Module
Parameters

To set parameters for the module proceed as follows in the RIO I/O bus drop dialog:

Step Action

1 Select column No. line 1.
Response: The 1 text box has a dark background, i.e. the AMM-090-00 module
has been selected for editing.

2 Select the Params command button.
Response: The 170-AMM-090-00 dialog is opened.

3 Select the signal states for the input and output channels from the list boxes and
exit the dialog using OK.
Note: Help with this can be obtained from the help text in the parameter dialog.
Response: The parameter settings are automatically allocated to the addresses
400009-400013.
Dialog display

Cancel HelpOK

Input Selections

1..5V or 4..20mA

Parameter Words

Word 1:

Channel 1:

1..5V or 4..20mAChannel 2:

1..5V or 4..20mAChannel 3:

1..5V or 4..20mAChannel 4:

Output Selections

DisableChannel 1 Output:

 Channel 1 Fallback:

DisableChannel 2 Output:

Output to ZeroChannel 2 Fallback:

Disable
+0mA bis +20mA
-10 V bis + 10 V

AAAA Word 2: 0044

170 AMM 090 00
950 33002204

Configuration examples
E.11 Momentum Example - Ethernet Bus System

Introduction

Overview This chapter contains step-by-step instructions for the configuration of an Ethernet
bus system with Momentum.

What's in this
Section?

This section contains the following topics:

Topic Page

Configure Ethernet 952

Network Configuration in Different Operating Systems 953

Editing local drop 963

Create online connection 966
33002204 951

Configuration examples
Configure Ethernet

Preconditions To configure an Ethernet bus system, the following preconditions must be fulfilled:
� PCI network cards in the host computer
� Installation of the network card driver
� Setting Ethernet interface parameters
� Addressing the M1 Ethernet CPU

Installing the PCI
network card

For a link to an Ethernet bus system an Ethernet interface located on a PCI network
card must be available in the host computer. This card can be upgraded in PCs, as
long as a PCI slot is available. Information about this can be found in the computer
manufacturer’s user manual.

Network
configuration

Network configurations for different operating systems are given in section Network
Configuration in Different Operating Systems, p. 953.

Installing Drivers Following the installation of the PCI network card the drivers, which come with the
network card, must be installed.

To proceed further, the IP address of the network card is required (it may be
necessary to contact network administrator).

Addressing the
M1 Ethernet CPU

The M1 Ethernet CPU does not have an IP address when supplied, and must
therefore be determined in the Ethernet / I/O Scanner dialog. The address for the
gateway and Subnet Mask is also determined in this dialog.

The IP address can be assigned via the system administrator or the BOOTP server.

After addressing, saving to Flash is recommended (Online Control Panel → Flash
Program...), so that the settings are not lost in case of a power outage.

Note: It is important to ensure that the IP address has not already been assigned
to another device. Double addressing causes an unforeseeable function in the
network.
952 33002204

Configuration examples
Network Configuration in Different Operating Systems

Network
configuration in
Win 98

Declare this IP address in the operating system as follows:

Step Action

1 Select Start → Settings → Control Panel → Network.
Response: The Network dialog box is opened.
Dialog display

2 Select the register Configuration.
Select the network connection TCP/IP.

Identification Access control

Network

CancelOK

Client for Microsoft networks

Primary Network Logon:

The Microsoft TCP/IP protocol serves to create
Internet and WAN links

Description

File and printer enabling…

Add… Remove Properties

The following network components are installed:

Client for Microsoft networks
DEC Etherworks 3 (All ISA versions)
TCP/IP
File and printer enabling for Microsoft networks

Configuration
33002204 953

Configuration examples
3 Select the Properties command button.
Response: The TCP/IP Properties dialog is opened.
Dialog display

4 Select the register IP Address and make the following settings.
Response: The programming device is then registered for network operation
with the IP address.

Step Action

TCP/IP Properties

CancelOK

?

Advanced

This computer can automatically be assigned an IP address

Links NetBIOS DNS Configuration

Gateway WINS Configuration IP address

If IP addresses are not automatically assigned in the network
get an address from your
network administrator and enter it below.

Automatically assign IP address

Determine IP address:

IP Address:

Subnet Mask:
954 33002204

Configuration examples
Computer
Identification in
Win 98/NT

The information is used to identify the computer in the network:

Step Action

1 Select Start → Settings → Control Panel → Network.
Response: The Network dialog box is opened.

2 Select the register Identification.
Enter the computer name, the name of the workgroup and a short description of
the computer.
Dialog display

3 Exit the dialog using OK.

Network

CancelOK

Configuration Access controlIdentification

SG6191Computer name:

de.accWorkgroup:

Dell OptiPlex XL 5100Description:

Using the following information, the computer is
identified in the network. Enter the
computer name, the name of the workgroup and a short
description of the computer.
33002204 955

Configuration examples
Network
configuration in
Win NT

Declare this IP address in the operating system as follows:

Step Action

1 Select Start → Settings → Control Panel → Network.
Response: The Network dialog box is opened.
Dialog display

Network (View Mode)

Cancel

?

Identification

Close

Using the following information, the computer is identified in the network.

SG POOLComputer Name:

SG.OADomain:

Services Protocols Network Card
956 33002204

Configuration examples
2 Select the register Protocols.
Dialog display

Select the network connection TCP/IP Protocol.

Step Action

Network (View Mode)

Cancel

?

Identification

Close

Network protocols:

Services Protocols Network Card

TCP/IP protocol

Add... UpdateRemove Properties...

Member of

TCP/IP stands for Transport Control Protocol / Internet Protocol. The
standard protocol for long distance networks (WANs = Wide Area Networks), which
allow communication between different networks.
33002204 957

Configuration examples
3 Select the Properties command button.
Response: The Microsoft TCP/IP Properties dialog box is opened.
Dialog display

4 Select the register IP Address and make the following settings.
Response: The programming device is then registered for network operation
with the IP address.

Step Action

Microsoft TCP/IP Properties

Apply

?

IP address

A DHCP server can automatically assign this network card

DNS WINS address Routing

Network cards:

an IP address. Get an address from your network administrator
if an DHCP server is not available in the network.
Enter this address below.

[1] 3 Com Etherlink III-Adapter

Get IP address from a DHCP server

Enter IP Address

IP Address:

Subnet Mask:

Standard Gateway:

Options...

CancelOK
958 33002204

Configuration examples
Network
configuration in
Win 2000

Declare this IP address in the operating system as follows:

Step Action

1 Select Start → Settings → Network and Dial-Up Connections.
Response: The Network and Dial-Up Connections window is opened.

2 Select the LAN Connection icon.
Response: The LAN Connection status dialog box is opened.
Dialog display

Status of LAN Connection

Close

?

General

Terminate

Status:

Duration:

Transfer rate:

Establish connection

00:12:20

100.0 MBit/s

Activity

Packages:

Received

559

DeactivateProperties

756

Sent
33002204 959

Configuration examples
3 Select the Properties command button.
Response: The LAN Connection Properties dialog box is opened.
Dialog display

4 Select the network connection Internet Protocol (TCP/IP).

Step Action

LAN Connection Properties

Cancel

?

General

OK

Establish connection using:

3Com 3C918 integrated Fast Ethernet-Controller [3C905B-

Configure

Activated components are used by this connection:

Client for Microsoft networks

File and printer enabling for Microsoft networks

Internet Protocol (TCP/IP)

Install... Uninstall Properties

Description

TCP/IP, the standard protocol for WAN networks which
allow data to be exchanged over different, connected
networks.

Show icon in the task bar when connected
960 33002204

Configuration examples
5 Select the Properties command button.
Response: The Internet Protocol (TCP/IP) Properties dialog box is opened.
Dialog display

6 Make the settings there.
Response: The programming device is then registered for network operation
with the IP address.

Step Action

Internet Protocol (TCP/IP) Properties

Cancel

?

General

OK

IP settings can be assigned automatically if the
network supports this function. If not, contact your
network administrator, to get the correct IP settings.

Obtain IP address automatically

Use the following IP Addresses:

IP Address:

Subnet mask:

Standard gateway:

Obtain DNS server address automatically

Use the following DNS server addresses:

Preferred DNS server:

Alternative DNS server:

Advanced...
33002204 961

Configuration examples
Computer
Identification in
Win 2000

The information is used to identify the computer in the network:

Step Action

1 Select Start → Settings → Control Panel → System.
Response: The System Properties window is opened.

2 Select the register Network Identification.
Dialog display

3 Select the Network ID command button.
Response: The assistant for creating a user on the network is started.
Or select the Properties command button.
Response: The Identification Changes dialog box is opened.

4 Exit the dialog using OK.

System Properties

Cancel ApplyOK

?

General Network Identification Hardware User Profile Advanced

The following information is used to identify the computers in the
network.

Computer name:

Domain:

sg4002.

SG.ENG

Click on the command button "Network Identification" to
domain and to create a local user.

join a Network

Click on "Properties" to change
for a computer or to join a domain.

Properties

Identification
962 33002204

Configuration examples
Editing local drop

Introduction This section describes the configuration of the local I/O station (Drop). The
processing sequence begins first of all with the definition of the drop.

When editing the local I/O station (Drop) the I/O unit must be specified with its I/O
references before parametering of the individual assemblies can take place.

Momentum - Ethernet Bus System

1 Host Computer
2 Ethernet network card
3 I/O unit e.g. 170-AMM-090-00
4 CPU adapter e.g. 171-CCC-960-20-IEC
5 Hub or Switch

Note: Only particular CPUs can be used for the Ethernet bus configuration.
The following CPUs are available:
� 171 CCC 980 30
� 171 CCC 960 30
� 171 CCC 980 20
� 171 CCC 960 20

1

2 43 5
33002204 963

Configuration examples
Defining Drops To define drops proceed as follows in the PLC Configuration window:

Mapping
Modules and
Specifying I/O
References

To map the modules and specify the address ranges proceed as follows in the Local
Quantum Drop dialog:

Step Action

1 Select PLC Selection.
Response: The PLC selection dialog is opened.

2 Select the PLC family Momentum and CPU 171-CCC-960-20-IEC. Use OK
return to the PLC Configuration window.

3 Select I/O Map.
Response: The I/O Map dialog is opened and the first drop is automatically
entered in the table.

4 Select the drop from the Drop column.
Select the Edit... command button.
Response: You reach the module map.

Step Action

1 Select the Module → ... column.
Response: The I/O Module Selection dialog is opened.

2 From the Category column, select the <all> option.
Response: All modules are listed in the Modules column.

3 Select from the column Modules, the moduleAMM-090-00.
Exit the dialog with OK.
Response: The module is inserted in the I/O map.

4 In the In Ref and Out Ref columns, set the start references for the input and
output modules.
Note: Discrete Input References have the prefix 1 (e.g. 100001), Coil
References have the prefix 0 (e.g. 000001), Input Register References have the
prefix 3 (e.g. 300001) and Output Register References have the prefix 4 (e.g.
400001).
Response: The end reference (column In.End. or Out.End) of the available
address range is automatically entered.
964 33002204

Configuration examples
Dialog display Following module mapping and I/O reference specification the dialog looks like this:

Set module
parameters

To set parameters for the individual modules, proceed as follows in the Local
Momentum Drop dialog:

Input bits:

Local Momentum Drop

Drop

Cancel HelpOK

Module Detected In Ref

AMM 090 00 300001

Delete

Modules:

Module

80

Copy

Params

In End

300008

Out Ref

400001

Out End Description

Poll

1

Cut Paste Delete

80Output bits:Input bits:
Output bits:
Status table:

80
80

400005

I/O BASE, ANALOG-4CH 4-

Step Action

1 Select the Params command button.
Response: The 170-AMM-090-00 dialog is opened.

2 Select the signal states for the input and output channels from the list boxes and
exit the dialog using OK.
Note: Help with this can be obtained from the corresponding help text in the
parameter dialog.
Dialog display

Cancel HelpOK

Input Selections

1..5V or 4..20mA

Parameter Words

Word 1:

Channel 1:

1..5V or 4..20mAChannel 2:

1..5V or 4..20mAChannel 3:

1..5V or 4..20mAChannel 4:

Output Selections

DisableChannel 1 Output:

 Channel 1 Fallback:

DisableChannel 2 Output:

Output to ZeroChannel 2 Fallback:

Disable
+0mA bis +20mA
-10 V bis + 10 V

AAAA Word 2: 0044

170 AMM 090 00
33002204 965

Configuration examples
Create online connection

Introduction This chapter describes how a link is created between the programming device and
the Ethernet bus system.

Creating a link For the link between the programming device and the Ethernet bus system use the
Concept main menu Online and proceed as follows.

Step Action

1 Select menu commandLink....
Response: The Link to PLC dialog box opens.

2 From the list Protocol type select the link TCP/IP.
Response: The zone Protocol settings alters for the TCP/IP settings.

3 In the text box IP address or DNS hostname enter the IP address of the Ethernet
network card (PCI card).
Note: Make sure that the address in Concept matches the address in Network
settings of the operating system (see Network configuration in Win 98, p. 953).
Response: An online link exists between the programming device and the
Ethernet bus system, and all bus nodes are displayed in the list.
Dialog display

4 Exit the dialog using OK.

Link to PLC

Access

Display only

Cancel HelpOK

Change Configuration

Change data

Change program

Update < Back Forward >

Protocol type:
Protocol settings: TCP/IP

Modbus
Modbus Plus
TCP/IP
IEC Simulator (32-Bit)

127.0.0.1

IP address or DNS Hostname: Bridge MB+ Index

List of nodes in Modbus Plus network:

Host adapter:

966 33002204

33002204
F

Convert Projects/DFBs/Macros
Converting projects/DFBs

At a Glance The four main steps for converting projects/DFBs are as follows:

Converting EFBs

Step Action

1 Exporting projects/DFBs/macros within the earlier version of Concept, see
Exporting project/DFB/macro (earlier version of Concept), p. 968.

2 For information on installing the new version of Concept, see Installing new
versions of Concepts, p. 969.

3 For information on importing projects/DFBs/macros, see Importing project/DFB/
macro, p. 969.

4 For information on editing projects/DFBs/macros, see Editing the project/DFB/
macro, p. 969.

Risk of losing data

If user-defined EFBs are being used in the project (EFBs which have been created
manually), the current version of the EFB toolkit must be used to convert them (File
→ Concept library…). The Concept converter is not able to convert user-defined
EFBs.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION
967

Convert Projects/DFBs/Macros
Exporting
project/DFB/
macro (earlier
version of
Concept)

The procedure for exporting projects/DFBs/macros is as follows:

Risk of losing data

The following steps must be performed in the EARLIER version of Concept. The
new version of Concept may only be installed once all existing projects have been
exported.

Failure to follow this instruction can result in injury or equipment damage.

Step Action

1 Start the Concept converter.

2 From File → Export... open the menu to select the export range.

3 Select the required export range:
� Project with used DFBs: All project information including the DFBs and data

structures used within the project (derived data types) will be exported.
� Project with all DFBs + macros: All project information including all the

DFBs and data structures (derived data types) will be exported.
� Project without DFBs: All project information including all data structures

(derived data types), but excluding DFBs and macros will be exported.
� Single DFB with used DFBs/single macro: Only the selected DFB/macro

will be exported.

Reaction: The select export data dialog box will be opened.

4 Different file extensions must be selected depending on the element to be
exported:
� Exporting projects: From the Format list select the extension .prj.
� Exporting DFBs: From the Format list select the extension .dfb.
� Exporting macros: From the Format list select the extension .mac.

5 Select the project / DFB / macro and confirm with OK.
Reaction: The project/DFBs/macros/data structures (derived data types) will be
contained in the current directory as an ASCII data file (.asc).

6 Quit the Concept converter with File → Quit.

CAUTION
968 33002204

Convert Projects/DFBs/Macros
Installing new
versions of
Concepts

Follow the procedure described in the "Installation" chapter of the installation
instructions.

Importing
project/DFB/
macro

The procedure for importing projects/DFBs/macros is as follows:

Editing the
project/DFB/
macro

Start the Concept/Concept DFB and edit the project/DFBs/macros/data structures
in the usual way.

Risk of losing data

Only install the NEW version of Concept if you have performed the previous steps.

Failure to follow this instruction can result in injury or equipment damage.

CAUTION

Step Action

1 Start the Concept converter.

2 From File → Import... open the select import projects/DFBs/macros dialog box.

3 Select the project/DFB/macro (data file format .asc) and confirm with OK.
Reaction: The project/DFBs/macros/data structures will be contained in the
current directory as Concept data files.

4 Quit the Concept converter with File → Quit.
33002204 969

Convert Projects/DFBs/Macros
970 33002204

33002204
G

Concept ModConnect
At a Glance

Introduction This chapter describes how to integrate third party modules into the Concept I/O
map and how to remove it.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

G.1 Introduction 973

G.2 Integration of Third Party Modules 974

G.3 Use of third party module in Concept 977
971

Concept ModConnect
972 33002204

Concept ModConnect
G.1 Introduction

Introduction

Overview Information on hardware and I/O modules is stored in the Concept System
Information Database (SysInfDb). This database is maintained and updated by
Schneider and included with every Concept release.Nevertheless, Concept is able
to support new I/O modules without having to wait for a new release. That's where
the ModConnect Tool comes in - it takes a textual module description (MDC) and
adds this information into the SysInfDb. This means that supplier of a new I/O
module, who wants this module to be available in Concept, must also deliver an
MDC file which describes the characteristics of this module.

Once installed, the I/O modules have the same functionality as existing Schneider
Automation modules. This includes the ability to set module parameters and to
display an online help.

For the installation of new modules, the third party module manufacturer has to
supply a disk which contains a specific MDC file and the help information.

Note: The MDC file is dependent on the version of Concept so if you upgrade your
Concept version, make sure you get also an upgraded version of your previously
used MDC files. You will have to reinstall them.
33002204 973

Concept ModConnect
G.2 Integration of Third Party Modules

At a Glance

Introduction This chapter describes the procedures which have to be used in Concept
ModConnect in order to integrate third party modules into Concept or to remove it.

What's in this
Section?

This section contains the following topics:

Topic Page

Integrating new Modules 975

Removing Modules 976
974 33002204

Concept ModConnect
Integrating new Modules

Precondition The specific MDC file for the new module has to be available.

Integrating new
Modules

For integrating new modules, proceed the following steps:

Upgrate of
Concept

Step Action

1 For starting the application select ModConnect Tool in the Concept programm
group.
Reaction: Concept ModConnect displays its main window. If any Modules have
been installed, a lis of installed modules is shown.

2 Copy the MDC file and the help file supplied with module to the Concept
installation path.

3 Select File → Open Installation File...
Reaction: A dialog for selection the specific MDC file is opened.

4 Set the correct path to the MDC file and select it (e.g. SAMPLE.MDC). Confirm
with OK.
Reaction: The path including the name of the MDC file is now displayed in the
Select Module dialog along with the defined modules.

5 Select the module you want to add and click Add Module or in the case of
multiple entries click on the Add All button. You may additionally click the
Browse button to return to the Open file dialog where you can select another
.MDC for evaluation.

6 Click on the Close button to return to the main window.
Reaction: The main window will now be displayed with the module information
appearing in the Imported Modules in Concept Database window. By clicking
on the added module (to select it) the module details are shown. With Help →
Help on Module the help of the selected module can be displayed.

7 Select File → Save Changes to save the changes data base.

8 Select File → Exit for terminating Concept ModConnect.
Reaction: The installed modules are now avaiable in the Concept I/O map (see
Use of third party module in Concept, p. 977).

Note: The MDC-File is dependent on the version of Concept so if you upgrade your
Concept version, make sure you get also an upgraded version of your previously
used MDC files. You will have to reinstall them.
33002204 975

Concept ModConnect
Removing Modules

Removing
Modules

For removing modules, proceed the following steps:

Step Action

1 For starting the application select ModConnect Tool in the Concept programm
group.
Reaction: Concept ModConnect displays its main window with a lis of the
installed modules.

2 Select the module you want to remove and select File → Remove selected
Module.
Reaction: The Confirm IOModule Removal dialog is displayed.

3 Selecting OK, causes the removal of the module from Concept.
Reaction: The module is no longer listed in the main window of Concept
ModConnect or in the I/O Module Selection list box of Concept.
Note: When removing modules. If the module has been used in existing Concept
projects, the integrity of these projects will be compromised.

4 Select File → Save Changes to save the changes data base.

5 Select File → Exit for terminating Concept ModConnect.
Reaction: The installed modules are now avaiable in the Concept I/O map (see
Use of third party module in Concept, p. 977).
976 33002204

Concept ModConnect
G.3 Use of third party module in Concept

Use of Third Party Modules in Concept

Precondition The modules have to be installed according to the procedure Integrating new
Modules, p. 975.

Insert module to
I/O Map

To insert a module to the I/O map, proceed the following steps:

Step Action

1 Start Concept.

2 Open the configurator with Project → Configurator.

3 Open the I/O map with I/O map... → Edit....

4 Open the I/O Module Selection dialog by clicking on ... at the Module column.
Reaction: The third party modules appear in the Other column.

5 Select the module by clicking.
Reaction: A short description appear at the top of the dialog. You may press the
Help on Module button to display the module’s help file supplied by the vendor.

6 Click on OK (or doubleclick on the module) to insert the module the the I/O map.
Reaction: The I/O Module Selection dialog is cloes and the selected module is
inserted in the I/O map.

7 For entering the module’s parameters (if available), select the Rack-Slot column
of the module and click on the Params button.
Reaction: The parameter screen for the selected dialog is opened.

8 Set the parameters for the module and confirm with OK.

9 Enter the input and output references for the module.

10 Confirm the I/O map with OK and save the project with File → Save project.
33002204 977

Concept ModConnect
978 33002204

33002204
H

Convertion of Modsoft Programs
At a Glance

Introduction This information provides you with the necessary process required to change
previously generated Modsoft derived Ladder Logic programs into the Concept
environment.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Introduction 980

How to Convert a Modsoft Program 982

Exceptions 983
979

Convertion of Modsoft Programs
Introduction

Overview For the convertion of an existing Modsoft program to a valid Concept 984 Ladder
Logic project the Mosdsoft Converter is used. The Modsoft Converter provides
current Modsoft users with a migration path to the 984 Ladder Logic for Windows
environment. The Modsoft Converter requires no previous knowledge of the
Concept programming environment. The term project is synonymous with a Modsoft
program.

Starting the
Modsoft
Converter

Windows 98, Windows 2000 or Windows NT allows you to run the program from the
Start menu, by selecting Modsoft Converter in the Concept programm group.

The Modsoft
.ENV File

For the convertion the Modsoft .ENV file is needed. The .ENV file contains all the file
information pertaining to the Modsoft program.

The Modsoft .ENV file contains the following files:
� .CFG Configuration file
� .PRG Ladder Logic file
� .PCM Network comments
� .PCT Network comments
� .ASC ASCII file
� .USL User Loadables
� .RFD Reference presets set by the user in the Modsoft Reference Data Editor
� .REF Reference contents contained in the PLC, from an upload
� .RSF Reference symbols

The convert process requires the .CFG file to be present in the .ENV file. If it does
not exist, an error dialog is displayed indicating that the .ENV file does not reference
a .CFG file. All other files are optional.

By forcing you to enter the Modsoft *.ENV filename, some of the validation is
avoided that would otherwise be required if you were allowed to enter a *.PRG and
*.CFG name separately, i.e. Loadables (DX, User and EXE), state ram and builtin
functions.

Incompatibilities Due to differences in "address calculations in the configuration table" between
Modsoft 2.6 and Concept 2.2 or later, the same Modsoft program loaded in a PLC
and converted using the Modsoft Converter will cause a configuration miscompare
in certain page zero locations. This will not affect the validity of the converted
program.
980 33002204

Convertion of Modsoft Programs
Invalid PLC
Types

If the Modsoft configuration file PLC type, is not legal for Concept, you are warned
that the convert process will not continue. You then have to return to Modsoft and
change the PLC type to one that is valid.

Handling of
SY/MAX

SY/MAX programs converted to Modsoft file format will migrate to the Quantum PLC
type. The Modsoft Convert utility can then bring the SY/MAX program into Concept.

Modsoft Version The Convert utility handles Modsoft file format supported in revision 2.2 or greater.

Handling of SFC
and Macros

Modsoft does allow the user to save a Ladder Logic program that consists of
undefined elements, and Concept needs to resolve those elements. The Modsoft
Ladder Logic program is converted without performing any validity checks against
the Configuration. When the Modsoft *.prg file contains either SFC or Macros the
convert process is aborted and an Error dialog is displayed informing you to return
to Modsoft and use Segment Status → Commands → Convert to File. This
process expands the Macros and translates the SFC elements.

Handling of I/O
Map

Modsoft sets a default I/O map size of 512. Concept does not, but calculates the size
as required. Uploading a Controller that has been downloaded with Modsoft will
cause a miscompare. You are allowed to continue.

Handling of
References

Modsoft can have two types of reference data or none at all. There exists online
reference data information (RAM) if you have uploaded from the PLC. There are
also references defined using the offline Reference Data Editor. When both types of
data exist in the .env file, the convert utility first imports the online references then
overlays the offline reference data.
33002204 981

Convertion of Modsoft Programs
How to Convert a Modsoft Program

Precondition For converting a Modsoft program the Modsoft .ENV file (see The Modsoft .ENV
File, p. 980) is necessary. The .ENV file contains all the file information pertaining to
the Modsoft program. Once selected the conversion takes place and you are
prompted to a Save as dialog.

How to Convert a
Mosdsoft
Programm

For converting a Modsoft programm, proceed the following steps:

Step Action

1 Open the Modsoft Converter.

2 Select File → Convert....

3 Select the drive and the directory, where to find the Modsoft .ENV file. (The file
will be found in the Modsoft program directory, e.g. C:\Modsoft\Programs.)

4 Pick the file from the list.

5 Start the convertion with Convert.
Reaction:
 The convertion is started.
� A convert progress dialog is displayed after the validity checks on the *.ENV

file are performed. The first line of the dialog indicates the section currently
being converted and the second line indicates progress as it pertains to the
whole convert process.

� f any errors, such as Out of memory, Out of disk space or File access
errors, occur during the convert process, an error dialog is displayed.

� An operation completed error free results in the automatic display of the Save
as Concept project dialog. The default name of the project, displayed in the
Save project dialog, is the *.ENV filename prompt.

6 You can then change the project name and the directory in which Concept
project will be saved.
Reaction: If the project name selected already exists a confirmation dialog is
displayed.
Note: Saving the Modsoft converted program as a Concept project does not
have to be done at this time, you can still save using the File → Save project as
menu item.
982 33002204

Convertion of Modsoft Programs
Exceptions

Description 0x and 1x references in a Modsoft program are converted to a Located Variable with
data type BOOL in Concept. This data type is compatible with the use of these
references.

However, 3x and 4x are converted to integer.

Example If you have the following defined in Modsoft:

A conversion of the above to Concept using the Convert program yields:

Note: This straight conversion precludes both Modsoft bit defination and floating
point types.

REF BIT SYMBOL DESCRIPTOR

000001 located_0x_boolean located 0x boolean descriptor

100001 located_1x_boolean located 1x boolean descriptor

300001 /16 bit_16_of_3000001 16th bit of 300001 descriptor

400100 incoming_integer incoming integer descriptor

400200 outgoing_interger outgoing flt32 descriptor

400300 / 1 bit_1_of_400300 bit 1 of 400300 descriptor

Variable Name Data Type Address Comment

located_0x_boolean BOOL 000001 located 0x boolean descriptor

located_1x_boolean BOOL 100001 located 1x boolean descriptor

bit_16_of_3000001 INT 300001 16th bit of 300001 descriptor

incoming_integer INT 400100 incoming integer descriptor

outgoing_interger INT 400200 outgoing flt32 descriptor

bit_1_of_400300 INT 400300 bit 1 of 400300 descriptor
33002204 983

Convertion of Modsoft Programs
984 33002204

33002204
I

Modsoft and 984 References
At a Glance

Introduction This chapter contains the Modsoft and 984 References.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Modsoft Keys with Concept Equivalents 986

Modsoft Function Compatibility 988
985

Modsoft and 984 References
Modsoft Keys with Concept Equivalents

Keys

Table of keys:

Note: When possible, the Ctrl key is used in place of the Modsoft Alt key.

Funtion Modsoft 2.x Key Concept Key

Normally open contact ’ or " same

Coil (or [same

Normally closed contacts / or \ same

Horizontal short = same

Vertical short | same

Negative transitional contact Alt+N N

Positive transitional contact Alt+P P

Inserting a function block by name Alt+F Ctrl+F

Copy element(s) Alt+F3 Ctrl+C

Delete element(s) Alt+F4 or Del Ctrl+X or Del

Paste Alt+F5 Ctrl+V

Offset references Alt+F6 Ctrl+H

Search Alt+F7 F3

Search next Alt+F8 F6
When online in direct mode,
Concept uses a nonmodal
dialog with accelerators for
search previous and search
next.

Network comments Alt+C Ctrl+M

Goto network Alt+G Ctrl+G

Insert network Alt+I Ctrl+I

Append network Alt+A Ctrl+A

Trace Alt+T Ctrl+T

Retrace Alt+B Ctrl+B or Ctrl+T

Dx zoom Alt+Z Ctrl+D

Goto node (1,1) of active network Home same

Goto node (7,11) of active network End same

Goto first network in current segment Ctrl+Home same
986 33002204

Modsoft and 984 References
Status Line
Values

These Concept keys change the status line display value of the currently selected
reference:
A ASCII

H Hexidecimal

D Decimal (signed)

U Decimal (unsigned)

R Real

L Long (32 bit)

S Short (16 bit)

Goto last network in current segment Ctrl+End same

Insert equation Ins Ctrl+Q

Append - Ctrl+A

Append equation - Ctrl+U

Delete current network - Ctrl+K

Copy to the clipboard - Ctrl+C

Undo - Ctrl+Z

Closing an mdi child window - Ctrl+F4

Switching to the next open mdi child
window

- Ctrl+F6

Funtion Modsoft 2.x Key Concept Key
33002204 987

Modsoft and 984 References
Modsoft Function Compatibility

Not Supported
Features

The following Modsoft functions are not supported in Concept:
� Macros/macro programming
� SFC (use IEC SFC instead)
� Search of comments

User Interface
Difference

Concept is an MS-Windows based application. Modsoft is a DOS based application.
Concept uses MS-Windows user interface standards and practices. Functions of
Concept with 984 Ladder editor are based on the pre-existing functions of Concept.

There are no exact similarities of specific user actions required to perform Concept
tasks as compared to Modsoft tasks.

Constant Sweep Concept has no off line selection to set the constant sweep mode. This mode is
available from the Online Control Panel.

Once constant sweep has been set in the controller, you can upload the controller
and save the project. The constant sweep settings will be retained in the project. If
this project is downloaded, the constant sweep settings will be set.

How to Start the
Constant Sweep

To set constant sweep before starting the controller, follow these steps:

Note: Any changes to the controller configuration cause the constant sweep
settings to be reset, i.e, constant sweep is disabled whenever the controller
configuration changes. Follow the steps above to reenable constant sweep.

Step Action

1 Create your configuration and program logic, offline.

2 Download your program to the controller. When the dialog appears asking Do
you want to start the controller?"click on the No button.

3 From the Online menu, choose Online Control Panel.

4 Set the constant sweep mode and sweep time.

5 Start the controller.
988 33002204

33002204
J

Presettings when using Modbus
Plus for startup
Introduction

Overview This chapter provides a brief description of the presettings when using Modbus Plus
for first startup.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Installing the SA85/PCI85 with Windows 98/2000/XP 990

Installing the SA85/PC185 in Windows NT 994

Installing the Modbus Plus Driver in Windows 98/2000/NT 996

Virtual MBX Driver for 16 bit application capability with Windows 98/2000/NT 997

MBX Driver for connection between ModConnect Host interface adapters and
32 bit applications with Windows 98/2000/NT

998

Remote MBX - Driver for Remote Operation 999

Ethernet MBX - Driver for Modbus Plus Function via TCP/IP 1000

Establishing the hardware connection. 1002
989

Presettings for Modbus Plus
Installing the SA85/PCI85 with Windows 98/2000/XP

Introduction A Modbus Plus connection can be made using the SA85 or PCI85 adapters.

The difference between the adapters is in the bus used:
� SA85 for ISA Bus
� PCI85 for PCI Bus

While the Modbus Node Address and Memory Based Address for the SA85 is set
directly on the card with the DIP switches, the address for the PCI85 is made during
the configuration in Windows.

SA85 Hardware
settings

Carry out the following steps to configure the Hardware settings for the SA85:

PCI85
Installation

Install the PCI85 (416 NHM 300 30 or 416 NHM 300 32) as described in the
"Modbus Plus PCI-85 Interface Adapter" 890 USE 162 00 documentation.

Driver
installation

Install the Virtual MBX driver and then the MBX or Remote MBX driver.

See also:
� Virtual MBX Driver for 16 bit application capability with Windows 98/2000/NT,

p. 997
� MBX Driver for connection between ModConnect Host interface adapters and 32

bit applications with Windows 98/2000/NT, p. 998
� Remote MBX - Driver for Remote Operation, p. 999

Step Action

1 Enter the Modbus node location (Modbus Plus Port Location) and the memory
based address in SA85 (see documentation "IBM Host Based Devices").

2 Install the SA85 as described in the "IBM Host Based Devices" documentation.
990 33002204

Presettings for Modbus Plus
Configuration Carry out the following steps to configure the adapter after installing the driver:

Step Action

1 Open the Control Panel (Start → Settings → Control Panel).

2 Windows XP: Select the Printer and other Hardware icon.

3 Windows XP: Select the System icon.

4 Select the Hardware icon.
Result: The hardware wizard is called.

5 Select the Next command button.

6 Windows 98: Select the option Yes (Recommended).
Windows 2000/XP: Select the option Add/Troubleshoot a device.
Select the Next command button.
Result: Hardware detection is started.

7 Only for Windows 98: Select the Next command button.
Result: The hardware detection status is displayed.

8 Only for Windows 98: Select the Next command button.
Result: All hardware types are displayed in a list.

9 Select the hardware type MBX Devices for Modicon Networks, and press the
Next command button.
Result: The database with driver information is created.

10 Select the SA85-000 adapter or PCI85-000 and press the Next command
button.
Result: A memory range is automatically defined.

11 Select the Next command button.
Result: The automatically assigned device number and request mode (20 ms)
is displayed.

12 Select the Next command button.
Result: The software for the new hardware components is installed.

13 Select the Next command button.
Result: You are asked to shutdown the computer.

14 Press the No command button.
Result: The adapter is configured with the default settings.
33002204 991

Presettings for Modbus Plus
Win 98: Edit
configuration

Carry out the following steps to edit the configuration using Windows 98 after the first
configuration:

Win 2000/XP:
Edit
configuration

Carry out the following steps to edit the configuration using Windows 2000/XP after
the first configuration:

Step Action

1 Open the Control Panel (Start → Settings → Control Panel).

2 Select the System icon.
Result: The System Properties window is opened.

3 Select the Device Manager tab.

4 Select the SA85-000 adapter or PCI85-000 and press the Properties command
button.
Result: The SA85-000/PCI85-000 Adapter Properties window is opened.

5 Select the Device Settings tab.

6 Make the changes as required. (See also the Help file LMBX9X on the driver
CD.)

7 Select the Resources tab to change the memory area.

8 Use the OK command button to exit the window.
Result: The changes are accepted by the system.

Step Action

1 Open the Control Panel (Start → Settings → Control Panel).

2 Windows XP: Select the Printer and other Hardware icon.

3 Select the System icon.
Result: The System Properties window is opened.

4 Select the Hardware tab.

5 Select the Device Manager... command button.
Result: The Device Manager window is opened.

6 Select the Network adapter → SA85-000 or PCI85-000.

7 Select the Properties command button.
Result: The SA85-000PCI85-000 Adapter Properties window is opened.

8 Select the Device Settings tab.

9 Make the changes as required. (See also the Help file LMBX9X on the driver
CD.)

10 Select the Resources tab to change the memory area.

11 Use the OK command button to exit the window.
Result: The changes are accepted by the system.
992 33002204

Presettings for Modbus Plus
Peer Cop
functions

Several parameter settings must be made to enable Peer Cop communication via
the adapter. The Peer Cop function is disabled by default, and should only be
enabled if your applications require Peer Cop communication.

To enable and set parameters for Peer Cop communication, start with the first steps
as with "Edit Configuration". In the SA85-000/PCI85-000 Adapter Properties
window, select the Peer Cop tab and make your settings as desired.
33002204 993

Presettings for Modbus Plus
Installing the SA85/PC185 in Windows NT

Introduction A Modbus Plus connection can be made using the SA85 or PCI85 adapters.

The difference between the adapters is in the bus used:
� SA85 for ISA Bus
� PCI85 for PCI Bus

While the Modbus Node Address and Memory Based Address for the SA85 is set
directly on the card with the DIP switches, the address for the PCI85 is made during
the configuration in Windows.

SA85 Hardware
Settings

Carry out the following steps to set the SA85 hardware settings:

PCI85
Installation

Install the PCI85 (416 NHM 300 30 or 416 NHM 300 32) as described in the
"Modbus Plus PCI-85 Interface Adapter" 890 USE 162 00 documentation.

Installing drivers Install the Virtual MBX driver and then the MBX or Remote MBX driver.

Also see:
� Virtual MBX Driver for 16 bit application capability with Windows 98/2000/NT,

p. 997
� MBX Driver for connection between ModConnect Host interface adapters and 32

bit applications with Windows 98/2000/NT, p. 998
� Remote MBX - Driver for Remote Operation, p. 999

Step Action

1 Set the Modbus node address (Modbus Plus Port Address) and the memory
based address on the SA85 (see documentation "IBM Host Based Devices").

2 Install the SA85 as described in the "IBM Host Based Devices" documentation.
994 33002204

Presettings for Modbus Plus
Configuration Carry out the following steps to configure the adapter after installing the driver:

Edit
configuration

Carry out the following steps to edit the configuration after the first configuration:

Peer Cop
functionality

Several parameter settings must be made to enable Peer Cop communication via
the adapter. The Peer Cop function is deactivated as standard, and should only be
enabled if your application requires Peer Cop communication.

To enable and set parameters for Peer Cop communication, start with the first steps
as with "Edit SA85 Configuration". In the dialog box SA85 configuration, select the
Peer Cop register and make your settings.

Step Action

1 In the start menu, open the folder WinConX/MBXDriver (Start → Program →
WinConX).

2 Double-click on the MBX Driver Configuration icon.
Result: The dialog box MBX Driver configuration is opened.

3 In the Device Configuration register, click on the command button New.
Result: A list box will appear in the Device type column.

4 Select the option SA85 or PCI85 from the list.
Result: The dialog box SA85 configuration is opened.

5 Make the following settings. (also see Help file LMBX9X on the driver CD.)
Note: With the PCI85 you enter the Modbus Node address in the Node list box.

6 Exit the dialog box by clicking Close.
Result: The settings are accepted by the system.

Step Action

1 In the start menu, open the folder WinConX/MBXDriver (Start → Program →
WinConX).

2 Double-click on the MBX Driver configuration icon.
Result: The dialog box MBX Driver configuration is opened.

3 Select SA85 from the Device configuration register.

4 Click on the command button Edit.
Result: The SA85 configuration dialog box is opened.

5 Make the following changes. (also see Help file LMBX9X on the driver CD.)

6 Exit the dialog box by clicking Close.
Result: The settings are accepted by the system.
33002204 995

Presettings for Modbus Plus
Installing the Modbus Plus Driver in Windows 98/2000/NT

Introduction In order to use the Modbus Plus communication, you must first install the
CyberLogic MBX driver for Windows 98/2000/NT version >=4.20 (+ Service Release
1 for Windows 2000)

The following drivers are available on the CD "MBX Driver Suite v4.20":

Installation Carry out the following steps to install the Modbus Plus driver:

Configuration Configuration occurs automatically after installing the driver. To make changes to
the configuration, open the dialog to be edited from the WinConX → xxx MBX
Driver Start Menu, by double clicking on the xxx MBX Configuration Editor
symbol.

Driver Operating system

MBX Driver MBX Driver for connection
between ModConnect Host interface adapters
and 32 bit applications with Windows 98/2000/
NT, p. 998

Windows 98/2000/NT

Virtual MBX Driver Virtual MBX Driver for 16
bit application capability with Windows 98/
2000/NT, p. 997

Windows 98/2000/NT

Remote MBX Driver Remote MBX - Driver for
Remote Operation, p. 999

Windows 98/2000/NT

Ethernet MBX Driver Ethernet MBX - Driver
for Modbus Plus Function via TCP/IP, p. 1000

Windows NT

Step Action

1 Start Windows.

2 Insert the CD "MBX Driver Suite ver. 4.20".

3 Select the Start → Execute command.

4 Enter the CD drive and :\SETUP in the command line.

5 Confirm with OK.

6 Follow the onscreen instructions.
Response: After installation the WinConX program with all installed drivers is
created in the Start Menu.
996 33002204

Presettings for Modbus Plus
Virtual MBX Driver for 16 bit application capability with Windows 98/2000/NT

Introduction Installing the Virtual MBX driver guarantees the run capability of all 16 bit DOS or
Windows 3.x NETLIB/NetBIOS compatible applications in their original binary form
in Windows 98/2000/NT.

Preconditions In order for the Virtual MBX driver to function correctly, additional drivers must be
installed.

The following additional drivers can be installed to enhance the Virtual MBX driver's
run capability:

Installation The virtual MBX driver software for Windows 98/2000 and Windows NT is included
along with other drivers, on the CD "MBX Driver Suite ver4.20".

Installation is done by Autorun when the CD is inserted or can be started manually
(CD drive:\SETUP.EXE). Select the driver to be installed from the main menu. You
will then be taken through the installation step by step. The driver is then configured.

Configuration

Note: A detailed description of this driver can be found in the VMBX9X or VMBXNT
Help file on the "MBX Driver Suite ver4.20" CD.

Driver Operating
system

Application

MBX Windows 98/
2000/NT

Driver for Modbus Plus Host interface adapter

Remote MBX Windows 98/
2000/NT

Driver for accessing remote nodes on the Modbus
Plus and Ethernet network

Ethernet MBX Windows NT Driver for Modbus Plus Emulation via TCP/IP

Note: To guarantee a connection to Concept (= 16-Bit-Application), in the Virtual
MBX Driver Configuration → 16-bit Windows Applications dialog, check the
Support 16-bit Windows Applications checkbox.
33002204 997

Presettings for Modbus Plus
MBX Driver for connection between ModConnect Host interface adapters and
32 bit applications with Windows 98/2000/NT

Introduction The installation of the MBX driver guarantees the connection between the
MODConnect Host interface adapter and 32 bit applications with Windows 98/2000/
NT. This driver also supports the program interfaces MBXAPI and NETLIB. This
means that practically all Modbus Plus compatible software programs can be
operated via Modbus, Modbus Plus and Ethernet networks, without having to make
changes. This also includes 32 bit Windows 98/2000/NT applications and 16 bit old
DOS/Windows applications.

Hardware
support

The MBX driver operates either in Interrupt or Polled mode.

It supports the following ModConnect Host interface adapter:
� ISA
� EISA
� MCA
� PC card (PCMCIA)

Remote
connection

The MBX driver includes the MBX Remote Server. This enables remote nodes to
access local MBX devices (including the Host interface adapter) via any Windows
98/2000/NT compatible network. Also see Remote MBX - Driver for Remote
Operation, p. 999.

Installation The MBX driver software for Windows 98/2000/NT is included along with other
drivers, on the CD "MBX Driver Suite ver4.20".

The installation is carried out by Autorun when the CD is inserted or can be manually
started(CD drive:\SETUP.EXE). Select the driver to be installed from the main
menu. You will then be taken through the installation step by step. The driver is then
configured.

Note: A detailed description of the driver is included on the CD "MBX Driver Suite
ver4.20" in the Help file LMBX9X or LMBXNT.
998 33002204

Presettings for Modbus Plus
Remote MBX - Driver for Remote Operation

Introduction The installation of the remote MBX driver allows remote connection of applications
operated on remote station client nodes. Remote station access of the Modbus Plus
network takes place using a standard LAN (Local Area Network).

This driver also unites applications that support the program interfaces MBXAPI and
NETLIB.

Preconditions This connection is only made if your programming device is a node on the MBX
Remote Server. Also install one of these drivers because the MBX and Ethernet
MBX drivers include the MBX Remote Server.

Installation The remote MBX driver software for Windows 98/2000/NT is included along with
other drivers, on the CD "MBX Driver Suite ver4.20".

The installation is carried out by Autorun when the CD is inserted or can be manually
started(CD drive:\SETUP.EXE). Select the driver to be installed from the main
menu. You will then be taken through the installation step by step. The driver is then
configured.

Configuration The configuration of the remote MBX driver is presently the same as the
configuration of the other MBX drivers. The remote MBX driver is operated as a
remote client node, which does not require a physical host interface adapter.
Therefore the driver configuration also includes the creation of logical devices (MBX
Remote Client), which refer to the physical devices found on the server node.

Note: A detailed description of the driver is included on the CD "MBX Driver Suite
ver4.20" in the Help file RMBX9X or RMBXNT.
33002204 999

Presettings for Modbus Plus
Ethernet MBX - Driver for Modbus Plus Function via TCP/IP

Introduction The installation can only be carried out in Windows NT.

When the Ethernet MBX driver is installed, Modbus Plus function is emulated via
TCP/IP. This driver also supports the program interfaces MBXAPI and NETLIB. This
means that practically all Modbus Plus compatible software programs immediately
have access to TCP/IP based communication without having to make changes. This
also includes 32 bit Windows 98/2000/NT applications and 16 bit old DOS/Windows
applications.

Winsock API When using Winsock API, the Ethernet MBX driver can solve certain critical
problems created by the Winsock interface.

For example: TCP Port 502 can only receive one process with incoming messages.
If several applications attempt to receive unexpected messages, a conflict occurs.
The Ethernet MBX driver eliminated this problem by acting as global dispatcher for
these messages. When using the slave path, Concept in Modbus Plus determines
that several (up to 256) applications refer to these unexpected messages and
execute them simultaneously.

Note: A detailed description of the driver is included on the CD "MBX Driver Suite
ver4.20" in the Help file EMBXNT.
1000 33002204

Presettings for Modbus Plus
Advantage of
using the driver

The most important advantages when using the driver via the Winsock API are:
� Changes are no longer needed for existing NETLIP/NetBIOS/MBXAPI

compatible applications. End user and developer software investments are
completely secured.

� Consistent management and dispatching of unexpected messages, which
prevents overlaps between various products on the same system.

� Complete functionality of TCP/IP communication, while protecting existing
NETLIP/NetBIOS/MBXAPI standards.
For example: Ethernet TCP/IP communication requires a identifier address in
the form of an IP address, and a message contains an identifier index byte. The
Ethernet MBX driver protects this functionality.

� Working with TCP/IP communication is an advantage for software developers not
experienced with the complicated Winsock API.

� A single program model for software developers handles communication in
Modbus, Modbus Plus and Ethernet TCP/IP networks.

� Increased compatibility with various products. Winsock API is more oriented
towards developer executed, TCP/IP strategies in a slightly different manner and
can create compatibility problems in various products.

� Compatible with all MBX products. How e.g. the Virtual MBX driver for use of old
16-bit DOS/Windows applications and the MBX driver which dispatches
messages between Ethernet, Modbus, Modbus Plus and remote MBX nodes.

Remote
connection

The Ethernet MBX driver includes the MBX Remote Server. This enables remote
nodes to access local MBX devices (including Ethernet MBX devices) via any
Windows compatible network. The remote client can be a Windows 98/2000/NT
node with the remote MBX driver installed. Also see Remote MBX - Driver for
Remote Operation, p. 999.

Installation The Ethernet MBX driver software for Windows NT is included along with other
drivers, on the CD "MBX Driver Suite ver4.20".

The installation is carried out by Autorun when the CD is inserted or can be manually
started(CD drive:\SETUP.EXE). Select the driver to be installed from the main
menu. You will then be taken through the installation step by step. The driver is then
configured.
33002204 1001

Presettings for Modbus Plus
Establishing the hardware connection

Introduction

Procedure To establish the hardware connection, do the following:

Note: Please refer to the "Modbus Protocol Reference Guide" for a detailed
description of the hardware setup.

Step Action

1 Set a unique Modbus node address for the CPU using the rotary switch on the
back of the module.

2 Note the Modbus node address set on the CPU’s sliding cover.

3 Connect the CPU to the SA85 interface with a Modbus Plus cable.
Result: The flash interval on the CPU "Modbus +" display changes from 3
flashes per second with a pause to 6 without a pause.
1002 33002204

33002204
K

Presettings when using Modbus
for startup
Introduction

Overview The chapter provides a brief description of the presettings when using Modbus for
startup.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Interface Settings in Windows 98/2000/XP 1004

Interface Settings in Windows NT 1006

Setting up the hardware connection 1007

Transfer problems 1008
1003

Presetting for Modbus Plus
Interface Settings in Windows 98/2000/XP

Win 98: Interface
settings

Carry out the following steps to configure the interface in Windows 95/98/2000:

Step Action

1 Select the My Computer icon.
Result: All available objects are displayed.

2 Select the Control Panel icon.
Result: All available objects are displayed.

3 Select the System icon.
Result: The System Properties dialog box is opened.

4 Select the Device Manager tab.

5 Select Ports (COM and LPT).
Result: The branchesCommunications Port (COMx) and Printer Port (LPTx)
are displayed.

6 Select Communications Port (COMx).
Result: The Communications Port (COMx) Properties dialog box is opened.

7 Select the Port Settings tab.

8 Select the Advanced... command button.
Result:The Advanced Settings dialog box is opened.

9 Check the Use FIFO buffers check box.
Note: Using the FIFO(First In First Out) buffer requires a serial port with 16550
compatible UART (Universal Asynchronous Receiver Transmitter).

10 Use the slider to modify the receive and send buffer by setting both buffers to the
maximum size.

11 Close all dialog boxes using the OK command button.
1004 33002204

Presetting for Modbus Plus
Win 2000/XP:
Interface
settings

Carry out the following steps to configure the interface in Windows 2000/XP:

Step Action

1 Select the My Computer icon.
Result: All available objects are displayed.

2 Select the Control Panel icon.
Result: All available objects are displayed.

3 Only with Win XP: Select the Printer and other Hardware icon.

4 Select the System icon.
Result:The System Properties dialog box is opened.

5 Select the Hardware tab.

6 Select the Device Manager... command button.
Result: The Device Manager window is opened.

7 Select Ports (COM and LPT).
Result: The branchesECP Printer Port (LPT1) and Communications Port
(COMx) are displayed.

8 Select Communications Port (COMx).
Result: The Communications Port (COMx) Properties dialog box is opened.

9 Select the Port Settings tab.

10 Select the Advanced... command button.
Result: The Advanced settings for COMx dialog box is opened.

11 Check the Use FIFO buffers check box.
Note: Using the FIFO(First In First Out) buffer requires a serial port with 16550
compatible UART (Universal Asynchronous Receiver Transmitter).

12 Use the slider to modify the receive and send buffer by setting both buffers to the
maximum size.

13 Close all dialog boxes using the OK command button.
33002204 1005

Presetting for Modbus Plus
Interface Settings in Windows NT

Interface setting Carry out the following steps to set the interface in Windows NT:

Step Action

1 Double-click on the My Computer icon.
Response: All available objects are displayed.

2 Double-click on the Control Panel icon.
Response: All available objects are displayed.

3 Double-click on the Connections icon.
Response: The Connections dialog box is opened.

4 Select the connection to be set in the list box and click on the command button
Settings....
Response: The COMx Settings dialog box is opened.

5 Click on the command button Extended....
Response: The Advanced Settings for COMx dialog box is opened.

6 Activate the check box FIFO activated.
Note: Using the FIFO(First In First Out) buffer requires a serial port with 16550
compatible UART (Universal Asynchronous Receiver Transmitter).

7 Close all dialogs with OK.
1006 33002204

Presetting for Modbus Plus
Setting up the hardware connection

Introduction

Procedure To establish the hardware connection, do the following:

Note: Please refer to the "Modbus Protocol Reference Guide" for a detailed
description of the hardware setup.

Step Action

1 Set a unique Modbus node address for the CPU using the rotary switch on the
back of the module.

2 Note the Modbus node address set on the CPU’s sliding cover.

3 Connect the Modbus interface CPU to the PC serial COM interface with a
Modbus cable.
33002204 1007

Presetting for Modbus Plus
Transfer problems

Introduction Communication errors can occur when loading the EXEC file. Communication,
made via the COM interface with Windows, depends on several factors. These
factors include the programming device clock speed, the communication software
and the other programs (or applications) that are used in the system.

Check list for
transfer
problems

Refer to the following check list if transfer problems occur:

RTU transfer
problems

If sporadic errors occur during data transfer, transfer cannot be carried out
successfully with RTU mode. If this is the case, select ASCII mode. (See Quantum/
Compact/Momentum/Atrium first startup.)

Step Action

1 Check that no other applications are running in the background. Another
application running in the background can mean that the active communication
application in the foreground cannot receive information fast enough.

2 Check that the programming device is running at the highest possible clock
speed. Some programming devices can prolong the lifetime of the buffer battery
with lower speeds. Look in the documentation for you computer.

3 Use a serial connector with a 16550A Universal Asynchronous Receiver
Transmitter (UART). Windows uses the buffering capability of these connections
so that Windows data transfer applications can reach higher speeds even on
slower computers.
1008 33002204

33002204
L

Startup when using Modbus with
the EXECLoader
Introduction

Overview This chapter describes loading executive data (EXEC) onto the PLC with the
EXECLoader program.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Quantum first startup with EXECLoader 1010

Compact first startup with EXECLoader 1015

Momentum first startup for IEC with EXECLoader 1020

Momentum first startup for LL984 with EXECLoader 1025
1009

Modbus with EXECLoader
Quantum first startup with EXECLoader

Introduction This section describes the first startup of Quantum when used with Modbus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1010
� Define Modbus interface, p. 1011
� Protocol settings, p. 1012
� Select EXEC file, p. 1013
� Load EXEC file, p. 1013

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.
1010 33002204

Modbus with EXECLoader
Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 Select the Option button Modbus RTU (RS232) for the RTU transfer mode.
Select the Option button Modbus ASCII (RS232) for the ASCII transfer mode.
Note: Data transfer can only take place if you have configured the same transfer
mode (RTU or ASCII) on the CPU (using a button on the front of the module).

2 Click on the command button Next.
Response: The dialog Modbus Target → RTU/ASCII mode is opened.

3 Use the command button COM Port Settings... to open the dialog COM
Properties.

4 Use the list field Connect using: to select the programming cable interface on
the PC (default setting is COM1).

5 Use the list field Bits per second: to select the Baudrate (default is 9600).

6 Use the list field Parity: to select the parity (default is EVEN).

7 Use the list field Stop Bits to select the Stop bits (default is 1).

8 Click on the command button OK.
Response: The dialog is closed and you return to the dialog Modbus Target →
RTU/ASCII Mode.
33002204 1011

Modbus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus protocol:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response:The Modbus address of the node is automatically entered in the
textfeld Modbus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the dialog Modbus Target → RTU mode, and the
green point disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus node should be
made via a Modbus Plus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Direct Device, Local
Head, Remote I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
1012 33002204

Modbus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Quantum PLC
Types, p. 1086.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
33002204 1013

Modbus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Ready lit

Run slow flashing

Modbus lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit Modbus display.
The Modbus display is lit again once connection is made with Concept.
1014 33002204

Modbus with EXECLoader
Compact first startup with EXECLoader

Introduction This section describes the first startup of Compact when used with Modbus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1015
� Define Modbus interface, p. 1016
� Protocol settings, p. 1017
� Select EXEC file, p. 1018
� Load EXEC file, p. 1018

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.
33002204 1015

Modbus with EXECLoader
Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 Select the Option button Modbus RTU (RS232) for the RTU transfer mode.
Select the Option button Modbus ASCII (RS232) for the ASCII transfer mode.
Note: Data transfer can only take place if you have configured the same transfer
mode (RTU or ASCII) on the CPU (using a button on the front of the module).

2 Click on the command button Next.
Response: The dialog Modbus Target → RTU/ASCII mode is opened.

3 Use the command button COM Port Settings... to open the dialog COM
Properties.

4 Use the list field Connect using: to select the programming cable interface on
the PC (default setting is COM1).

5 Use the list field Bits per second: to select the Baudrate (default is 9600).

6 Use the list field Parity: to select the parity (default is EVEN).

7 Use the list field Stop Bits to select the Stop bits (default is 1).

8 Click on the command button OK.
Response: The dialog is closed and you return to the dialog Modbus Target →
RTU/ASCII Mode.
1016 33002204

Modbus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus protocol:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response:The Modbus address of the node is automatically entered in the
textfeld Modbus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the dialog Modbus Target → RTU mode, and the
green point disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus node should be
made via a Modbus Plus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Direct Device, Local
Head, Remote I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1017

Modbus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file CTSX201D.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1018 33002204

Modbus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Ready lit

Run slow flashing

Modbus lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit Modbus display.
The Modbus display is lit again once connection is made with Concept.
33002204 1019

Modbus with EXECLoader
Momentum first startup for IEC with EXECLoader

Introduction This section describes the first startup of Momentum for IEC when used with
Modbus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1020
� Define Modbus interface, p. 1021
� Protocol settings, p. 1022
� Select EXEC file, p. 1023
� Load EXEC file, p. 1023

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.
1020 33002204

Modbus with EXECLoader
Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 Select the Option button Modbus RTU (RS232) for the RTU transfer mode.
Select the Option button Modbus ASCII (RS232) for the ASCII transfer mode.
Note: Data transfer can only take place if you have configured the same transfer
mode (RTU or ASCII) on the CPU (using a button on the front of the module).

2 Click on the command button Next.
Response: The dialog Modbus Target → RTU/ASCII mode is opened.

3 Use the command button COM Port Settings... to open the dialog COM
Properties.

4 Use the list field Connect using: to select the programming cable interface on
the PC (default setting is COM1).

5 Use the list field Bits per second: to select the Baudrate (default is 9600).

6 Use the list field Parity: to select the parity (default is EVEN).

7 Use the list field Stop Bits to select the Stop bits (default is 1).

8 Click on the command button OK.
Response: The dialog is closed and you return to the dialog Modbus Target →
RTU/ASCII Mode.
33002204 1021

Modbus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus protocol:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response:The Modbus address of the node is automatically entered in the
textfeld Modbus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the dialog Modbus Target → RTU mode, and the
green point disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus node should be
made via a Modbus Plus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Direct Device, Local
Head, Remote I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
1022 33002204

Modbus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
33002204 1023

Modbus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Run slow flashing

COM ACT lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Run not lit

COM ACT not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit COM ACT display.
The COM ACT display is lit again once connection is made with Concept.
1024 33002204

Modbus with EXECLoader
Momentum first startup for LL984 with EXECLoader

Introduction This section describes the first startup of Momentum for LL984 when used with
Modbus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1025
� Define Modbus interface, p. 1026
� Protocol settings, p. 1027
� Select EXEC file, p. 1028
� Load EXEC file, p. 1028

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Note: Loading the EXEC file for LL984 is not necessary with a new computer, since
it is preloaded in the the CPUs Flash RAM. Loading the EXEC file for LL984 is only
necessary if you have already loaded the EXEC file for IEC, and now wish to
change.
You should always check to see if a new EXEC version has been released in the
meantime. This information and the current EXEC file can be found on our website
at www.schneiderautomation.com. You can see the currently loaded version of the
EXEC file in Concept using the Online → Online controller... menu command.

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.
33002204 1025

Modbus with EXECLoader
Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 Select the Option button Modbus RTU (RS232) for the RTU transfer mode.
Select the Option button Modbus ASCII (RS232) for the ASCII transfer mode.
Note: Data transfer can only take place if you have configured the same transfer
mode (RTU or ASCII) on the CPU (using a button on the front of the module).

2 Click on the command button Next.
Response: The dialog Modbus Target → RTU/ASCII mode is opened.

3 Use the command button COM Port Settings... to open the dialog COM
Properties.

4 Use the list field Connect using: to select the programming cable interface on
the PC (default setting is COM1).

5 Use the list field Bits per second: to select the Baudrate (default is 9600).

6 Use the list field Parity: to select the parity (default is EVEN).

7 Use the list field Stop Bits to select the Stop bits (default is 1).

8 Click on the command button OK.
Response: The dialog is closed and you return to the dialog Modbus Target →
RTU/ASCII Mode.
1026 33002204

Modbus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus protocol:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response:The Modbus address of the node is automatically entered in the
textfeld Modbus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the dialog Modbus Target → RTU mode, and the
green point disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus node should be
made via a Modbus Plus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Direct Device, Local
Head, Remote I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1027

Modbus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1028 33002204

Modbus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Run slow flashing

COM ACT lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Run not lit

COM ACT not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit COM ACT display.
The COM ACT display is lit again once connection is made with Concept.
33002204 1029

Modbus with EXECLoader
1030 33002204

33002204
M

Startup when using Modbus with
DOS Loader
Introduction

Overview This chapter describes loading executive data (EXEC) onto the PLC with the DOS
Loader program.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Quantum first startup with DOS Loader 1032

Compact first startup with DOS Loader 1035

Momentum first startup for IEC with DOS Loader 1038

Momentum first startup for LL984 with DOS Loader 1041
1031

Modbus with DOS Loader
Quantum first startup with DOS Loader

Introduction This section describes the first startup of Quantum when used with Modbus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1032
� Define Modbus interface, p. 1032
� Protocol settings, p. 1033
� Select EXEC file, p. 1033
� Load EXEC file, p. 1033

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbusoption.
Response: The Modbus communication setup window is opened.

Step Action

1 Select the programming cable interface on the PC (default setting is COM1).

2 Select the Baudrate (default is 9600).

3 Select the parity (default is EVEN).

4 Select the Option button RTU - 8 Bits for the RTU transfer mode.
Select the option ASCII -7 Bits for the ASCII transfer mode.

5 Select the Stop bits (default is 1).
Note: Data transfer can only take place if you have configured the same transfer
mode (ASCII or RTU) on the CPU (using a button on the front of the module).
1032 33002204

Modbus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus protocol:

Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Enter in Enter PLC Address: the node address set on the CPU (using a rotary
switch on the back of the module).

2 Select the TARGET PATH 0option.

3 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Quantum PLC
Types, p. 1086.

3 Confirm your selection with RETURN.
Response: You return to the main menu.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.
33002204 1033

Modbus with DOS Loader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Ready lit

Run slow flashing

Modbus lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit Modbus display.
The Modbus display is lit again once connection is made with Concept.
1034 33002204

Modbus with DOS Loader
Compact first startup with DOS Loader

Introduction This section describes the first startup of Compact when used with Modbus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1035
� Define Modbus interface, p. 1035
� Protocol settings, p. 1036
� Select EXEC file, p. 1036
� Load EXEC file, p. 1036

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbusoption.
Response: The Modbus communication setup window is opened.

Step Action

1 Select the programming cable interface on the PC (default setting is COM1).

2 Select the Baudrate (default is 9600).

3 Select the parity (default is EVEN).

4 Select the Option button RTU - 8 Bits for the RTU transfer mode.
Select the option ASCII -7 Bits for the ASCII transfer mode.

5 Select the Stop bits (default is 1).
Note: Data transfer can only take place if you have configured the same transfer
mode (ASCII or RTU) on the CPU (using a button on the front of the module).
33002204 1035

Modbus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus protocol:

Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Enter in Enter PLC Address: the node address set on the CPU (using a rotary
switch on the back of the module).

2 Select the TARGET PATH 0option.

3 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Select the *.BIN file CTSX201D.

3 Confirm your selection with RETURN.
Response: You return to the main menu.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.
1036 33002204

Modbus with DOS Loader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Ready lit

Run slow flashing

Modbus not lit

Modbus + fast flashing

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + fast flashing

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit Modbus display.
The Modbus display is lit again once connection is made with Concept.
33002204 1037

Modbus with DOS Loader
Momentum first startup for IEC with DOS Loader

Introduction This section describes the first startup of Momentum for IEC when used with
Modbus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1038
� Define Modbus interface, p. 1038
� Protocol settings, p. 1039
� Select EXEC file, p. 1039
� Load EXEC file, p. 1039

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbusoption.
Response: The Modbus communication setup window is opened.

Step Action

1 Select the programming cable interface on the PC (default setting is COM1).

2 Select the Baudrate (default is 9600).

3 Select the parity (default is EVEN).

4 Select the Option button RTU - 8 Bits for the RTU transfer mode.
Select the option ASCII -7 Bits for the ASCII transfer mode.

5 Select the Stop bits (default is 1).
Note: Data transfer can only take place if you have configured the same transfer
mode (ASCII or RTU) on the CPU (using a button on the front of the module).
1038 33002204

Modbus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus protocol:

Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Enter in Enter PLC Address: the node address set on the CPU (using a rotary
switch on the back of the module).

2 Select the TARGET PATH 0option.

3 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.

3 Confirm your selection with RETURN.
Response: You return to the main menu.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.
33002204 1039

Modbus with DOS Loader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Run slow flashing

COM ACT lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Run not lit

COM ACT not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit COM ACT display.
The COM ACT display is lit again once connection is made with Concept.
1040 33002204

Modbus with DOS Loader
Momentum first startup for LL984 with DOS Loader

Introduction This section describes the first startup of Momentum for LL984 when used with
Modbus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1041
� Define Modbus interface, p. 1042
� Protocol settings, p. 1042
� Select EXEC file, p. 1042
� Load EXEC file, p. 1043

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Note: Loading the EXEC file for LL984 is not necessary with a new computer, since
it is preloaded in the the CPUs Flash RAM. Loading the EXEC file for LL984 is only
necessary if you have already loaded the EXEC file for IEC, and now wish to
change.
You should always check to see if a new EXEC version has been released in the
meantime. This information and the current EXEC file can be found on our website
at www.schneiderautomation.com. You can see the currently loaded version of the
EXEC file in Concept using the Online → Online controller... menu command.

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbusoption.
Response: The Modbus communication setup window is opened.
33002204 1041

Modbus with DOS Loader
Define Modbus
interface

Carry out the following steps to set the Modbus interface:

Protocol settings Carry out the following steps to set the Modbus protocol:

Select EXEC file Carry out the following steps to select the EXEC file:

Step Action

1 Select the programming cable interface on the PC (default setting is COM1).

2 Select the Baudrate (default is 9600).

3 Select the parity (default is EVEN).

4 Select the Option button RTU - 8 Bits for the RTU transfer mode.
Select the option ASCII -7 Bits for the ASCII transfer mode.

5 Select the Stop bits (default is 1).
Note: Data transfer can only take place if you have configured the same transfer
mode (ASCII or RTU) on the CPU (using a button on the front of the module).

Step Action

1 Enter in Enter PLC Address: the node address set on the CPU (using a rotary
switch on the back of the module).

2 Select the TARGET PATH 0option.

3 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.

3 Confirm your selection with RETURN.
Response: You return to the main menu.
1042 33002204

Modbus with DOS Loader
Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.

LED Response

Run slow flashing

COM ACT lit (with some interruptions)

Modbus + 3x flashes with interruptions

LED Response

Run not lit

COM ACT not lit

Modbus + 3x flashes with interruptions

Note: The three flash sequence Modbus + display idicates that no communication
is present on the bus. This is displayed on Modbus by a non-lit COM ACT display.
The COM ACT display is lit again once connection is made with Concept.
33002204 1043

Modbus with DOS Loader
1044 33002204

33002204
N

Startup when using Modbus Plus
with the EXECLoader
Introduction

Overview This chapter describes loading executive data (EXEC) onto the PLC with the
EXECLoader.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Quantum first startup with EXECLoader 1046

Compact first startup with EXECLoader 1050

Atrium first startup with EXECLoader 1054

Momentum first startup for IEC with EXECLoader 1058

Momentum first startup for LL984 with EXECLoader 1062
1045

Modbus Plus with EXECLoader
Quantum first startup with EXECLoader

Introduction This section describes the first startup of Quantum when used with Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1046
� Define SA85 adapter, p. 1046
� Protocol settings, p. 1047
� Select EXEC file, p. 1048
� Load EXEC file, p. 1048

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.

Step Action

1 Select the option button Modbus Plus.

2 Click on the command button Next.
Response: The Modbus Plus Target dialog is opened.

3 Select from the list Devices Online: the adapter address you set when installing
the SA85 in the CONFIG.SYS file (Parameter /n).
1046 33002204

Modbus Plus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus Plus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response: The Modbus address of the node is automatically entered in the
textfeld In the text field Modbus Plus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the Modbus Plus Target dialog, and the green point
disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus network node
should be made via a Modbus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Local Head, Remote
I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1047

Modbus Plus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Quantum PLC
Types, p. 1086.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1048 33002204

Modbus Plus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Ready lit

Run slow flashing

Modbus not lit

Modbus + fast flashing

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + fast flashing

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1049

Modbus Plus with EXECLoader
Compact first startup with EXECLoader

Introduction This section describes the first startup of Compact when used with Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1050
� Define SA85 adapter, p. 1050
� Protocol settings, p. 1051
� Select EXEC file, p. 1052
� Load EXEC file, p. 1052

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.

Step Action

1 Select the option button Modbus Plus.

2 Click on the command button Next.
Response: The Modbus Plus Target dialog is opened.

3 Select from the list Devices Online: the adapter address you set when installing
the SA85 in the CONFIG.SYS file (Parameter /n).
1050 33002204

Modbus Plus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus Plus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response: The Modbus address of the node is automatically entered in the
textfeld In the text field Modbus Plus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the Modbus Plus Target dialog, and the green point
disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus network node
should be made via a Modbus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Local Head, Remote
I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1051

Modbus Plus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file CTSX201D.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1052 33002204

Modbus Plus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Ready lit

Run slow flashing

Modbus not lit

Modbus + fast flashing

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + fast flashing

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1053

Modbus Plus with EXECLoader
Atrium first startup with EXECLoader

Introduction This section describes the first startup of Atrium when used with Modbus Plus. The
hardware requirements for loading EXEC files can be seen in the "Modicon TSX
Atrium" manual.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1054
� Define SA85 adapter, p. 1054
� Protocol settings, p. 1055
� Select EXEC file, p. 1056
� Load EXEC file, p. 1056

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.

Step Action

1 Select the option button Modbus Plus.

2 Click on the command button Next.
Response: The Modbus Plus Target dialog is opened.

3 Select from the list Devices Online: the adapter address you set when installing
the SA85 in the CONFIG.SYS file (Parameter /n).
1054 33002204

Modbus Plus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus Plus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response: The Modbus address of the node is automatically entered in the
textfeld In the text field Modbus Plus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the Modbus Plus Target dialog, and the green point
disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus network node
should be made via a Modbus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Local Head, Remote
I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1055

Modbus Plus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Atrium PLC Types,
p. 1088.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1056 33002204

Modbus Plus with EXECLoader
Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1057

Modbus Plus with EXECLoader
Momentum first startup for IEC with EXECLoader

Introduction This section describes the first startup of Momentum for IEC when used with
Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1058
� Define SA85 adapter, p. 1058
� Protocol settings, p. 1059
� Select EXEC file, p. 1060
� Load EXEC file, p. 1060

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.

Step Action

1 Select the option button Modbus Plus.

2 Click on the command button Next.
Response: The Modbus Plus Target dialog is opened.

3 Select from the list Devices Online: the adapter address you set when installing
the SA85 in the CONFIG.SYS file (Parameter /n).
1058 33002204

Modbus Plus with EXECLoader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus Plus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response: The Modbus address of the node is automatically entered in the
textfeld In the text field Modbus Plus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the Modbus Plus Target dialog, and the green point
disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus network node
should be made via a Modbus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Local Head, Remote
I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1059

Modbus Plus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1060 33002204

Modbus Plus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Run slow flashing

COM ACT not lit

Modbus + fast flashing

LED Response

Run not lit

COM ACT not lit

Modbus + fast flashing

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1061

Modbus Plus with EXECLoader
Momentum first startup for LL984 with EXECLoader

Introduction This section describes the first startup of Momentum for LL984 when used with
Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start EXECLoader, p. 1062
� Define SA85 adapter, p. 1063
� Protocol settings, p. 1063
� Select EXEC file, p. 1064
� Load EXEC file, p. 1064

Start
EXECLoader

The procedure for launching EXECLoaders is as follows:

Note: Loading the EXEC file for LL984 is not necessary with a new computer, since
it is preloaded in the the CPUs Flash RAM. Loading the EXEC file for LL984 is only
necessary if you have already loaded the EXEC file for IEC, and now wish to
change.
You should always check to see if a new EXEC version has been released in the
meantime. This information and the current EXEC file can be found on our website
at www.schneiderautomation.com. You can see the currently loaded version of the
EXEC file in Concept using the Online → Online controller... menu command.

Step Action

1 Open the Concept start menu.
Response: All installed Concept programs are displayed as symbols.

2 Click on the symbol with the identifier EXECLoader.
Response: The EXECLoader program is started.

3 Click on the command Next, as soon as you have read the information on the
page.
Response: The dialog Communication Protocol is opened.
1062 33002204

Modbus Plus with EXECLoader
Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Step Action

1 Select the option button Modbus Plus.

2 Click on the command button Next.
Response: The Modbus Plus Target dialog is opened.

3 Select from the list Devices Online: the adapter address you set when installing
the SA85 in the CONFIG.SYS file (Parameter /n).

Step Action

1 Click on the command button Scan.
Response: The nodes on the Modbus Plus network are read and displayed
graphically in the left window. A green point in the graphic indicates that the CPU
is in RUN mode. To stop the CPU continue as described in step 3.

2 Double-click on the read network node in the graphical display.
Response: The Modbus address of the node is automatically entered in the
textfeld In the text field Modbus Plus Address.

3 Click the right mouse button in the left window.
Response: A context menu with individual PLC commands is opened.

4 If the "Run" display is lit on the CPU, stop the program using the command Stop
PLC.
Response: A message window appears where you can click OK to confirm
stopping the CPU.

5 Click the command button OK, to confirm stopping the CPU.
Response: You return to the Modbus Plus Target dialog, and the green point
disappears from the graph.

6 Activate the check box Bridge, if the connection to the Modbus network node
should be made via a Modbus network using a Modbus bridge.

7 Press the appropriate Option button for your system (PLC, Local Head, Remote
I/O Drop).

8 Click on the command button Next.
Response: The Operation dialog is opened.
33002204 1063

Modbus Plus with EXECLoader
Select EXEC file Carry out the following steps to select the EXEC file:

Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Step Action

1 Press the Option button Transfer EXEC to Device.

2 Click on the command button Browse....
Response: The Concept directory is opened in a standard window.

3 Double-click on the DAT directory.
Response: All available*.BIN files are displayed.

4 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.
Response: The selected *.BIN file is displayed in File name: text field.

5 Click on the command button Open.
Response: You return to the dialog Operation, and the path to the selected
*.BIN file is displayed in the Filename text field.

6 Click on the command button Next.
Response: The dialog File and Device Info is opened. Information is provided
here about the selected *.BIN file and also about the PLC.

7 Click on the command button Next.
Response: The Summary dialog is opened. This gives you an overview of the
settings made for you to check.

Step Action

1 Click on the command button Transfer.
Response: A message box appears warning you that all data available on the
PLC will be lost, and the configuration and program must be reloaded on the
PLC.

2 Click on the command button Yes, to continue the transfer.
Response: The Progress dialog is opened. This gives information about the
progress of the transfer in a progress bar and text.

3 Click Close once the transfer is complete.
Response: The dialog is closed, and you return to the dialog Summary.

4 Click on the command button Close, to close the EXECLoader.
1064 33002204

Modbus Plus with EXECLoader
CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

LED Response

Run slow flashing

COM ACT not lit

Modbus + fast flashing

LED Response

Run not lit

COM ACT not lit

Modbus + fast flashing

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1065

Modbus Plus with EXECLoader
1066 33002204

33002204
O

Startup when using Modbus Plus
with DOS Loader
Introduction

Overview This chapter describes loading executive data (EXEC) onto the PLC with the DOS
Loader program.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Quantum first startup with DOS Loader 1068

Compact first startup with DOS Loader 1072

Atrium first startup with DOS Loader 1075

Momentum first startup for IEC with DOS Loader 1078

Momentum first startup for LL984 with DOS Loader 1081
1067

Modbus Plus with DOS Loader
Quantum first startup with DOS Loader

Introduction This section describes the first startup of Quantum when used with Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1068
� Define SA85 adapter, p. 1068
� Protocol settings, p. 1069
� Select EXEC file, p. 1069
� Load EXEC file, p. 1070

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbus Plusoption.
Response: The Modbus Plus communication setup window is opened.

Step Action

1 Select the adapter address you set when installing the SA85 in the CONFIG.SYS
file (Parameter /n).

2 Confirm your selection with RETURN.
1068 33002204

Modbus Plus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Select EXEC file Carry out the following steps to select the EXEC file:

Step Action

1 Enter in Enter First Routing Path: the node address set on the CPU (using a
rotary switch on the back of the module).

2 Confirm the entry with RETURN.
Response: The option Enter second Routing Path: appears.

3 Acknowledge the option with RETURN.
Response: The window for selecting the TARGET PATH appears.

4 Select the TARGET PATH 1option.

5 Enter in Enter Software Interrupt -> the Interrupt (5c or 5d) selected in the
CONFIG.SYS file.

6 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Quantum PLC
Types, p. 1086.

3 Confirm your selection with RETURN.
Response: You return to the main menu.
33002204 1069

Modbus Plus with DOS Loader
Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.

LED Response

Ready lit

Run slow flashing

Modbus not lit

Modbus + fast flashing

LED Response

Ready lit

Run not lit

Modbus not lit

Modbus + fast flashing
1070 33002204

Modbus Plus with DOS Loader
Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1071

Modbus Plus with DOS Loader
Compact first startup with DOS Loader

Introduction This section describes the first startup of Compact when used with Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1072
� Define SA85 adapter, p. 1072
� Protocol settings, p. 1073
� Select EXEC file, p. 1073
� Load EXEC file, p. 1074

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbus Plusoption.
Response: The Modbus Plus communication setup window is opened.

Step Action

1 Select the adapter address you set when installing the SA85 in the CONFIG.SYS
file (Parameter /n).

2 Confirm your selection with RETURN.
1072 33002204

Modbus Plus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Select EXEC file Carry out the following steps to select the EXEC file:

Step Action

1 Enter in Enter First Routing Path: the node address set on the CPU (using a
rotary switch on the back of the module).

2 Confirm the entry with RETURN.
Response: The option Enter second Routing Path: appears.

3 Acknowledge the option with RETURN.
Response: The window for selecting the TARGET PATH appears.

4 Select the TARGET PATH 1option.

5 Enter in Enter Software Interrupt -> the Interrupt (5c or 5d) selected in the
CONFIG.SYS file.

6 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Select the *.BIN file CTSX201D.

3 Confirm your selection with RETURN.
Response: You return to the main menu.
33002204 1073

Modbus Plus with DOS Loader
Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
1074 33002204

Modbus Plus with DOS Loader
Atrium first startup with DOS Loader

Introduction This section describes the first startup of Atrium when used with Modbus Plus. The
hardware requirements for loading EXEC files can be seen in the "Modicon TSX
Atrium" manual.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1075
� Define SA85 adapter, p. 1075
� Protocol settings, p. 1076
� Select EXEC file, p. 1076
� Load EXEC file, p. 1077

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbus Plusoption.
Response: The Modbus Plus communication setup window is opened.

Step Action

1 Select the adapter address you set when installing the SA85 in the CONFIG.SYS
file (Parameter /n).

2 Confirm your selection with RETURN.
33002204 1075

Modbus Plus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Select EXEC file Carry out the following steps to select the EXEC file:

Step Action

1 Enter in Enter First Routing Path: the node address set on the CPU (using a
rotary switch on the back of the module).

2 Confirm the entry with RETURN.
Response: The option Enter second Routing Path: appears.

3 Acknowledge the option with RETURN.
Response: The window for selecting the TARGET PATH appears.

4 Select the TARGET PATH 1option.

5 Enter in Enter Software Interrupt -> the Interrupt (5c or 5d) selected in the
CONFIG.SYS file.

6 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Atrium PLC Types,
p. 1088.

3 Confirm your selection with RETURN.
Response: You return to the main menu.
1076 33002204

Modbus Plus with DOS Loader
Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1077

Modbus Plus with DOS Loader
Momentum first startup for IEC with DOS Loader

Introduction This section describes the first startup of Momentum for IEC when used with
Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1078
� Define SA85 adapter, p. 1078
� Protocol settings, p. 1079
� Select EXEC file, p. 1079
� Load EXEC file, p. 1080

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbus Plusoption.
Response: The Modbus Plus communication setup window is opened.

Step Action

1 Select the adapter address you set when installing the SA85 in the CONFIG.SYS
file (Parameter /n).

2 Confirm your selection with RETURN.
1078 33002204

Modbus Plus with DOS Loader
Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Select EXEC file Carry out the following steps to select the EXEC file:

Step Action

1 Enter in Enter First Routing Path: the node address set on the CPU (using a
rotary switch on the back of the module).

2 Confirm the entry with RETURN.
Response: The option Enter second Routing Path: appears.

3 Acknowledge the option with RETURN.
Response: The window for selecting the TARGET PATH appears.

4 Select the TARGET PATH 1option.

5 Enter in Enter Software Interrupt -> the Interrupt (5c or 5d) selected in the
CONFIG.SYS file.

6 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.

3 Confirm your selection with RETURN.
Response: You return to the main menu.
33002204 1079

Modbus Plus with DOS Loader
Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.

LED Response

Run slow flashing

COM ACT not lit

Modbus + fast flashing

LED Response

Run not lit

COM ACT not lit

Modbus + fast flashing

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
1080 33002204

Modbus Plus with DOS Loader
Momentum first startup for LL984 with DOS Loader

Introduction This section describes the first startup of Momentum for LL984 when used with
Modbus Plus.

The first startup is subdivided into 5 main sections:
� Start DOS Loader, p. 1081
� Define SA85 adapter, p. 1082
� Protocol settings, p. 1082
� Select EXEC file, p. 1082
� Load EXEC file, p. 1083

Start DOS Loader The procedure for launching DOS Loaders is as follows:

Note: Loading the EXEC file for LL984 is not necessary with a new computer, since
it is preloaded in the the CPUs Flash RAM. Loading the EXEC file for LL984 is only
necessary if you have already loaded the EXEC file for IEC, and now wish to
change.
You should always check to see if a new EXEC version has been released in the
meantime. This information and the current EXEC file can be found on our website
at www.schneiderautomation.com. You can see the currently loaded version of the
EXEC file in Concept using the Online → Online controller... menu command.

Step Action

1 If the CPU display "Run" is lit, stop the program with Concept (in main menu
Online).
Response: The "Run" display is no longer lit; the "Ready" is now lit.

2 Open the directory DAT (CONCEPT\DAT).

3 Double-click on the file LOADER.EXE.
Response: The installation program for the Executive file (EXEC) is started.

4 Select the option Communication Parameters.
Response: The dialog box Communication setup is opened.

5 Select the Modbus Plusoption.
Response: The Modbus Plus communication setup window is opened.
33002204 1081

Modbus Plus with DOS Loader
Define SA85
adapter

Carry out the following steps to define the LAN address set in the CONFIG.SYS file:

Protocol settings Carry out the following steps to set the Modbus Plus protocol settings:

Select EXEC file Carry out the following steps to select the EXEC file:

Step Action

1 Select the adapter address you set when installing the SA85 in the CONFIG.SYS
file (Parameter /n).

2 Confirm your selection with RETURN.

Step Action

1 Enter in Enter First Routing Path: the node address set on the CPU (using a
rotary switch on the back of the module).

2 Confirm the entry with RETURN.
Response: The option Enter second Routing Path: appears.

3 Acknowledge the option with RETURN.
Response: The window for selecting the TARGET PATH appears.

4 Select the TARGET PATH 1option.

5 Enter in Enter Software Interrupt -> the Interrupt (5c or 5d) selected in the
CONFIG.SYS file.

6 Select the ACCEPT CHANGESoption.
Response: You return to the main menu.

Step Action

1 Select the option File Selection.
Response: The File Selection window is opened.

2 Click on the *.BIN file that corresponds to your CPU and the desired
programming language. See the table Loading Firmware for Momentum PLC
Types, p. 1087.

3 Confirm your selection with RETURN.
Response: You return to the main menu.
1082 33002204

Modbus Plus with DOS Loader
Load EXEC file Carry out the following steps to load the EXEC file in the CPU flash RAM:

CPU display
during transfer

During transfer the CPU display is as follows:

CPU display after
transfer

After transfer the CPU display is as follows:

Creating the
software
connection

Carry out the steps given in chapter Creating a Project, p. 75.

Step Action

1 Select the option Load File To PLC.
Response: The Loading Process window is opened, and the warning "The
PROGRAM contents of the device being loaded could be lost after loading a new
Executive. The CONTENTS stored in the Micro H H P will always be lost after
loading a new Executive. Would you like to continue (Y/N) ? N" is displayed.

2 Acknowledge the warning with Y.
Response: The message "Node failed to enter normal mode" appears.

3 The DOWNLOAD PROGRESS window appears which shows the transfer rate.
Response: After the transfer is complete, the message "Download Operation
Successful" appears.

4 Confirm the message with RETURN.
Response: You return to the main menu.

5 Select the Exit Programoption.
Response: The DOS Loader is exited.

LED Response

Run slow flashing

COM ACT not lit

Modbus + fast flashing

LED Response

Run not lit

COM ACT not lit

Modbus + fast flashing

Note: If you recieve an error message, close Concept and start the
BDRESET.EXE file (in the \Concept directory) to reset the SA85. Then start again
from the first step.
33002204 1083

Modbus Plus with DOS Loader
1084 33002204

33002204
P

EXEC files
Loading Firmware

At a Glance You obtain the PLC types of the different firmware by loading the EXEC files (*.BIN).
1085

EXEC files
Loading
Firmware for
Quantum PLC
Types

Assigning the EXEC files:

Loading
Firmware for
Quantum LL984
Hot Standby
Operation

The Quantum CPUs not ending in X or S can be used for the LL984-Hot Standby
operation. A special EXEC file must be downloaded onto the CPU for this. The
loadable for LL984 Hot Standby (CHS_208.DAT) is automatically installed by the
system.

140 CPU Q186Vxxx
(IEC+LL984)

Q486Vxxx
(IEC+LL984)

Q58VxxxE
(IEC+LL984)

Q5RVxxxE
(IEC+LL984)

Q1SVxxxE
(IEC only) *

IEC Memory
(kByte)

113 02 X
(LL984 only)

- - - -

113 02S - - - - X max. 120

113 02X X
(LL984 only)

- - - -

113 03 X - - - - max. 138

113 03S - - - - X max. 380

113 03X X - - - - max. 136

213 04 X - - - - max. 320

213 04S - - - - X max. 604

213 04X X - - - - max. 320

424 0x - X - - - max. 307

424 0xX - X - - - max. 307

434 12 - - X - - max. 892

534 14 - - X - - max. 2556

434 12A
(Redesigned
CPU)

- - - X - max. 892

534 14A/B
(Redesigned
CPU)

- - - X - max. 2556

Note: * After the Q1SVxxxE.BIN EXEC file is loaded the EMUQ.EXE loadable
must be loaded in Concept in the Loadables (Configure → Loadables...) dialog
box.
1086 33002204

EXEC files
Loading
Firmware for
Quantum IEC Hot
Standby
Operation

The CPUs 140 CPU 434 12 and 140 CPU 534 14 can also be used for IEC Hot
Standby. A special EXEC file must be downloaded onto the CPU for this. The
loadables for IEC Hot Standby (IHSB196.EXE and CHS_208.DAT) are
automatically installed by the system.

Loading
Firmware for
Quantum
Equation Editor

The Quantum CPUs not ending in X or S can be used for the LL984- equation editor.
A special EXEC file must be downloaded onto the CPU flash for this. This EXEC file
is not part of the Concept delivery range but can be obtained via the internet at
www.schneiderautomation.com.

Loading
Firmware for
Momentum PLC
Types

Assigning the EXEC files for Momentum PLC type (CPU 171 CCC 7x0 x0):

Assigning the EXEC files for Momentum PLC type (CPU 171 CCC 9x0 x0):

Assigning the EXEC files for Momentum PLC type (CPU 171 CCS 7x0 x0):

The stripped EXEC of the M1 supports up to a maximum of 44 I/O modules.

171 CCC M1LLVxxx
(LL984 only)

M1IVxxxE
(IEC only)

IEC Memory
(kByte)

760 10-984 X -

760 10-IEC - X 220

780 10-984 X -

780 10-IEC - X 220

171 CCC M1EVxxx
(LL984 only)

M1EVxxxE
(IEC only)

IEC Memory
(kByte)

960 20-984 X -

960 30-984 X -

960 30-IEC - X 236

980 20-984 X -

980 30-984 X -

980 30-IEC - X 236

171 CCS M1LLVxxx
(LL984 only)

M1IVxxxE
(IEC only)

IEC Memory
(kByte)

700 10 X -

700/780 00 X -

760 00-984 X -

760 00-IEC - X 160
33002204 1087

EXEC files
Loading
Firmware for
Compact PLC
Types

The CTSXxxxD.BIN EXEC file must be downloaded onto the CPU flash for all
Compact CPUs.

Loading
Firmware for
Atrium PLC
Types

A special EXEC file must be downloaded onto the CPU flash for each Atrium CPU
(see table below).

180 CCO EXEC File

121 01 AI38Vxxx.BIN

241 01 AI58Vxxx.BIN

241 11 AI5Vxxx.BIN
1088 33002204

33002204
Q

INI Files
Introduction

Overview This chapter contains settings that can be made in several INI files.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

Q.1 Settings in the CONCEPT.INI File 1091

Q.2 Settings in the Projectname.INI File 1101
1089

INI Files
1090 33002204

INI Files
Q.1 Settings in the CONCEPT.INI File

Introduction

Overview This section describes the settings in the CONCEPT.INI file.

What's in this
Section?

This section contains the following topics:

Topic Page

General information on the Concept INI file 1092

INI Print Settings 1093

INI Settings for Register Address Format, Variable Storage and Project Name
Definition

1094

INI-settings for path information and global DFBs [Path] [Upload] 1095

Representation of Internal Data in the INI File 1097

INI Settings for the LD Section 1098

INI Settings for Online Processing [Colors] 1098

INI Settings for Warning Messages and the Address Format 1099

INI Security Settings 1099

INI-Settings for the RDE behavior 1100

INI settings for the Options> Toolsmenu 1100
33002204 1091

INI Files
General information on the Concept INI file

Introduction Software settings can be specified in the Concept INI file. Settings generated by the
program are also stored in the INI file. The INI file initially contains defaults that can
subsequently be changed.

Where is the
CONCEPT.INI file
situated?

After the installation of Concept, the CONCEPT.INI file can be found in the Windows
directory.

Editing the INI
File

Various settings are given (exception: path information) and divided into several
keywords. The lines that begin with a semicolon (;) represent comments or explain
the subsequent setting.

To edit the INI file, only change the lines without semicolons (;) or insert a new line
after the comment, in which to specify the path. Then save the modified file.

Note: Changes in the INI file are only accepted after Concept/DFB Editor/
Converter is restarted.
1092 33002204

INI Files
INI Print Settings

Printing FBD
Sections

Defining default page break values for FBD sections:

Printing LD
Sections

Defining default page break values for LD sections:

Printing SFC
Sections

Defining default page break values for SFC sections:

Setting Description

DX_FBD_PORTRAIT= Specify portrait width (default value at delivery = 75)

DY_FBD_PORTRAIT= Specify portrait height (default value at delivery = 100)

DX_FBD_LANDSCAPE= Specify landscape width (default value at delivery = 100)

DY_FBD_LANDSCAPE= Specify landscape height (default value at delivery = 50)

Setting Description

DX_LD_PORTRAIT= Specify portrait width (default value at delivery = 70)

DY_LD_PORTRAIT= Specify portrait height (default value at delivery = 35)

DX_LD_LANDSCAPE= Specify landscape width (default value at delivery = 105)

DY_LD_LANDSCAPE= Specify landscape height (default value at delivery = 18)

Setting Description

DX_SFC_PORTRAIT= Specify portrait width (default value at delivery = 11)

DY_SFC_PORTRAIT= Specify portrait height (default value at delivery = 20)

DX_SFC_LANDSCAPE= Specify landscape width (default value at delivery = 15)

DY_SFC_LANDSCAPE= Specify landscape height (default value at delivery = 11)
33002204 1093

INI Files
INI Settings for Register Address Format, Variable Storage and Project Name
Definition

Defining the
register address
format
[Common]

Specifying the register address format (e.g. 4x reference):

Defining variable
storage
[Common]

Store variables in file:

Determining the
validity of digits
in project names
[Common]

Determining the validity of digits in project names:

Determining the
validity of
located variables
in DFBs
[Common]

Determining the validity of located variables in DFBs:

Setting Description

AddrStyle=0 0 = 400001 (default)

AddrStyle=1 1 = 4:00001 (separator)

AddrStyle=2 2 = 4:1 (compact)

AddrStyle=3 3 = QW00001 (IEC)

Setting Description

ExportVariables=1 After a project has been downloaded and saved, all
variables are stored in a file. This file is called *.VAR and is
found in the "Project directory" → VAR → *.VAR. All
variables and their attributes are shown in this file.

ExportVariables=0 Additional storage of variables in a file does not take place.

Setting Description

ProjectPrefixDigit=1 Project names that begin with a digit are allowed.

ProjectPrefixDigit=0 Project names that begin with a digit are not allowed.

Setting Description

AllowLocatedVarsInDFB=1 Located variables are allowed in DFBs.
Note: This setting can also be made directly in Concept
in Options → Preferences → IEC Extensions →
Allow Located Variable in DFBs dialog box.
1094 33002204

INI Files
INI-settings for path information and global DFBs [Path] [Upload]

Defining the Path
for Global DFBs
and Help Files
[Path]

Defining paths:

Defining the
Storage of Global
DFBs during
Upload

Defining a new directory for global DFBs:

Setting Description

GlobalDFBPath= Specify path for global DFBs.

HelpPath= Specify path for help files.

Setting Description

PreserveGlobalDFBs=1 During the upload process, a GLB directory for the global
DFBs is created in the project directory. By doing this,
existing global DFBs in the Concept DFB directory will not
be overwritten.
Advantage: No impact on other projects, as the global
DFBs in these projects are not overwritten.
Disadvantage: Multiple copies of global DFBs.
Note: Also read the sections entitled How are Global DFBs
Stored?, p. 1096 and How are Global DFBs Read?, p. 1097.

PreserveGlobalDFBs=0 During the upload process, global DFBs are downloaded
into the Concept DFB directory. Different versions of
duplicated DFBs are recognized and overwritten after being
queried.
Advantage: Only one copy of global DFBs for several
projects.
Disadvantage: Existing global DFBs whose versions differ
from the uploaded DFBs are overwritten. This can cause
other projects to be inconsistent in certain circumstances.
Note: Also read the sections entitled How are Global DFBs
Stored?, p. 1096 and How are Global DFBs Read?, p. 1097.
33002204 1095

INI Files
Define exclusion
of global/local
DFBs from
Online-Backup
[Backup]

Define exclusion of global and/or local DFBs from Online-Backup :

How are Global
DFBs Stored?

Storage of global DFBs depends on the settings in the INI file:

Setting Description

ExcludeAllDFBs=1 All DFBs are excluded from Online-Backup. I.e. for the
Online → Loading or Online → Load changes the backup-
directory does not contain the "DFB" and "DFB.GLB".
The standard setting contains no entries, i.e. all DFBs are
present in the Backup directory.
Note: This setting is applied to all projects on the PC.

ExcludeGlobalDFBs=1 Global DFBs are excluded from Online-Backup. I.e. for the
Online → Loading or Online → Load changes the backup-
directory does not contain the directory "DFB.GLB".
The standard setting contains no entries, i.e. all DFBs are
present in the Backup directory.
Note: This setting is applied to all projects on the PC.

If a project... then the global DFBs are...

is recreated, and no new DFB path has
been defined in the INI file,

stored in the x:\CONCEPT\DFB directory.

is recreated, and a DFB path has been
defined in the INI file,

stored in the DFB directory of the defined path.

is uploaded, and the following settings exist
in the INI file:
- the [Path] option
"GlobalDFBPath=x:\DFB",
- the [Upload] option
"PreserveGlobalDFBs=0",

stored in the DFB directory defined in the path
(x:\DFB).

is uploaded, and the following settings exist
in the INI file:
- the [Path] option
"GlobalDFBPath=x:\DFB",
- the [Upload] option
"PreserveGlobalDFBs=1",

stored in the project's GLB directory.
Note: The GLB directory is always used first, as
soon as the "PreserveGlobalDFBs=1" [Upload]
option is specified.
1096 33002204

INI Files
How are Global
DFBs Read?

When a project is opened, the system looks for global DFBs in the following order:

Only the global DFBs from one directory are used, i.e. if step 1 is unsuccessful, then
step 2 follows, step 3 is only performed if neither of the first two are successful.

Representation of Internal Data in the INI File

Representation
of Internal Data

The following keywords appear in the INI file and contain internal data according to
specific Concept applications:
� [Debug]
� [Configurator]
� [Search]
� [Registration]
� [Register]

Step Description

1 The project directory is searched for an existing GLB directory.

2 The relevant settings are checked in the INI file.
For example:
[Path]: GlobalDFBPath=x:\DFB
[Upload]: PreserveGlobalDFBs=0
In this example, the DFB directory of the path defined is searched for global
DFBs.

3 The DFB directory in x:\CONCEPT\DFB is searched.
33002204 1097

INI Files
INI Settings for the LD Section

Defining the
Contact
Connection

Defining the contact connection to the power rail:

Defining the
Number of
Columns/Fields

Defining the number of columns/fields (only available when editing with keys):

INI Settings for Online Processing [Colors]

Online
Animation

Specify the representation of the line width and color:

Setting Description

ExtendedAutoConnect=0 Only the contacts from the first column in the LD editor are
automatically connected to the power rail.

ExtendedAutoConnect=1 The contacts from the first and second columns in the LD
editor are automatically connected to the power rail.

Setting Description

AutowrapColumn=51 The section contains 51 columns/fields by default. It is
possible to set from 2 to 51 columns/fields.
When the last column/field is reached, the following objects
are automatically placed in the next lines. When this
happens, a link with the previous lines is established, i.e. the
objects are generated within a common rung.
Note: Since with automatic line breaking, the objects that
follow are placed in the second column/field, it is
recommended that you set the contact connection to the
power rail as ExtendedAutoConnect=0.

Setting Description

AnimationSize= Specifying the line width of connections in FBD and LD and for
objects in LD: The default setting is 1. It can be set from 1 to 10.

ColorScheme= Specifying the color scheme for FBD, IL, ST, LD and SFC. It is
possible to make a setting from 0 to 11.
Note: An overview of the 12 different color schemes can be
found in the online help (see "Colors" in the index).
1098 33002204

INI Files
INI Settings for Warning Messages and the Address Format

Multiple
assignment
[Warnings]

Reducing the number of warnings (referring to multiple assignment) in the message
window:

Address format
in LOG file
[Logging]

Define address format in LOG file:

INI Security Settings

Concept
Password
Length [Securit]

Define the character length of the Concept password (see Concept Security):

Setting Description

Multiassignment=1 Warning given if at least one variable X and a component
X.C. was written.

Multiassignment=0 Warning given if one variable X was written at least twice as
a whole.

Setting Description

DD_MONTH_YYYY=1 In Concept, the month is shown with 3 characters and in
English. Example: 24-Dec-2002 14:46:24

DD_MONTH_YYYY=0 The format set in Windows is shown. The setting can be
made in Windows with: Control Panel → Regional Options
→ Date → Short date format:

Setting Description

MinPasswordLength=X The Concept password must have at least X
characters. X = 6 to 12
33002204 1099

INI Files
INI-Settings for the RDE behavior

Uploaded State
RAM in the RDE
[RDE]

Define overwriting of the uploaded state RAM values

RDE-Animation
[RDE]

Define start of the RDE-Animation

INI settings for the Options> Toolsmenu

Defining
applications or
help programs
[TOOLS]

Defining applications or help programs to execute via the Options → Tools menu
command:

Setting Description

UpdateProjectStateRam=1 Uploaded state RAM values can be overwritten in the
RDE by Online-Operations (Standard Setting).

UpdateProjectStateRam=0 Uploaded state RAM values can not be overwritten in
the RDE by Online-Operations.

Setting Description

StartWithAnimation=1 RDE-Animation is automatically started when a table is
opened.

StartWithAnimation=0 RDE-Animation is not started automatically when a
table is opened. (Standard settings)

Setting Description

Toolx = ToolName;

Commandline

Parameter

Enter the name and command line to define the tools.
Example:
Tool1 = CCLaunch; CCLaunch.exe

Tool2 = SFCSAVE; d:\src\sfcsave\sfcsave.exe /

I=d:\src\sfcsave\sfcsave.ini /

P=%PRJDIR%PRJNAME.prj /M=%PLCADDR /

F=%PRJDIR%PRJNAME.sfc

Note: File names must be assigned in the 16 bit (8.3) file name format. This means
that no more than 8 characters may be used for the file name and no more than 3
characters for the file extension or file type.
1100 33002204

INI Files
Q.2 Settings in the Projectname.INI File

Introduction

Overview This section describes the settings in the Projectname.INI file.

What's in this
Section?

This section contains the following topics:

Topic Page

General Information for Projectname.INI File 1102

INI Settings for the Event Viewer [Online Events] 1102

INI-Settings for the Online-Backup [Backup] 1103
33002204 1101

INI Files
General Information for Projectname.INI File

Introduction Project specific software settings can be made in the Projectname.INI file. The file
is either created automatically by Concept (after configuration changes) or can be
created by the user. Make sure that the file name always contains the respective
project names, e.g. TESTPRJ.INI. The file can contain preset values which can then
be changed.

Where is the
Projectname.INI
file situated?

The Projectname.INI file must be in the Concept project directory , e.g.
C:\CONCEPT\TESTPRJ\TESTPRJ.INI

Editing the INI
File

The different settings are separated in keywords, e.g. [Configurator]. To edit the
INI file, enter the command line with the value or the path for the keyword (see INI
Settings for the Event Viewer [Online Events], p. 1102). Then save the created or
modified file.

INI Settings for the Event Viewer [Online Events]

Event Viewer
[Online Events]

Specifying a user defined error description:

Note: Changes to the INI file are accepted directly by Concept.

Setting Description

Error code="Error description"

Example:
-2676="Error in process D"

The defined error description is assigned to
the error code.
Note: The error code is entered in the event
viewer (in the main menu Online).

Parameter value="Error

description"

Example:
62860="Error in process B"

The defined error description is assigned to
the parameter value.
Note: For EFB ONLEVT, error code -2696 is
always used. Therefore the value at the
PARAM input is selected for the assignment
of the error description.
1102 33002204

INI Files
INI-Settings for the Online-Backup [Backup]

Define path and
backup files

Example 1

Entry in the Projekt.INI-file:

The entry contains the generated *.BAT- or *.EXE-file, and the source and target
path of the backup files.

Entry in the batch-file backup.bat:

All backup-files and sub-directories of the project are saved in the specified path. %1
and %2 refer to the source and target path in the entry of the Projekt.INI-file.

Note: For the path data of the target, the UNC-Notation can be used.

Example 2

Entry in the Projekt.INI-file:

The entry contains the generated *.BAT- or *.EXE-file. The source and target path
of the backup-files is located in the *.BAT- or *.EXE-file.

Entry in the batch-file backup.bat:

Backup files from the project directory and the sub-directories "Var" and "myprj.DIA"
are saved in the paths specified.

Note: For the path data of the target, the UNC-Notation can be used.

Command=backup.bat d:\src\prj1 \\sg-cc\prj\prj1

Rem Copy complete project with all subfolders
xcopy %1 %2 /s

Command=backup.bat

 Rem Copy Project-, Var- and Diag files to remote PC

xcopy d:\src\prj1*.*
xcopy d:\src\prj1\Var*.*
xcopy d:\src\prj1\myprj.DIA*.*

\\sg-cc\prj\prj1
\\sg-cc\prj\prj1\Var
\\sg-cc\prj\prj1\myprj.DIA
33002204 1103

INI Files
1104 33002204

33002204
R

Interrupt Processing
Introduction

Overview This chapter describes Interrupt processing handling with Quantum and Concept
IEC.

What's in this
Chapter?

This chapter contains the following sections:

Section Topic Page

R.1 General information about interrupt sections 1107

R.2 Interrupt section: Timer event section 1109

R.3 Interrupt section: I/O event section 1124

R.4 Modules for interrupt sections 1129
1105

Interrupt Processing
1106 33002204

Interrupt Processing
R.1 General information about interrupt sections

General Information about Interrupt Processing

At a Glance Starting from Concept version 2.6 together with the Quantum modules
140-CPU-434 A or 140-CPU-534 14 A/B and the 140-HLI-340-00 if required,
Interrupt processing functions are made available for the configuration of IEC
conforming programs. Special Interrupt sections allows the creation of both Time
interrupts (Timer event sections) and I/O interrupts (I/O event sections).

The following Interrupt processing is possible:
� Timer event sections

� Timer event sections enable program sections to be processed in constant,
programmable time intervals. The internal time interrupt is used for this.
To determine the time interrupts, every Timer event section is assigned a
constant time value for their execution (scan rate) in a range from 10 ms to
1023s in the Section Properties for Timer Event Sections (in the File main
menu) dialog box. Optimal runtime behavior can be configured using the
Interval, Time base and Phase parameters (moving the execution to another
cycle with the same interval). The processing of a cyclic section is immediately
stopped if a time interrupt occurs. After the Timer event section is processed,
the program execution is continued from the point where it was stopped.
Using the direct I/O blocks IMIO_IN and IMIO_OUT on these sections enables
current inputs and outputs to be processed at predetermined intervals. Time
critical problems can be easily resolved, i.e. the realization of control loops in
closed loop control systems.
The maximum permitted execution duration for a Timer event section is 20 ms!

� I/O Event sections
� I/O event sections enable program parts to be processed according to a signal

change on a specific Hardware interrupt input. The Interrupts required for this
(spontaneous I/O) are generated by the 140-HLI-340-00 module.
Every I/O event section is assigned a pin (input) on the 140-HLI-340-00
module via the Section Properties for I/O Event Sections (in the File main
menu) dialog box. Depending on the parameters set in the Configurator, the
signal change on pin (0->1, 1->0 or 0->1 and 1->0) triggers a hardware
interrupt on the CPU logic processor. The processing of a cyclic section or
Timer event section is immediately stopped if a hardware interrupt occurs.
After the I/O event section is processed, the program execution is continued
from the point where it was stopped.
Using the direct I/O blocks IMIO_IN and IMIO_OUT on these sections enables
spontaneous outputs (and further inputs) to be processed extremely quickly.
A critical event can be reacted to immediately, i.e. independently from the
cycle.
33002204 1107

Interrupt Processing
Special EFBs for Interrupt sections allow among other things, the program
dependent disable/enable of Interrupt sections.
The maximum permitted execution duration for an I/O event section is 20 ms!

Limitations Interrupt sections cannot be used together with the following functions:
� Hot Standby

� If an additional Hot Standby is configured in a project, an error message is
returned!

� ULEX/ASUP with modules 140-NOA-611-00, 140-NOA-611-10 and
140-ESI-062-00
� The 140-NOA-622-00 can be used together with Interrupt sections instead of

the 140-NOA-611-x0.
� LL984 sections

Note: The direct I/O blocks IMIO_IN and IMIO_OUT only work when the
corresponding I/O module is installed on the local backplane or backplane
expander!
1108 33002204

Interrupt Processing
R.2 Interrupt section: Timer event section

Introduction

Overview This chapter contains a description for timer event sections.

What's in this
Section?

This section contains the following topics:

Topic Page

Timer Event Sections 1110

Defining the Scan Rate 1111

Defining the Phase 1112

Execution Order 1115

Operating System 1116

Examples for Parameterization 1119
33002204 1109

Interrupt Processing
Timer Event Sections

Introduction Timer event sections are created in the same way as cyclic sections using the File
→ New Section... menu command. A maximum of 16 Timer event sections can be
created. A Timer event section can only be selected when a CPU 140-CPU-434 or
140 CPU 534 is configured in the Configurator.

The CPU Hardware 140 CPU 434 12 A or 140 CPU 534 14 A/B is required to
execute a program with Timer event sections!

A new Timer Events group is created automatically for Timer event sections where
the Timer event sections are displayed. This group is placed in before the cyclic
sections and after the I/O Events group in the project browser (see Execution Order,
p. 1115).

Timer event sections are programmed principally as with cyclic sections (see Step
3: Creating the User Program, p. 85), only the selection of existing EFBs is limited.

Blocks (EFB) not available in Timer event sections:
� F_TRIG, R_TRIG (IEC library, group: Edge Detection)
� TOF, TON, TP (IEC library, group: Timer)
� ERR2HMI, ERRMSG (DIAGNO library, group: Diag View)
� ACT_DIA, DYN_DIA, GRP_DIA, LOCK_DIA, PRE_DIA, REA_DIA (DIAGNO

library, group: Diagnostics)
� XACT, XACT_DIA, XDYN_DIA, XGRP_DIA, XLOCK_DIA, XLOCK,

XPRE_DIA, XREA_DIA, (DIAGNO library, group: Extended)

Timer event section parameters are set in the Section Properties for Timer Event
Sections dialog box using the Interval, Time Base and Phase parameters. This
enables you to specify at what intervals (scan rate) the sections is processed.

Simultaneously created Timer event sections, for example with the same scan rate,
are processed consecutively according to the execution order and priority in the
same cycle. The runtimes of these Timer event sections are added in this cycle and
make it longer. This can be avoided by using a time delayed execution of the section
(phase) which allows a more constant total cycle time to be achieved.

After the program is started, the execution of the 1st Timer event section is delayed
by 1 second!
1110 33002204

Interrupt Processing
Defining the Scan Rate

Description Using the entries Time Base and Interval, it is possible to define nearly any scan
rate for a timer event section.

Selectable time base:
� 10 ms
� 100 ms
� 1 s

Interval values:
� whole number multiples of the time base in the range from 1 to 1023

scan rate = interval * time base
� can be defined in range from 10 ms to 1023 s
� can be set in steps that correspond to the selected time base

Examples Example 1:

Required scan rate = 0.310 s (310 ms)

For a scan rate of 0.31 s, define a value of 31 for the interval

Example 2:

Required scan rate = 0.3 s (300 ms)

For a scan rate of 0.3 s, a value of 30 or 3 can be defined for the interval depending
on the selected time base.

Basically, any resulting setting can be selected. However, the possible setting
should take the phase into consideration (see Defining the Phase, p. 1112).

Note: Changing section properties in online mode caused the CHANGED state.
That means a Download Changes must take place so that the state is EQUAL
again. When changing the phase, the PLC also has to be stopped and started
again (Online → Online Control Panel) to accept the changes.

Scan rate (ms) Interval Time base (ms)

310 31 10

Scan rate (ms) Interval Time base (ms)

300 30 10

300 3 100
33002204 1111

Interrupt Processing
Defining the Phase

Description To prevent several timer event sections from being processed in the same cycle,
they can be assigned different phase values.

Phase values:
� whole number multiples of the time base
� Range from 0 to interval -1, max. 1022

Note: Changing section properties in online mode caused the CHANGED state.
That means a Download Changes must take place so that the state is EQUAL
again. When changing the phase, the PLC also has to be stopped and started
again (Online → Online Control Panel) to accept the changes.
1112 33002204

Interrupt Processing
Examples Example 3:

Example 4:

Several timer event sections with 300 ms scan rate (see Example 3)

Result: All sections are processed in the same cycle, i.e. the program cycle time
increased by the sum of the runtimes for all sections to be executed every 300 ms!

Example 5:

3 to 16 timer event sections with 300 ms scan rate (see Example 3)

1. Section

2. Section

3. Section

... Section

16. Section

Scan rate (ms) Interval Time base (ms) Phases Max. number of time
displaced timer event
sections

300 30 10 0...29 30

300 3 100 0...2 3

Interval Time base (ms) Phase

30 10 0 (defined for all sections)

Interval Time base (ms) Phase

30 10 0

Interval Time base (ms) Phase

30 10 1

Interval Time base (ms) Phase

30 10 2

Interval Time base (ms) Phase

30 10 ...

Interval Time base (ms) Phase

30 10 15
33002204 1113

Interrupt Processing
Result: After the program is started, the 1st execution takes place for the
� 2nd timer event section (phase 1) after 1s+1*10 ms = 1s+10 ms
� 3rd timer event section (phase 2) after 1s+2*10 ms = 1s+20 ms
� ...
� 16. timer event section (phase 15) after 1s+15*10 ms = 1s+150 ms
� 1st timer event section (phase 0) after 1s+30*10 ms = 1s+300 ms

The second execution after the program start takes place for the
� 2nd timer event section (phase 1) after 1s+300 ms+1*10 ms = 1s+310 ms
� 3rd timer event section (phase 2) after 1s+300 ms+2*10 ms = 1s+320 ms
� ...
� 16th timer event section (phase 15) after 1s+300 ms+15*10 ms = 1s+450 ms
� 1st timer event section (phase 0) after 1s+300 ms+30*10 ms = 1s+600 ms

Each further execution of a timer event section takes place after exactly 300 ms, i.e.
the runtimes of the (max. 16) timer event sections are distributed over (max. 30
selectable) different program cycles.

Explanation of
example 5

If a time base of 10 ms is selected in example 5 (phase 0...29), the maximum
number of 16 timer event sections can be executed using time displacement. That
means a time displacement between 10 and 300 ms per section can be selected in
steps of 10 ms. Each of the maximum possible 16 timer event sections is executed
in a different program cycle. Every 10...20 ms, a program cycle extended by the
execution duration of a timer event section occurs.

If a time base of 100 ms is selected in example 5 (phase 0, 1 and 2), the execution
of the max. 16 possible timer event sections is distributed over only a max. of 3 time
displaced program cycles. In these 3 program cycles, several timer event sections
must be executed one after the other. Every 100 ms, a program cycle extended by
the sum of the execution times of several timer event sections occurs!

The user should use the time base and phase to guarantee evenly distributed timer
event sections (see timing diagram).)
1114 33002204

Interrupt Processing
Execution Order

Description When creating the first timer event section, a new Timer Events group is created
automatically in which the new section appears. This group is placed in before the
cyclic sections and after the I/O Events group in the project browser. The next timer
event section to be created is automatically always placed at the end in the group
Timer Events.

Priority Timer event sections do not have priorities set between them, i.e. they cannot be
interrupted by another timer event section.

If several timer event sections are triggered at the same time in a program cycle,
they are executed consecutively according to the order in which they were created.

However, an I/O Event Sections, p. 1125 has a higher priority and therefore
interrupts a timer event section. The interrupted timer event section is only returned
to after the execution of the I/O section is completed.
33002204 1115

Interrupt Processing
Operating System

Setting
parameters
according to
runtime aspects

Take the following into consideration when setting parameters for timer event
sections:
1. The runtime for a timer event section can be a maximum of 20 ms (see also

Runtime Error, p. 1117).
2. The scan rate (interval * time base) must be larger than the runtime for the timer

event section.
3. Select the phase in a program cycle so that only one timer event section is

executed whenever possible.
4. Take note of the distance between phases for time base 10 ms and a runtime for

the timer event section > 10 ms! (Select a distance between phases >1 to prevent
runtime overlaps.)

5. For optimal processor load:
The execution of all timer event sections must be evenly distributed by selecting
a suitable phase using the time for the scan rates.

6. Sufficient time must be remaining for the execution of the cyclic sections so that
the cyclic I/O is handled in acceptable intervals!

7. Execution of inputs and outputs as direct I/O modules IMIO_IN and IMIO_OUT in
the timer event section. For example if the uneven intervals for the cyclic I/O are
not sufficient to create a control loop.

8. Create a timing diagram (see Examples for Parameterization, p. 1119):
This makes it possible to determine the optimal phase, as well as the actual time
intervals for the cyclic I/O.

9. Do not create all control loops as timer event sections:
Control loops can also be programmed as cyclic sections using the necessary
high-speed CPUs and the SAMPLETM module!
1116 33002204

Interrupt Processing
Runtime Error Any errors that occur when processing the program, e.g. runtime is exceeded,
overflow, etc. are shown in a table in the Event Sections dialog box (in the Online
main menu).

The following table is based on Example 4: Control loops with different scan rates,
with phases, constant cycle time, p. 1123 in section "Examples for Setting
Parameters":

HelpCloseRefresh

IO Event Sections Timer SectionsGenerated Load

Last: 33%

Maximum: 49%

Event Sections - 17.03.02 13:41:18

Section GrossNetOverflowsExecu-EventsLeft Status

RK_1 434301.9521.95242 00000100

RK_2 353501.4801.4802 00000100

RK_3 424202.1432.14362 00000100

RK_4 434301.1131.11322 00000100

Inter-

80+0

100+10

70+20

130+20
33002204 1117

Interrupt Processing
Runtime
exceeded for a
timer event
section

If the runtime for a timer event section is >20 ms, the following process is carried out:
1. In the Event Sections table, status bit 2 is set (watchdog timer has expired)
2. The timer event section is disabled.

Carry out the following steps to detect when the runtime is exceeded in timer event
sections:

Carry out the following steps if an timer event section is disabled:

Step Action

1 Using the ISECT_STAT function block.

2 Activate the mode to display enable states in the project browser. Then the
symbols for the disabled sections are marked red.

3 Call the status table in Online → Event Sections.

Step Action

1 Reduce the runtime of the timer event section to <20 ms.

2 Enabling a timer event section Examples:
� In the project browser, activate the Switch enable state command.
� Programming: 0 -> sectname.disable

Caution: If the runtime error still occurs, the timer event section is not
processed even though the section symbol is marked green in the project
browser!

3 After enabling the timer event section, the RESET function block parameter on
the ISECT_STAT EFB must be set. Only then are current values shown in the
status table (Online → Event Sections).
1118 33002204

Interrupt Processing
Examples for Parameterization

Introduction The examples shown here with the values given represent theoretical information
and should mainly be used to clarify the effects of various phase values and
distances between phases on the entire system. With (preset) values determined
using timing diagrams and tests, the user can establish a predictive view and reach
an optimal distribution of the timer event sections and prevent runtime overflows.
33002204 1119

Interrupt Processing
Example 1:
Control loops
with the same
scan rates, all
phases = 0

Preset values:

Timing diagram (times in ms)

RK Control loop
Cyclic Program Cyclic Program
Total Cycle Time Total Cycle Time

Preset
values

Scan rate Time base Interval Runtime Phase

Cyclic
Program

30

RK 1 120 ms 10 ms 12 5 0

RK 2 120 ms 10 ms 12 <20 0

RK 3 120 ms 10 ms 12 15 0

RK 4 120 ms 10 ms 12 10 0

RK 5 120 ms 10 ms 12 10 0

Note: The total cycle time switches between 90 and 30 ms.

Ges.Zykl.

Zykl. Pr.

RK1

RK2

RK3

RK4

RK5

90 30 90 30

5

20

15

10

10

30 30

5

20

15

10

10

30 30
1120 33002204

Interrupt Processing
Example 2:
Control loops
with the same
scan rates, with
phases,
minimum
distance
between phases

Preset values:

Timing diagram (times in ms)

RK Control loop
Cyclic Program Cyclic Program
Total Cycle Time Total Cycle Time

Preset
values

Scan rate Time base Interval Runtime Minimum
distance
between
phases

Phase

Cyclic
Program

30

RK 1 120 ms 10 ms 12 5 0

RK 2 120 ms 10 ms 12 <20 5<10 ms->+1 1

RK 3 120 ms 10 ms 12 15 20<30 ms->+3 4

RK 4 120 ms 10 ms 12 10 15<20 ms->+2 6

RK 5 120 ms 10 ms 12 10 10<20 ms->+2 8

Note: The total cycle time (except for the first cycle) switches between 80 and
40 ms.

Ges.Zykl.

Zykl. Pr.

RK1

RK2

RK3

RK4

RK5

75 45 80 40

0

20

15

10

10

5

20

15

10

10

120 240

5

33002204 1121

Interrupt Processing
Example 3:
Control loops
with the same
scan rates, with
phases, constant
cycle time

Preset values:

Timing diagram (times in ms)

RK Control loop
Cyclic Program Cyclic Program
Total Cycle Time Total Cycle Time

Preset
values

Scan rate Time base Interval Runtime Phase

Cyclic
Program

30

RK 1 120 ms 10 ms 12 5 0

RK 2 120 ms 10 ms 12 <20 6

RK 3 120 ms 10 ms 12 15 2

RK 4 120 ms 10 ms 12 10 4

RK 5 120 ms 10 ms 12 10 10

Note: The total cycle time (except for the first cycle) is always 60 ms.

Ges.Zykl.

Zykl. Pr.

RK1

RK2

RK3

RK4

RK5

55 65 60 60

0

20

15

10

10

5

20

15

10

10

120 240

5

1122 33002204

Interrupt Processing
Example 4:
Control loops
with different
scan rates, with
phases, constant
cycle time

Preset values:

Timing diagram (times in ms)

RK Control loop
Cyclic Program Cyclic Program
Total Cycle Time Total Cycle Time

Preset
values

Scan rate Time base Interval Runtime Phase

Cyclic
Program

30

RK 1 80 ms 10 ms 8 5 0

RK 2 100 ms 10 ms 10 5 1

RK 3 70 ms 10 ms 7 5 2

RK 4 130 ms 10 ms 13 5 2

Note: The timing diagram beginning here shows a favorable distribution of the
execution of all sections. The cyclic I/O is also handled in predictable intervals.
However, overlapping of individual runtimes cannot be ruled out.

Ges.Zykl.

Zykl. Pr.

RK1

RK2

RK3

RK4

45

0

80

100 200 300

30 45 30 45 30 40 40 40

80 80 80

100 100 100 100

70 70 70 70 70

<13 130 130
33002204 1123

Interrupt Processing
R.3 Interrupt section: I/O event section

Introduction

Overview This chapter contains a description for I/O event sections.

What's in this
Section?

This section contains the following topics:

Topic Page

I/O Event Sections 1125

Priority 1126

Runtime Error 1127
1124 33002204

Interrupt Processing
I/O Event Sections

Introduction An I/O event section is carried out depending on the hardware interrupts of a
140-HLI-340-00.

The 140-HLI-340-00 module is equipped with 16 inputs that can be configured as
either fast inputs or interrupt inputs. Only interrupt inputs can trigger the execution
of an I/O event section with the edge defined. Parameters must be set for the 140-
HLI-340-00 module in the PLC Configuration accordingly.

I/O event sections are created in the same way as cyclic sections using the File →
New Section... menu command. An I/O event section can only be selected when a
CPU 140-CPU-434 oder 140-CPU-534 is configured in the Configurator. The CPU
Hardware 140 CPU 434 12 A or 140 CPU 534 14 A/B is required to execute a
program with I/O event sections!

A maximum of 64 I/O event sections can be created. The required hardware
interrupts can be created by more than 4 HLI modules.

When creating the first I/O event section, a new I/O Events group is created
automatically in which the new section appears. The I/O Events group appears first
in the project browser, i.e. before the Timer Events groups and the cyclic sections.
Every additional I/O event section to be created is automatically placed in the I/O
Events group according to their priority (from top to bottom).

An execution order has no relevance for I/O event sections, since these sections can
only be processed when a hardware interrupt occurs.

An I/O event section can only be interrupted by hardware interrupts with higher
Priority, p. 1126.

I/O event sections are programmed principally as with cyclic sections (see Step 3:
Creating the User Program, p. 85), only the selection of existing EFBs is limited.

Blocks (EFB) not available in Timer event sections:
� F_TRIG, R_TRIG (IEC library, group: Edge Detection)
� TOF, TON, TP (IEC library, group: Timer)
� ERR2HMI, ERRMSG (DIAGNO library, group: Diag View)
� ACT_DIA, DYN_DIA, GRP_DIA, LOCK_DIA, PRE_DIA, REA_DIA (DIAGNO

library, group: Diagnostics)
� XACT, XACT_DIA, XDYN_DIA, XGRP_DIA, XLOCK_DIA, XLOCK,

XPRE_DIA, XREA_DIA, (DIAGNO library, group: Extended)

I/O event section parameters are set in the Section Properties for I/O Event
Sections dialog box using the Slot and Input Pin parameters. The Slot entry
defines the slot on the local backplane when the 140-HLI-340-00 module is
positioned for the triggered interrupt. The Input Pin defines pin number (1 to 16) for
the 140-HLI-340-00 inputs that trigger the section processing.
33002204 1125

Interrupt Processing
Priority

Description I/O event sections have priorities set between them. An active I/O event section can
be interrupted by an I/O event section with higher priority. The interrupted section is
continued after the section with higher priority has been processed.

If other interrupts with lower priority occur while processing an I/O event section, the
active I/O event section is not interrupted. However, these interrupt signals are
saved and the respective sections are processed according to their priority when the
active I/O event section is complete. If an interrupt which is saved but not yet
processed occurs again, the second interrupt is lost . The overflow counter is
incremented (see the table in the Event Sections dialog box in the Online main
menu).

The priority of an I/O event section is determined by the position of an input pin on
the 140-HLI-340-00 module in the local backplane. Therefore:

The lower the slot address and the lower the pin number, the higher the priority. The
slot and the input pin number of an I/O event section is assigned in the Section
Properties for I/O Event Sections dialog box.

Example 1:

Example 2:

Priority Slot Input Pin

Higher 1 5

Lower 6 1

Priority Slot Input Pin

Higher 3 5

Lower 3 6

Note: I/O event sections can be interrupted over several priority levels (interrupt in
interrupt), therefore the total cycle can be greatly increased.
1126 33002204

Interrupt Processing
Runtime Error

Description Any errors that occur when processing the program, e.g. runtime is exceeded,
overflow, etc. are shown in a table in the Event Sections dialog box (in the Online
main menu).

Table in the dialog box Event Sections:

Event Sections - 17.03.02 16:48:36

HelpCloseRefresh

IO Event Sections Timer Sections

Section Name GrossNetOverflowsExecutionsEventsPosi- Status

Spont_i1 1414057057006:01 00000100

Spont_i2 2929028528506:02 00000100

Spont_i3 1515028528506:03 00000100

Spont_i4 3030028528506:04 00000100

Generated Load

Last: 0%

Maximum: 0%
33002204 1127

Interrupt Processing
Runtime
exceeded for an
I/O event section

If the runtime for a timer event section is >20 ms, the following process is carried out:
1. In the Event Sections table, status bit 2 is set (watchdog timer has expired)
2. The I/O event section is disabled.

Carry out the following steps to detect when the runtime is exceeded in I/O event
sections:

Carry out the following steps if an I/O event section is disabled:

Step Action

1 Using the ISECT_STAT function block.

2 Activate the mode to display enable states in the project browser. Then the
symbols for the disabled sections are marked red.

3 Call the status table in Online → Event Sections.

Step Action

1 Reduce the runtime of the I/O event section to <20 ms.

2 Enable the I/O event section. Examples:
� In the project browser, activate the Switch enable state command.
� Programming: 0 -> sectname.disable

Caution: If the runtime error still occurs, the I/O event section is not
processed even though the section symbol is marked green in the project
browser!

3 After enabling the I/O event section, the RESET function block parameter on the
ISECT_STAT EFB must be set. Only then are current values shown in the status
table (Online → Event Sections).
1128 33002204

Interrupt Processing
R.4 Modules for interrupt sections

EFBs for Interrupt Sections

EFBs to disable
and enable
interrupt
sections

The following function blocks are available:
� ISECT_OFF

� The ISECT_OFF block can be used to disable a specific I/O event section or
Timer event section, i.e. the interrupt has no effect on this Interrupt section.
The name of the section to be disabled is defined by the SECT_CTRL data
type variable entered at the input. This variable is automatically created for
each section.

� ISECT_ON
� The ISECT_ON block can be used to enable a specific I/O event section or

Timer event section, i.e. the interrupt has effect on this Interrupt section again.
The name of the section to be enabled is defined by the SECT_CTRL data
type variable entered at the input. This variable is automatically created for
each section.

� I_LOCK
� The I_LOCK block is used to disable all I/O event sections or Timer event

sections, i.e. the interrupts have no effect on Interrupt sections.
� I_UNLOCK

� The I_UNLOCK block is used to enable all I/O event sections or Timer event
sections, i.e. the interrupts have effect on the respective Interrupt sections.

Other EFBs for
Interrupt
sections

The following function blocks are available:
� ISECT_STAT

� With the ISECT_STAT block, the status (see Event Sectionsdialog box) of a
section can be read and evaluated by the program.

� I_MOVE
� The I_MOVE block prevents an interruption of value assignments from an

input to an output by an interrupt. This means the processing of an I_MOVE is
not interrupted by an interrupt. This enables data consistency between an
input and an output if the variable is used both in cyclic as well as in interrupt
sections. The MOVE block has the same function, but value assignment is not
interrupt protected (for further details see the block description).
33002204 1129

Interrupt Processing
1130 33002204

33002204
S

Automatic Connection to the PLC
At a Glance

Overview This chapter is a description of both methods of automatically connecting with a
PLC.

What's in this
Chapter?

This chapter contains the following topics:

Topic Page

Automatic Connection with Command Line Parameters (Modbus, Modbus +,
TCP/IP)

1132

Automatic Connection with the CCLaunch Tool (Modbus Plus) 1135
1131

Automatic Connection to the PLC
Automatic Connection with Command Line Parameters (Modbus, Modbus +,
TCP/IP)

At a Glance You can make a connection with any PLC automatically by using the command line
of the Windows dialog Create Shortcut and entering the Modbus Plus Routing path.

The command line parameters for automatically connecting are added to the end of
the command line parameters for the project symbol (see following image).

Dialog box: Create connection

Note: If, in dialog Common Preferences option Connect to controller at Startup
(Options → Preferences → Common...) is activated then the extended
parameters for the connection to the PLC are priority.

Create connection

Enter the path and name of the object, for
which the connection should be created, or try
it using the "Browse" button.

Browse...

C:\Concept\Concept.exe plant1.prj /c=mbp:pm,41.0.0.0.0

Command line:

CancelNext >< Previous

MSDOS

xxW
in

do
w

s

xx
xx
xx
xx
xx
xx

?

xxx

xxx
xxx

xxx
xxx

xxx
1132 33002204

Automatic Connection to the PLC
Creating an
Automatic
Connection with
Command Line
Parameters

The procedure for connecting automatically using command line parameters is as
follows:

Step Action

1 Go to Start → Settings → Taskbar... and open the dialog Taskbar Properties.

2 In the register Start Menu Programs/Expanded (Win2000), select the Add...
command button.

3 In the Create Shortcut dialog box, select the Browse... command button.

4 In the Browse dialog box, go to the Concept installation path and double-click
on the file CONCEPT.EXE.
Reaction: The Browse dialog box is closed and the file CONCEPT.EXE
including the path is entered in the command line: E.g.
C:\CONCEPT\CONCEPT.EXE.

5 Now, add the project name of the project in the command line, e.g.
C:\CONCEPT\CONCEPT.EXE PLANT1.PRJ.

6 Now add the Modbus Plus-Routing path of the PLC to the command line, e.g.
C:\CONCEPT\CONCEPT.EXE PLANT1.PRJ /c=mbp : 41.0.0.0.0 and confirm
your entries with the Next >button.
Note: A definition of the various command line parameters can be found in
section Definition of Command Line Parameters, p. 1134.

7 In the Select program group dialog box, select an existing program group for
the symbol or create a new one using New folder... .
Confirm the entry using the Next >command button.

8 In the Select program designation dialog box, select the project name and
confirm using the Finish command button.

9 Close the Taskbar Properties dialog box with OK.
Reaction: The properties dialog box is closed and the project symbol is available
in the start menu of the folder you selected.

10 Open the folder with the project symbol in the Start menu.
Select the project symbol and click the right mouse button.
Reaction: A menu window is opened.

11 Select the Properties command button.
Reaction: The "Project Symbol Name" Properties dialog box is opened.

12 Go to the Connection register and complete the command line Working
directory/Target (Win2000) with the name of the project directory, e.g.
C:\CONCEPT\PROJECTS.
Confirm the entry using the Apply command button.

13 Then exit the dialog box by selecting OK.

14 Open the project by clicking on the project symbol.
Reaction: Concept reads the defined Modbus Plus Routing path and
automatically creates a connection to the PLC.
33002204 1133

Automatic Connection to the PLC
Definition of
Command Line
Parameters

The command line parameters contain the PLC address and the protocol type
(Modbus, Modbus Plus, TCP/IP).

Command line parameters for Modbus:

Example:

Command line parameters for Modbus Plus:

Example:

Command line parameters for TCP/IP:

Example:

Disadvantage In a large Modbus Plus Network, a separate command line is required for each PLC.
If an address changes at any time (e.g. Bridge address the command line
parameters must be redone for every programming device that makes access.

Protocol type Command line
parameters

Meaning

Modbus /c=[x,]mb:p[, m] x - Serial connection (COM): 1 - 4, optional, default is 1
p - PLC address: 0 - 255
m - Modus for device communication: RTU/ASCII, optional, default is
RTU

Note: The settings (Baud Rate, Data Bits, Parity, Stop Bits) for the
serial connection (COM) are made in the Connect to PLC dialog box.

c:\concept\concept.exe plant1.prj /c=2,mb:001,ASCII

Protocol type Command line parameters Meaning

Modbus Plus /c=[x,]mbp: n.n.n.n.n x - Modbus Plus connection: 0 -1, optional, default is 0
n - Routing path (PLC address): 0 - 64

c:\concept\concept.exe plant1.prj /c=mbp:41.0.0.0.0

Protocol type Command line
parameters

Meaning

TCP/IP /c=[x,]mbt:m.m.m.m

/c=[x,]mbt:HostName

x - Bridge Modbus Plus Index: 0 -255, optional, default is 0
m - IP address: 0 - 255
HostName - e.g. for the PLCSIM32, the HostName = Localhost

c:\concept\concept.exe plant1.prj /c=mbt:139.158.107.9

c:\concept\concept.exe plant.prj /c=mbt:Localhost
1134 33002204

Automatic Connection to the PLC
Automatic Connection with the CCLaunch Tool (Modbus Plus)

At a Glance You can use the CCLaunch tool to create a complete Routing path, which then
creates a connection to the PLC in the corresponding Modbus Plus segment
automatically.

The CCLaunch tool can also only be used to open the assigned project for making
changes.

The CCLaunch tool is executed with the CCLAUNCH.EXE file in the Concept
directory.

Selection
condition

The CCLaunch tool can only be used if a topology file exists and the path is entered
in the CCLaunch tool.

Creating an
Automatic
Connection

Create an ASCII file (topology file) for the automatic connection to the PLC and
name it e.g. CCLEXAMP.TXT. Define all Routing paths and segment names of the
entire project network in this *.TXT file. Then, copy the file to your server so that
every programming device can access it. Compared with a command line parameter
entry (see Automatic Connection with Command Line Parameters (Modbus,
Modbus +, TCP/IP), p. 1132), you have the advantage of only having to change one
file when an address (e.g. bridge address) changes in the routing path.

To activate the automatic connection, start the CCLaunch tool. Enter the path of the
topology file, the path for the projects and the address of the Modbus Plus adapter
one time only. The definitions will then remain until they are changed again by the
user. Enter the start segment that must be defined for the programming device (PC).
Define the target segment that must be defined for the PLC to which it will be
connected as another setting. Then select the PLC that you have defined in the
topology file.

These entries allow CCLaunch to create a complete Routing path, which then
creates a connection to the PLC automatically.

Note: For creating the automatic connection, the check box Autoconnect to PLC
(Options → Preferences → Commun...) must be activated.
33002204 1135

Automatic Connection to the PLC
Opening
Associated
Project

To open the assigned project directly, define the same settings as for the automatic
connection. Then activate the check box Open Associated Project.

Creating the
Topology File
(*.TXT)

The topology file (*.TXT) only has to be created one time and it contains the
description of the entire Modbus Plus network as well as an option description of the
projects assigned to the PLC. These can then be stored centrally on the network/
server.

The topology file (*.TXT) contains the two keywords [Segment] and [Routing]. The
definition of the individual segment begins with keyword [Segment]. The definition of
each individual Routing path begins with the keyword [Routing].

Example:

[Segment]="Segment name"

"PLC Name"="MB+Address" : "Project name" (optional)

"PLC Name"="MB+Address" : "Project name" (optional)

[Routing]SegmentX="Routing path"

[Routing]SegmentY="Routing path"

Note: If you only want to open this project, deactivate the check box Autoconnect
to PLC.

Note: For the definition of the PLC, the PLC name must be unique throughout the
entire Modbus Plus network.
1136 33002204

Automatic Connection to the PLC
Example of a
Topology File
(*.TXT)

Example of a Modbus Plus network with different segments:

A Segment A
B Segment B
C Segment C
D Segment D
E Segment E

PLC1
PLC2

PLC3

PLC4

PLC5

PLC6

PLC7

PLC8

PLC10 PLC11 PLC12

A B

C

D E

Ethernet TCP/IP

PLC9

MB+ Bridge

MB+ Bridge

MB+ Bridge

MB+ Bridge

25
14

20

6

3
33

23
17

12

2

44
21

4

63

489
11

10

53

38 19

37

29 5
33002204 1137

Automatic Connection to the PLC
Contents of the Topology File (*.TXT)

[Segment]=SegmentA

PLC1 = 25 : Project 1

[Routing] SegmentB=6.44

[Routing] SegmentC=6

[Routing] SegmentD=6.9

[Routing] SegmentE=6.48

PLC2 = 14 : Project 2
PLC3 = 3 : Project 3
PLC4 = 20 : Project 4

[Segment]=SegmentB

PLC5 = 23 : Project 5

[Routing] SegmentA=2.4

[Routing] SegmentC=2

[Routing] SegmentD=2.9

[Routing] SegmentE=2.48

PLC6 = 17 : Project 6

[Segment]=SegmentC

PLC7 = 21 : Project 7

[Routing] SegmentA=4

[Routing] SegmentB=44

[Routing] SegmentD=9

[Routing] SegmentE=48

PLC8 = 11 : Project 8

[Segment]=SegmentD

PLC9 = 38 : Project 9

[Routing] SegmentA=10.4

[Routing] SegmentB=10.44

[Routing] SegmentC=10

[Routing] SegmentE=10.48

PLC10 = 19: Project 10

[Segment]=SegmentE

PLC11 = 21: Project 11

[Routing] SegmentA=37.4

[Routing] SegmentB=37.44

[Routing] SegmentC=37

[Routing] SegmentD=37.9

PLC12 = 11: Project 12
1138 33002204

Automatic Connection to the PLC
Editing with the
CCLaunch Tool

After creating the topology file (*.TXT), execute the following steps in the CCLaunch
tool for the automatic connection:

Step Action

1 Double click on the CCLAUNCH.EXE file in the Concept directory.
Reaction: The CCLaunch tool is started.

2 Go to the Settings tab and define the path for the topology file (*.TXT) and the
project path.
Note: This is normally only defined once since this path should not have to be
changed. This means that these settings only have to be made once and they
remain saved until you change them for whatever reason.
Example:
Topology file: C:\CONCEPT\CONNECT\CCLEXAMP.TXT
Path for projects: C:\CONCEPT\TESTPRJ\

3 Select the hardware address for the network connection in the Modbus+ Port
field.
Note: Whether this is port 0 or port 1 can be determined from the Windows
system settings.

4 Select tab Select PLC, and enter the start segment, the target segment and the
PLC that you want to connect with for the Routing path.
Example:
Start Segment: SegmentB
Dest. Segment: SegmentE
PLC: PLC8
In this example, the programming device is in segment B and should create a
connection to the PLC with the name "PLC8" in segment E.

5 Go to the Start Options area and activate the check box Autoconnect to PLC.

6 Press the Start Concept button.
Reaction: Concept reads the created Routing path and automatically creates a
connection to the PLC.
33002204 1139

Automatic Connection to the PLC
1140 33002204

Glossary
active Window The window, which is currently selected. Only one window can be active at any
given time. When a window is active, the color of the title bar changes, so that it is
distinguishable from the other windows. Unselected windows are inactive.

Actual
Parameters

Current connected Input / Output Parameters.

Addresses (Direct) addresses are memory ranges on the PLC. They are located in the State
RAM and can be assigned Input/Output modules.
The display/entry of direct addresses is possible in the following formats:
� Standard Format (400001)
� Separator Format (4:00001)
� Compact format (4:1)
� IEC Format (QW1)

ANL_IN ANL_IN stands for the "Analog Input" data type and is used when processing analog
values. The 3x-References for the configured analog input module, which were
specified in the I/O component list, are automatically assigned to the data type and
should therefore only be occupied with Unlocated Variables.

ANL_OUT ANL_OUT stands for the "Analog Output" data type and is used when processing
analog values. The 4x-References for the configured analog output module, which
were specified in the I/O component list, are automatically assigned to the data type
and should therefore only be occupied with Unlocated Variables.

ANY In the present version, "ANY" covers the BOOL, BYTE, DINT, INT, REAL, UDINT,
UINT, TIME and WORD elementary data types and related Derived Data Types.

A

33002204 1141

Glossary
ANY_BIT In the present version, "ANY_BIT" covers the BOOL, BYTE and WORD data types.

ANY_ELEM In the present version, "ANY_ELEM" covers the BOOL, BYTE, DINT, INT, REAL,
UDINT, UINT, TIME and WORD data types.

ANY_INT In the present version, "ANY_INT" covers the DINT, INT, UDINT and UINT data
types.

ANY_NUM In the present version, "ANY_NUM" covers the DINT, INT, REAL, UDINT and UINT
data types.

ANY_REAL In the present version, "ANY_REAL" covers the REAL data type.

Application
Window

The window contains the workspace, menu bar and the tool bar for the application
program. The name of the application program appears in the title bar. An
application window can contain several Document windows. In Concept the
application window corresponds to a Project.

Argument Synonymous with Actual parameters.

ASCII-Mode The ASCII (American Standard Code for Information Interchange) mode is used to
communicate with various host devices. ASCII works with 7 data bits.

Atrium The PC based Controller is located on a standard AT board, and can be operated
within a host computer in an ISA bus slot. The module has a motherboard (requires
SA85 driver) with two slots for PC104 daughter-boards. In this way, one PC104
daughter-board is used as a CPU and the other as the INTERBUS controller.

Backup file
(Concept-EFB)

The backup file is a copy of the last Source coding file. The name of this backup file
is "backup??.c" (this is assuming that you never have more than 100 copies of the
source coding file). The first backup file has the name "backup00.c". If you have
made alterations to the Definitions file which do not cause any changes to the EFB
interface, the generation of a backup file can be stopped by editing the source
coding file (Objects → Source). If a backup file is created, the source file can be
entered as the name.

B

1142 33002204

Glossary
Base 16 literals Base 16 literals are used to input whole number values into the hexadecimal system.
The base must be denoted using the prefix 16#. The values can not have any signs
(+/-). Single underscores (_) between numbers are not significant.

Example
16#F_F or 16#FF (decimal 255)
16#E_0 or 16#E0 (decimal 224)

Base 2 literals Base 2 literals are used to input whole number values into the dual system. The
base must be denoted using the prefix 2#. The values can not have any signs (+/-).
Single underscores (_) between numbers are not significant.

Example
2#1111_1111 or 2#11111111 (decimal 255)
2#1110_0000 or 2#11100000 (decimal 224)

Base 8 literals Base 8 literals are used to input whole number values in the octosystem. The base
must be denoted using the prefix 8#. The values can not have any signs (+/-). Single
underscores (_) between numbers are not significant.

Example
8#3_77 or 8#377 (decimal 255)
8#34_0 or 8#340 (decimal 224)

Binary
Connections

Connections between FFB outputs and inputs with the data type BOOL.

Bit sequence A data element, which consists of one or more bits.

BOOL BOOL stands for the data type "boolean". The length of the data element is 1 bit
(occupies 1 byte in the memory). The value range for the variables of this data type
is 0 (FALSE) and 1 (TRUE).

Bridge A bridge is a device which connects networks. It enables communication between
nodes on two networks. Each network has its own token rotation sequence - the
token is not transmitted via the bridge.

BYTE BYTE stands for the data type "bit sequence 8". Entries are made as base 2 literal,
base 8 literal or base 16 literal. The length of the data element is 8 bits. A numerical
value range can not be assigned to this data type.
33002204 1143

Glossary
Clipboard The clipboard is a temporary memory for cut or copied objects. These objects can
be entered in sections. The contents of the clipboard are overwritten with each new
cut or copy.

Coil A coil is a LD element which transfers the status of the horizontal connection on its
left side, unchanged, to the horizontal connection on its right side. In doing this, the
status is saved in the relevant variable/direct address.

Compact format
(4:1)

The first digit (the Reference) is separated from the address that follows by a colon
(:) where the leading zeros are not specified.

Constants Constants are Unlocated variables, which are allocated a value that cannot be
modified by the logic program (write protected).

Contact A contact is a LD element, which transfers a status on the horizontal link to its right
side. This status comes from the boolean AND link of the status of the horizontal link
on the left side, with the status of the relevant variable/direct address. A contact
does not change the value of the relevant variable/direct address.

Data transfer
settings

Settings which determine how information is transferred from your programming
device to the PLC.

Data Types The overview shows the data type hierarchy, as used for inputs and outputs of
functions and function blocks. Generic data types are denoted using the prefix
"ANY".
� ANY_ELEM

� ANY_NUM
ANY_REAL (REAL)
ANY_INT (DINT, INT, UDINT, UINT)

� ANY_BIT (BOOL, BYTE, WORD)
� TIME

� System Data types (IEC Extensions)
� Derived (from "ANY" data types)

C

D

1144 33002204

Glossary
DCP I/O drop A remote network with a super-ordinate PLC can be controlled using a Distributed
Control Processor (D908). When using a D908 with remote PLC, the super-ordinate
PLC considers the remote PLC as a remote I/O drop. The D908 and the remote PLC
communicate via the system bus, whereby a high performance is achieved with
minimum effect on the cycle time. The data exchange between the D908 and the
super-ordinate PLC takes place via the remote I/O bus at 1.5Mb per second. A
super-ordinate PLC can support up to 31 D908 processors (addresses 2-32).

DDE (Dynamic
Data Exchange)

The DDE interface enables a dynamic data exchange between two programs in
Windows. The user can also use the DDE interface in the extended monitor to call
up their own display applications. With this interface, the user (i.e. the DDE client)
can not only read data from the extended monitor (DDE server), but also write data
to the PLC via the server. The user can therefore alter data directly in the PLC, while
monitoring and analyzing results. When using this interface, the user can create
their own "Graphic Tool", "Face Plate" or "Tuning Tool" and integrate it into the
system. The tools can be written in any language, i.e. Visual Basic, Visual C++,
which supports DDE. The tools are invoked when the user presses one of the
buttons in the Extended Monitor dialog field. Concept Graphic Tool: Configuration
signals can be displayed as a timing diagram using the DDE connection between
Concept and Concept Graphic Tool.

Declaration Mechanism for specifying the definition of a language element. A declaration usually
covers the connection of an identifier to a language element and the assignment of
attributes such as data types and algorithms.

Definitions file
(Concept-EFB)

The definitions file contains general descriptive information on the selected EFB and
its formal parameters.

Defragmenting With defragmenting, unanticipated gaps (e.g. resulting from deleting unused
variables) are removed from memory.
See also PLC Selection in the context help.

Derived Data
Type

Derived data types are data types, which are derived from Elementary Data Types
and/or other derived data types. The definition of the derived data types is found in
the Concept data type editor.
A distinction is made between global data types and local data types.
33002204 1145

Glossary
Derived Function
Block (DFB)

A derived function block represents the invocation of a derived function block type.
Details of the graphic form of the invocation can be found in the "Functional block
(instance)". In contrast to the invocation of EFB types, invocations of DFB types are
denoted by double vertical lines on the left and right hand side of the rectangular
block symbol.
The output side of a derived function block is created in FBD language, LD
language, ST language, IL language, but only in the current version of the
programming system. Derived functions can also not be defined in the current
version.
A distinction is made between local and global DFBs.

DFB Code The DFB code is the section's DFB code which can be executed. The size of the
DFB code is mainly dependent upon the number of blocks in the section.

DFB instance
data

The DFB instance data is internal data from the derived function blocks used in the
program.

DINT DINT stands for the data type "double length whole number (double integer)".
Entries are made as integer literal, base 2 literal, base 8 literal or base 16 literal. The
length of the data element is 32 bits. The value range for variables of this data type
reaches from -2 exp (31) to 2 exp (31) -1.

Direct
Representation

A method of displaying variables in the PLC program, from which the assignment to
the logical memory can be directly - and indirectly to the physical memory - derived.

Document
Window

A window within an application window. Several document windows can be open at
the same time in an application window. However, only one document window can
ever be active. Document windows in Concept are, for example, sections, the
message window, the reference data editor and the PLC configuration.

DP (PROFIBUS) DP = Remote Peripheral

Dummy An empty file, which consists of a text heading with general file information, such as
author, date of creation, EFB designation etc. The user must complete this dummy
file with further entries.

DX Zoom This property enables the user to connect to a programming object, to monitor and,
if necessary change, its data value.
1146 33002204

Glossary
EFB code The EFB code is the executable code of all EFBs used. In addition the used EFBs
count in DFBs.

Elementary
functions/
function blocks
(EFB)

Identifier for Functions or Function blocks, whose type definitions are not formulated
in one of the IEC languages, i.e. whose body for example can not be modified with
the DFB editor (Concept-DFB). EFB types are programmed in "C" and are prepared
in a pre-compiled form using libraries.

EN / ENO (Enable
/ Error signal)

If the value of EN is equal to "0" when the FFB is invoked, the algorithms that are
defined by the FFB will not be executed and all outputs keep their previous values.
The value of ENO is in this case automatically set to "0". If the value of EN is equal
to "1", when the FFB is invoked, the algorithms which are defined by the FFD will be
executed. After the error-free execution of these algorithms, the value of ENO is
automatically set to "1". If an error occurs during the execution of these algorithms,
ENO is automatically set to "0". The output behavior of the FFB is independent of
whether the FFBs are invoked without EN/ENO or with EN=1. If the EN/ENO display
is switched on, it is imperative that the EN input is switched on. Otherwise, the FFB
is not executed. The configuration of EN and ENO is switched on or off in the Block
Properties dialog box. The dialog box can be invoked with the Objects →
Properties...menu command or by double-clicking on the FFB.

Error If an error is recognized during the processing of a FFB or a step (e.g. unauthorized
input values or a time error), an error message appears, which can be seen using
the Online → Event Viewer...menu command. For FFBs, the ENO output is now set
to "0".

Evaluation The process, through which a value is transmitted for a Function or for the output of
a Function block during Program execution.

Expression Expressions consist of operators and operands.

FFB (Functions/
Function blocks)

Collective term for EFB (elementary functions/function blocks) and DFB (Derived
function blocks)

E

F

33002204 1147

Glossary
Field variables A variable, which is allocated a defined derived data type with the key word ARRAY
(field). A field is a collection of data elements with the same data type.

FIR Filter (Finite Impulse Response Filter) a filter with finite impulse answer

Formal
parameters

Input / Output parameters, which are used within the logic of a FFB and led out of
the FFB as inputs/outputs.

Function (FUNC) A program organization unit, which supplies an exact data element when
processing. a function has no internal status information. Multiple invocations of the
same function using the same input parameters always supply the same output
values.
Details of the graphic form of the function invocations can be found in the definition
"Functional block (instance)". In contrast to the invocations of the function blocks,
function invocations only have a single unnamed output, whose name is the same
as the function. In FBD each invocation is denoted by a unique number via the
graphic block, this number is automatically generated and can not be altered.

Function block
(Instance) (FB)

A function block is a program organization unit, which correspondingly calculates the
functionality values that were defined in the function block type description, for the
outputs and internal variable(s), if it is invoked as a certain instance. All internal
variable and output values for a certain function block instance remain from one
function block invocation to the next. Multiple invocations of the same function block
instance with the same arguments (input parameter values) do not therefore
necessarily supply the same output value(s).
Each function block instance is displayed graphically using a rectangular block
symbol. The name of the function block type is stated in the top center of the
rectangle. The name of the function block instance is also stated at the top, but
outside of the rectangle. It is automatically generated when creating an instance,
but, depending on the user's requirements, it can be altered by the user. Inputs are
displayed on the left side of the block and outputs are displayed on the right side.
The names of the formal input/output parameters are shown inside the rectangle in
the corresponding places.
The above description of the graphic display is especially applicable to the function
invocations and to DFB invocations. Differences are outlined in the corresponding
definitions.

Function Block
Dialog (FBD)

One or more sections, which contain graphically displayed networks from Functions,
Function blocks and Connections.

Function block
type

A language element, consisting of: 1. the definition of a data structure, divided into
input, output and internal variables; 2. a set of operations, which are performed with
elements of the data structure, when a function block type instance is invoked. This
set of operations can either be formulated in one of the IEC languages (DFB type)
or in "C" (EFB type). A function block type can be instanced (invoked) several times.
1148 33002204

Glossary
Function
Number

The function number is used to uniquely denote a function in a program or DFB. The
function number can not be edited and is automatically assigned. The function
number is always formed as follows: .n.m

n = Number of the section (consecutive numbers)
m = Number of the FFB object in the section (current number)

Generic Data
Type

A data type, which stands in place of several other data types.

Generic literals If the literal's data type is not relevant, simply specify the value for the literal. If this
is the case, Concept automatically assigns the literal a suitable data type.

Global Data Global data are Unlocated variables.

Global derived
data types

Global derived data types are available in each Concept project and are occupied in
the DFB directory directly under the Concept directory.

Global DFBs Global DFBs are available in each Concept project. The storage of the global DFBs
is dependant upon the settings in the CONCEPT.INI file.

Global macros Global macros are available in each Concept project and are stored in the DFB
directory directly under the Concept directory.

Groups (EFBs) Some EFB libraries (e.g. the IEC library) are divided into groups. This facilitates
locating the EFBs especially in expansive libraries.

Host Computer Hardware and software, which support programming, configuring, testing, operating
and error searching in the PLC application as well as in a remote system application,
in order to enable source documentation and archiving. The programming device
can also be possibly used for the display of the process.

G

H

33002204 1149

Glossary
I/O Map The I/O and expert modules from the various CPUs are configured in the I/O map.

Icon Graphical representation of different objects in Windows, e.g. drives, application
programs and document windows.

IEC 61131-3 International standard: Programmable Logic Controls - Part 3: Programming
languages.

IEC Format
(QW1)

There is an IEC type designation in initial position of the address, followed by the
five-figure address.
� %0x12345 = %Q12345
� %1x12345 = %I12345
� %3x12345 = %IW12345
� %4x12345 = %QW12345

IEC name
conventions
(identifier)

An identifier is a sequence of letters, numbers and underscores, which must begin
with either a letter or underscore (i.e. the name of a function block type, an instance,
a variable or a section). Letters of a national typeface (i.e.: ö,ü, é, õ) can be used,
except in project and DFB names.
Underscores are significant in identifiers; e.g. "A_BCD" and "AB_CD" are
interpreted as two separate identifiers. Several leading and multiple successive
underscores are not allowed.
Identifiers should not contain any spaces. No differentiation is made between upper
and lower case, e.g. "ABCD" and "abcd" are interpreted as the same identifier.
Identifiers should not be Keywords.

IEC Program
Memory

The IEC program memory consists of the program code, EFB code, the section data
and the DFB instance data.

IIR Filter (Infinite Impulse Response Filter) a filter with infinite impulse answer

Initial step The first step in a sequence. A step must be defined as an initial step for each
sequence. The sequence is started with the initial step when first invoked.

Initial value The value, which is allocated to a variable when the program is started. The values
are assigned in the form of literals.

I

1150 33002204

Glossary
Input bits
(1x references)

The 1/0 status of the input bits is controlled via the process data, which reaches from
an input device to the CPU.

Input parameter
(Input)

Upon invocation of a FFB, this transfers the corresponding argument.

Input words
(3x references)

An input word contains information, which originates from an external source and is
represented by a 16 bit number. A 3x register can also contain 16 sequential input
bits, which were read into the register in binary or BCD (binary coded decimal)
format. Note: The x, which follows the initial reference type number, represents a
five-figure storage location in the user data memory, i.e. the reference 300201
signifies a 16-bit input word at the address 201 in the State RAM.

Instance Name An identifier, which belongs to a certain function block instance. The instance name
is used to clearly denote a function block within a program organization unit. The
instance name is automatically generated, but it can be edited. The instance name
must be unique throughout the whole program organization unit, and is not case
sensitive. If the name entered already exists, you will be warned and you will have
to choose another name. The instance name must comply with the IEC name
conventions otherwise an error message appears. The automatically generated
instance name is always formed as follows: FBI_n_m

FBI = Function Block Instance
n = Number of the section (consecutive numbers)
m = Number of the FFB object in the section (current number)

Instancing Generating an Instance.

Instruction (IL) Instructions are the "commands" of the IL programming language. Each instruction
begins on a new line and is performed by an operator with a modifier if necessary,
and if required for the current operation, by one or more operands. If several
operands are used, they are separated by commas. A character can come before
the instruction, which is then followed by a colon. The comment must, if present, be
the last element of the line.

Note: The x, which follows the initial reference type number, represents a five-
figure storage location in the user data memory, i.e. the reference 100201 signifies
an output or marker bit at the address 201 in the State RAM.
33002204 1151

Glossary
Instruction
(LL984)

When programming electrical controls, the user must implement operation-coded
instructions in the form of picture objects, which are divided into a recognizable
contact form. The designed program objects are, on a user level, converted to
computer usable OP codes during the download process. The OP codes are
decoded in the CPU and processed by the firmware functions of the controller in a
way that the required control is implemented.

Instruction (ST) Instructions are "commands" of the ST programming language. Instructions must be
completed by semicolons. Several instructions can be entered in one line (separated
by semicolons).

Instruction list
(IL)

IL is a text language according to IEC 1131, which is shown in operations, i.e.
conditional or unconditional invocations of Functions blocks and Functions,
conditional or unconditional jumps etc. through instructions.

INT INT stands for the data type "whole number (integer)". Entries are made as integer
literal, base 2 literal, base 8 literal or base 16 literal. The length of the data element
is 16 bits. The value range for variables of this datatype reaches from -2 exp (15) to
2 exp (15) -1.

Integer literals Integer literals are used to input whole number values into the decimal system. The
values can have a preceding sign (+/-). Single underscores (_) between numbers
are not significant.

Example
-12, 0, 123_456, +986

INTERBUS (PCP) The new INTERBUS (PCP) I/O drop type is entered into the Concept configurator,
to allow use of the INTERBUS PCP channel and the INTERBUS process data pre-
processing (PDV). This I/O drop type is assigned the INTERBUS switching module
180-CRP-660-01.
The 180-CRP-660-01 differs from the 180-CRP-660-00 only in the fact that it has a
clearly larger I/O range in the control state RAM.

Invocation The process by which the execution of an operation is initiated.

Jump Element of the SFC language. Jumps are used to skip zones in the sequence.

J

1152 33002204

Glossary
Keywords Keywords are unique combinations of characters, which are used as special
syntactical components, as defined in Appendix B of the IEC 1131-3. All keywords
which are used in the IEC 1131-3 and therefore in Concept, are listed in Appendix
C of the IEC 1131-3. These keywords may not be used for any other purpose, i.e.
not as variable names, section names, instance names etc.

Ladder Diagram
(LD)

Ladder Diagram is a graphic programming dialog according to IEC1131, which is
optically oriented to the "rung" of a relay contact plan.

Ladder Logic 984
(LL)

The terms Ladder Logic and Ladder Diagram refer to the word Ladder being
executed. In contrast to a circuit diagram, a ladder diagram is used by electrotech-
nicians to display an electrical circuit (using electrical symbols), which should show
the course of events and not the existing wires, which connect the parts with each
other. A usual user interface for controlling the actions of automation devices
permits a Ladder Diagram interface, so that electrotechnicians do not have to learn
new programming languages to be able to implement a control program.
The structure of the actual Ladder Diagram enables the connection of electric
elements in such a way that generates a control output, which is dependent upon a
logical power flow through used electrical objects, which displays the previously
requested condition of a physical electrical device.
In simple form, the user interface is a video display processed by the PLC
programming application, which sets up a vertical and horizontal grid in which
programming objects are classified. The diagram contains the power grid on the left
side, and when connected to activated objects, the power shifts from left to right.

Landscape Landscape means that when looking at the printed text, the page is wider than it is
high.

Language
Element

Every basic element in one of the IEC programming languages, e.g. a step in SFC,
a function block instance in FBD or the initial value of a variable.

Library Collection of software objects, which are intended for re-use when programming
new projects, or even building new libraries. Examples are the libraries of the
Elementary function block types.
EFB libraries can be divided up into Groups.

K

L

33002204 1153

Glossary
Link A control or data flow connection between graphical objects (e.g. steps in the SFC
Editor, function blocks in the FBD Editor) within a section, represented graphically
as a line.

Literals Literals are used to provide FFB inputs, and transition conditions etc with direct
values. These values can not be overwritten by the program logic (write-protected).
A distinction is made between generic and standardized literals.
Literals are also used to allocate, to a constant, a value or a variable, an initial value.
Entries are made as base 2 literal, base 8 literal, base 16 literal, integer literal, real
literal or real literal with exponent.

Local derived
data types

Local derived data types are only available in a single Concept project and the local
DFBs and are placed in the DFB directory under the project directory.

Local DFBs Local DFBs are only available in a single Concept project and are placed in the DFB
directory under the project directory.

Local Link The local network is the network, which connects the local nodes with other nodes
either directly or through bus repeaters.

Local macros Local macros are only available in a single Concept project and are placed in the
DFB directory under the project directory.

Local network
nodes

The local node is the one which is currently being configured.

Located variable A state RAM address (reference addresses 0x, 1x, 3x,4x) is allocated to located
variables. The value of these variables is saved in the state RAM and can be
modified online using the reference data editor. These variables can be addressed
using their symbolic names or their reference addresses.

All inputs and outputs of the PLC are connected to the state RAM. The program can
only access peripheral signals attached to the PLC via located variables. External
access via Modbus or Modbus Plus interfaces of the PLC, e.g. from visualization
systems, is also possible via located variables.
1154 33002204

Glossary
Macro Macros are created with the help of the Concept DFB software.
Macros are used to duplicate frequently used sections and networks (including their
logic, variables and variable declaration).
A distinction is made between local and global macros.

Macros have the following properties:
� Macros can only be created in the FBD and LD programming languages.
� Macros only contain one section.
� Macros can contain a section of any complexity.
� In programming terms, there is no difference between an instanced macro, i.e. a

macro inserted into a section and a conventionally created section.
� DFB invocation in a macro
� Declaring variables
� Using macro-specific data structures
� Automatic transfer of the variables declared in the macro.
� Initial values for variables
� Multiple instancing of a macro in the entire program with differing variables
� The name of the section, variable names and data structure names can contain

up to 10 different exchange marks (@0 to @9).

MMI Man-Machine-Interface

Multi element
variables

Variables to which a Derived data type defined with STRUCT or ARRAY is allocated.
A distinction is made here between field variables and structured variables.

Network A network is the collective switching of devices to a common data path, which then
communicate with each other using a common protocol.

Network node A node is a device with an address (1...64) on the Modbus Plus network.

Node Node is a programming cell in a LL984 network. A cell/node consists of a 7x11
matrix, i.e. 7 rows of 11 elements.

M

N

33002204 1155

Glossary
Node Address The node address is used to uniquely denote a network node in the routing path.
The address is set on the node directly, e.g. using the rotary switch on the back of
the modules.

Operand An operand is a literal, a variable, a function invocation or an expression.

Operator An operator is a symbol for an arithmetic or boolean operation which is to be
executed.

Output
parameter
(output):

A parameter, through which the result(s) of the evaluation of a FFB is/are returned.

Output/Marker
bits
(0x references)

An output/marker bit can be used to control real output data using an output unit of
the control system, or to define one or more discrete outputs in the state RAM. Note:
The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 000201 signifies an
output or marker bit at the address 201 in the State RAM.

Output/marker
words
(4x references)

An output / marker word can be used to save numerical data (binary or decimal) in
the state RAM, or to send data from the CPU to an output unit in the control system.
Note: The x, which follows the initial reference type number, represents a five-figure
storage location in the user data memory, i.e. the reference 400201 signifies a 16 bit
output or marker word at the address 201 in the State RAM.

Peer CPU The Peer CPU processes the token execution and the data flow between the
Modbus Plus network and the PLC user logic.

PLC Memory programmable controller

Portrait Portrait means that the sides are larger than the width when printed.

Program The uppermost program organization unit. A program is closed on a single PLC
download.

O

P

1156 33002204

Glossary
Program
organization unit

A function, a function block, or a Program. This term can refer to either a type or an
instance.

Program
redundancy
system
(Hot Standby)

A redundancy system consists of two identically configured PLC machines, which
communicate with one another via redundancy processors. In the case of a
breakdown of the primary PLC, the secondary PLC takes over the control check.
Under normal conditions, the secondary PLC does not take over the control function,
but checks the status information, in order to detect errors.

Project General description for the highest level of a software tree structure, which specifies
the super-ordinate project name of a PLC application. After specifying the project
name you can save your system configuration and your control program under this
name. All data that is created whilst setting up the configuration and program,
belongs to this super-ordinate project for this specific automation task.
General description for the complete set of programming and configuration
information in the project database, which represents the source code that
describes the automation of a system.

Project database The database in the host computer, which contains the configuration information for
a project.

Prototype file
(Concept-EFB)

The prototype file contains all the prototypes of the assigned functions. In addition,
if one exists, a type definition of the internal status structure is specified.

REAL REAL stands for the data type "floating point number". The entry can be real-literal
or real-literal with an exponent. The length of the data element is 32 bits. The value
range for variables of this data type extends from +/-3.402823E+38.

Real literals Real literals are used to input floating point values into the decimal system. Real
literals are denoted by a decimal point. The values can have a preceding sign (+/-).
Single underscores (_) between numbers are not significant.

Example
-12.0, 0.0, +0.456, 3.14159_26

R

Note: Dependent on the mathematical processor type of the CPU, different ranges
within this permissible value range cannot be represented. This applies to values
that are approaching ZERO and for values that approach INFINITY. In these cases
NAN (Not A Number) or INF (INFinite) will be displayed in the animation mode
instead of a number value.
33002204 1157

Glossary
Real literals with
exponents

Real literals with exponents are used to input floating point values into the decimal
system. Real literals with exponents are identifiable by a decimal point. The
exponent indicates the power of ten, with which the existing number needs to be
multiplied in order to obtain the value to be represented. The base can have a
preceding negative sign (-). The exponent can have a preceding positive or negative
sign (+/-). Single underscores (_) between numbers are not significant. (Only
between characters, not before or after the decimal point and not before or after "E",
"E+" or "E-")

Example
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Reference Every direct address is a reference that begins with an indicator, which specifies
whether it is an input or an output and whether it is a bit or a word. References that
begin with the code 6, represent registers in the extended memory of the state RAM.
0x range = Output/Marker bits
1x range = Input bits
3x range = Input words
4x range = Output registers
6x range = Register in the extended memory

Register in the
extended
memory
(6x-reference)

6x references are holding registers in the extended memory of the PLC. They can
only be used with LL984 user programs and only with a CPU 213 04 or CPU 424 02.

Remote Network
(DIO)

Remote programming in the Modbus Plus network enables maximum performance
when transferring data and dispenses with the need for connections. Programming
a remote network is simple. Setting up a network does not require any additional
ladder logic to be created. All requirements for data transfer are fulfilled via
corresponding entries in the Peer Cop Processor.

RIO (Remote I/O) Remote I/O indicates a physical location of the I/O point controlling devices with
regard to the CPU controlling them. Remote inp./outputs are connected to the
controlling device via a twisted communication cable.

RTU-Mode Remote Terminal Unit
The RTU mode is used for communication between the PLC and an IBM compatible
personal computer. RTU works with 8 data bits.

Note: The x, which follows each initial reference type number, represents a five-
digit storage location in the user data memory, i.e. the reference 400201 signifies
a 16 bit output or marker word at the address 201 in the State RAM.
1158 33002204

Glossary
Runtime error Errors, which appear during program processing on the PLC, in SFC objects (e.g.
Steps) or FFBs. These are, for example, value range overflows for numbers or
timing errors for steps.

SA85 module The SA85 module is a Modbus Plus adapter for IBM-AT or compatible computers.

Scan A scan consists of reading the inputs, processing the program logic and outputting
the outputs.

Section A section can for example be used to describe the functioning mode of a
technological unit such as a motor.
A program or DFB consists of one or more sections. Sections can be programmed
with the IEC programming languages FBD and SFC. Only one of the named
programming languages may be used within a section at any one time.
Each section has its own document window in Concept. For reasons of clarity,
however, it is useful to divide a very large section into several small ones. The scroll
bar is used for scrolling within a section.

Section Code Section Code is the executable code of a section. The size of the Section Code is
mainly dependent upon the number of blocks in the section.

Section Data Section data is the local data in a section such as e.g. literals, connections between
blocks, non-connected block inputs and outputs, internal status memory of EFBs.

Separator
Format (4:00001)

The first digit (the reference) is separated from the five-digit address that follows by
a colon (:).

Sequence
language (SFC)

The SFC Language Elements enable a PLC program organization unit to be divided
up into a number of Steps and Transitions, which are connected using directional
Links. A number of actions belong to each step, and transition conditions are
attached to each transition.

Serial
Connections

With serial connections (COM) the information is transferred bit by bit.

S

Note: Data which appears in the DFBs of this section is not section data.
33002204 1159

Glossary
Source code file
(Concept-EFB)

The source code file is a normal C++ source file. After executing the Library →
Create files menu command, this file contains an EFB-code frame, in which you
have to enter a specific code for the EFB selected. To do this invoke the Objects →
Source menu command.

Standard Format
(400001)

The five-digit address comes directly after the first digit (the reference).

Standardized
literals

If you would like to manually determine a literal's data type, this may be done using
the following construction: ’Data type name’#’value of the literal’.

Example
INT#15 (Data type: integer, value: 15),
BYTE#00001111 (Data type: byte, value: 00001111)
REAL#23.0 (Data type: real, value: 23.0)

To assign the data type REAL, the value may also be specified in the following
manner: 23.0.
Entering a comma will automatically assign the data type REAL.

State RAM The state RAM is the memory space for all variables, which are accessed via
References (Direct representation) in the user program. For example, discrete
inputs, coils, input registers, and output registers are located in the state RAM.

State RAM
overview for
uploading and
downloading

Overview:

Status Bits For every device with global inputs or specific inputs/outputs of Peer Cop data, there
is a status bit. If a defined group of data has been successfully transferred within the
timeout that has been set, the corresponding status bit is set to 1. If this is not the
case, this bit is set to 0 and all the data belonging to this group is deleted (to 0).

Variables-
Editor

RDE
Editor

Concept Project database

Variables
(Initial values)

State RAM-

Mirror (Image)

for loading from
and/or loading
in Signal-
memory

PLC-State RAM
 0x / 1x / 3x / 4x

U3 D3 D2 U1

U2

D1
1160 33002204

Glossary
Step SFC-language element: Situation, in which the behavior of a program, in reference
to its inputs and outputs, follows those operations which are defined by the actions
belonging to the step.

Step name The step name is used to uniquely denote a step in a program organization unit. The
step name is generated automatically, but it can be edited. The step name must be
unique within the entire program organization unit, otherwise an error message will
appear.
The automatically generated step name is always formed as follows: S_n_m

S = step
n = Number of the section (consecutive numbers)
m = Number of the step in the section (current number)

Structured text
(ST)

ST is a text language according to IEC 1131, in which operations, e.g. invocations
of Function blocks and Functions, conditional execution of instructions, repetitions
of instructions etc. are represented by instructions.

Structured
variables

Variables to which a Derived data type defined with STRUCT (structure) is allocated.
A structure is a collection of data elements with generally different data types
(elementary data types and/or derived data types).

SY/MAX In Quantum control devices, Concept includes the preparation of I/O-map SY/MAX-
I/O modules for remote controlling by the Quantum PLC. The SY/MAX remote
backplane has a remote I/O adapter in slot 1, which communicates via a Modicon
S908 R I/O System. The SY/MAX-I/O modules are executed for you for labeling and
inclusion in the I/O map of the Concept configuration.

Template file
(Concept-EFB)

The template file is an ASCII file with layout information for the Concept FBD Editor,
and the parameters for code creation.

TIME TIME stands for the data type "time". The entry is time literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1. The unit for the data type TIME is 1 ms.

T

33002204 1161

Glossary
Time literals Permissible units for times (TIME) are days (D), hours (H), minutes (M), seconds (S)
and milliseconds (MS) or combinations of these. The time must be marked with the
prefix t#, T#, time# or TIME#. The "overflow" of the unit with the highest value is
permissible, e.g. the entry T#25H15M is allowed.

Example
t#14MS, T#14.7S, time#18M, TIME#19.9H, t#20.4D, T#25H15M,
time#5D14H12M18S3.5MS

Token The network "token" controls the temporary possession of the transfer right via a
single node. The token passes round the nodes in a rotating (increasing) address
sequence. All nodes follow the token rotation and can receive all the possible data
that is sent with it.

Total IEC
memory

The total IEC memory consists of the IEC program memory and the global data.

Traffic Cop The traffic cop is an IO map, which is generated from the user-IO map. The traffic
cop is managed in the PLC and in addition to the user IO map, contains e.g. status
information on the I/O stations and modules.

Transition The condition, in which the control of one or more predecessor steps passes to one
or more successor steps along a directed link.

UDEFB User-defined elementary functions/function blocks
Functions or function blocks, which were created in the C programming language,
and which Concept provides in libraries.

UDINT UDINT stands for the data type "unsigned double integer". Entries are made as
integer literal, base 2 literal, base 8 literal or base 16 literal. The length of the data
element is 32 bits. The value range for variables of this data type extends from 0 to
2exp(32)-1.

UINT UINT stands for the data type "unsigned integer". Entries are made as integer literal,
base 2 literal, base 8 literal or base 16 literal. The length of the data element is 16
bits. The value range for variables of this data type extends from 0 to (2exp 16)-1.

U

1162 33002204

Glossary
Unlocated
variable

Unlocated variables are not allocated a state RAM address. They therefore do not
occupy any state RAM addresses. The value of these variables is saved in the
internal system and can be changed using the reference data editor. These
variables are only addressed using their symbolic names.

Signals requiring no peripheral access, e.g. intermediate results, system tags etc.,
should be primarily declared as unlocated variables.

Variables Variables are used to exchange data within a section, between several sections and
between the program and the PLC.
Variables consist of at least one variable name and one data type.
If a variable is assigned a direct address (reference), it is called a located variable.
If the variable has no direct address assigned to it, it is called an unlocated variable.
If the variable is assigned with a derived data type, it is called a multi element
variable.
There are also constants and literals.

Warning If a critical status is detected during the processing of a FFB or a step (e.g. critical
input values or an exceeded time limit), a warning appears, which can be seen using
the Online → Event Viewer...menu command. For FFBs, the ENO remains set to
"1".

WORD WORD stands for the data type "bit sequence 16". Entries are made as base 2
literal, base 8 literal or base 16 literal. The length of the data element is 16 bits. A
numerical value range can not be assigned to this data type.

V

W

33002204 1163

Glossary
1164 33002204

CBAIndex
=> Assignment, 365, 419
•General information about online functions,
609
’SFCSTEP_STATE’ variable, 273
’SFCSTEP_TIMES’ variable, 272
’step’-variable, 273

A
Access Right, 748
Access Rights, 740, 749
Action, 274
Action variable, 274
Actions

Process, 294
activate dialogs, 124
Actual parameters

FBD, 217
actual parameters

LD, 251
alias designations

step, 302
transition, 302

alternative branch, 283
Alternative connection, 285
Animation, 587, 725, 727

FBD, 228
General information, 656
IEC section, 657
IL, 379
IL/ST, 376
LL984 section, 658
33002204
Section, 656
animation

LD, 260
SFC, 306, 308

ANY Outputs, 416
Archiving

DFB, 720
EFB, 720
Project, 720

ARRAY
Range Monitoring, 573

ASCII message editor, 591, 593, 598
Combination mode, 606
Control code, 597
Direct mode, 606
Flush (buffer), 599
Generals, 594
How to continue after getting a warning,
605
How to Use, 602
Message Number, 603
Message text, 604
Offline mode, 606
Repeat, 600
Simulation text, 604
Spaces, 597
Text, 595
User interface, 601, 602
Variables, 596

ASCII messages, 83, 123
Assign instructions

ST, 399
1165

Index
Assignment
=>, 419

Atrium
Memory optimization, 201

Atrium example
INTERBUS controller, 932

Atrium first startup
DOS Loader, 1075
EXECLoader, 1054
Modbus Plus, 1054, 1075

Atrium INTERBUS controller, 933
Auto-Log-Out, 150
Automatic Connection, 1132, 1135
available functions in OFFLINE and ONLINE
modes, 104

B
Backplane Expander

Edit I/O Map, 135
Error handling, 136
Generals, 134

Backplane Expander Config
Configure, 133

Block call up
IL, 360
ST, 415

C
Call

FFB, 369
Project, 791

call
DFB, 359
FFB, 359

Chain jump, 281
Chain loop, 282
change

coil, LD, 256
contact, LD, 256
FFB, FBD, 221
FFB, LD, 256

Changing signal states of a Located variable
Reference data editor, 582
1166
Close Column
LL984, 440

Closer
LD, 238

Code generation
IL, 374
ST, 424

code generation
FBD, 227
LD, 259

coil
change, LD, 256
replace, LD, 256

Coil - negated
LD, 241

Coil – negative edge
LD, 241

Coil – positive edge
LD, 241

Coil - reset
LD, 242

Coil - set
LD, 242

Coils
LD, 240

Cold restart, 65
Comments

Data type editor, 566
Derived data type, 566

Communication, 41
Compact

Memory optimization, 185
Compact configuration

RTU extension, 143
Compact example, 927
Compact first startup

DOS Loader, 1035, 1072
EXECLoader, 1015, 1050
Modbus, 1015, 1035
Modbus Plus, 1050, 1072

Concept DFB, 457, 501
Concept M

Hardware Package Contents, 32
33002204

Index
Concept ModConnect, 971
Integrating new Modules, 975
Removing modules, 976
Use of Third Party Modules in Concept,
977

Concept PLCSIM32, 727
Concept S

Hardware Package Contents, 32
Concept Security, 737, 738, 740, 748, 749,
750
Concept SIM, 725
Concept XL

Hardware Package Contents, 32
CONCEPT.INI, 1089, 1091

Exclusion of the global/local DFBs from
Online-Backup, 1095
general, 1092
LD section settings, 1098
Path for global DFBs, 1095
Path for Help Files, 1095
print settings, 1093
Project Name Definition, 1094
Reading global DFBs, 1095
Register Address Format Settings, 1094
representation of internal data, 1097
Saving the global DFBs during upload,
1095
Security Settings, 1099
Setting for Online Processing, 1098
Setting for the Address Format, 1099
Settings for the RDE, 1100
Settings for the Tools menu, 1100
Settings for Warning Messages, 1099
Variable Storage Settings, 1094

Configuration, 97
General information, 99
Optional, 122
Unconditional, 106

Configuration example
Atrium-INTERBUS controller, 932
Compact controller, 927
Momentum-Ethernet bus system, 951
Momentum-Remote I/O bus, 942
Quantum-INTERBUS control, 887
Quantum-Peer Cop, 918
Quantum-Profibus DP controller, 902
33002204
Quantum-Remote control with DIO, 878
Quantum-Remote control with RIO, 857
Quantum-Remote control with RIO
(series 800), 865
Quantum-SY/MAX controller, 893

configuration extensions, 124
Configuration in OFFLINE and ONLINE
mode, 102

General information, 103
Configuration of various network systems,
137
Configurator

Ethernet I/O Scanner, 144
Configure

Backplane Expander Config, 133
INTERBUS, 138
RTU extension, 143

configure, 79
Ethernet, 141
Profibus DP, 139

configure Ethernet, 141
Configure INTERBUS system, 138
Configure network systems, 137
configure network systems, 124
configure Profibus DP system, 139
Connect

PLC, 610
Connect to PLC, 610
connecting IEC Simulator (32-bit), 624
connecting to IEC Simulator (32-bit), 624
Connecting to the PLC

automatically with command line
parameters, 1132
Automatically with the CCLaunch Tool,
1135

Constant Scan, 628
Constants, 64
contact

change, LD, 256
replace, LD, 256

Contacts
LD, 238, 239

Context help, 793
1167

Index
Convert
DFBs, 967
Macros, 967
Projects, 967

converting RDE templates, 580
Convertion

Modsoft programs, 979
CPU selection for the PLC type, 109
Create

DFB, 480
Macro, 513
Program, 75
Project, 75
Project Symbol, 791

create
FFB, FBD, 220
FFB, LD, 255

Creating a program
IL, 380

Cyclical Setting of Variables
Reference Data Editor, 583

D
data exchange between nodes on the
Modbus Plus network, 125
data flow, 257

FBD, 225
Data Protection, 82
data protection in the state RAM, 128
Data Type Definition

Extended (larger than 64 Kbytes), 555
Data Type Editor

Short Cut Keys, 812
Data type editor, 547, 549

Comments, 566
Elements, 558
Syntax, 557

data type editor, 550
key words, 560
separators, 565
use of memory, 567

Datatype editor
Names, 564

DDT, 555
Declaration of variables, 527
1168
Declare
Actions, 294
Step properties, 292

declare
transition, 300

Declare Variables, 527
Defining Colors

INI File, 1098
defining the LD contact connection

settings in the INI file, 1098
defining the number of LD columns/fields

settings in the INI file, 1098
Delete

DFB, 722
Macro, 722
Project, 722

Deleting memory zones from the PLC, 630
Deleting PLC contents, 630
Derived Data Type, 549

Elements, 558
Export, 672
Syntax, 557

Derived data type, 547
Comments, 566
Names, 564

derived data type, 550
global, 553
key words, 560
local, 553
separators, 565
use of memory, 567

Derived Data Types
Use, 569

Derived Function Block, 460
derived function block

LD, 246
Derived Function Blocks

FBD, 215
33002204

Index
DFB, 457, 460
Archiving, 720
call, 359
context sensitive help, 478
Create, 480
Creating Global Variables, 474
Delete, 722
Documentation, 709
FBD, 215
global, 462
invocation, 361, 416
LD, 246
local, 462
Protect, 750

DFBs
Convert, 967

Diagnosis
Transition diagnosis, 314

diagnosis viewer, 659
diagnostics viewer, 659
Dialog boxes, 789
Dialog interaction

LL984, 435
Direct Addresses, 64
Disable

Interrupt Sections, 70
Section, 70

document section options, 713
Documentation

Contents, 710
DFB, 709
Keywords, 717
Macro, 709
Project, 709

documentation
layout, 711

DOS Loader
Atrium first startup, 1075
Compact first startup, 1035, 1072
Momentum first startup, 1038, 1041,
1078, 1081
Quantum first startup, 1032, 1068
Startup when using Modbus, 1031
Startup when using Modbus Plus, 1067

Download Changes, 649
Downloading Changes, 649
33002204
Driver for 16 bit application capability with
Windows 98/2000/NT

Virtual MBX Driver, 997
Driver for connection between ModConnect
Host interface adapters and 32 bit
applications with Windows 98/2000/NT

MBX-Treiber, 998
Driver for Modbus Plus Function via TCP/IP

Ethernet MBX Driver, 1000
Driver for Remote Operation

Remote MBX Driver, 999
DTY, 547, 549, 550
DX Zoom

LL984, 442

E
Edit

Actions, 294
LL984, 434, 439
SFC, 289
Step properties, 292

edit
SFC, 288
transition, 300

Edit I/O Map
Backplane Expander, 135

Editing local Drop, 858
Editing Networks

LL984, 440
Editors, 37
EFB

Archiving, 720
FBD, 213
LD, 243

EFBs for Interrupt Sections, 1129
Elementary Function

FBD, 213
elementary function

LD, 244
Elementary Function Block

FBD, 214
elementary function block

LD, 245
1169

Index
Elements
Data type editor, 558
Derived Data Type, 558

EN
FBD, 216
LD, 249

ENC File, 42, 661
Encoded Log, 42
Encrypt Logfile, 739
Encrypted Logging

ENC File, 661
ENO

FBD, 216
LD, 249

EQUAL, 611
Equation network

LL984, 446, 447
Equation network, Syntax and Semantics

LL984, 451
Error handling

Backplane Expander, 136
Establishing the hardware connection

Modbus Plus presettings, 1002
Modbus presettings, 1007

Ethernet, 624
Ethernet / I/O Scanner

How to use the Ethernet / I/O Scanner,
148

Ethernet Bus System
Create online connection, 966

Ethernet Bus System (Momentum), 952
Ethernet I/O Scanner

Configurator, 144
Ethernet MBX Driver

Driver for Modbus Plus Function via TCP/
IP, 1000

ethernet with Momentum, 142
Ethernet with Quantum, 141
Event Viewer

INI Settings, 1102
Example of hardware configuration

Atrium-INTERBUS controller, 932
Compact controller, 927
Momentum-Ethernet bus system, 951
Momentum-Remote I/O bus, 942
Quantum-INTERBUS control, 887
1170
Quantum-Peer Cop, 918
Quantum-Profibus DP controller, 902
Quantum-Remote control with DIO, 878
Quantum-Remote control with RIO, 857
Quantum-Remote control with RIO
(Series 800), 865
Quantum-SY/MAX controller, 893

Exchange Marking
Macro, 508

Exclusion of the global/local DFBs from
Online-Backup

Settings in the INI-File, 1095
EXEC file

CPU 424 02, 163
CPU X13 0X, 163
Momentum, 198

EXEC files, 1085
EXECLoader

Atrium first startup, 1054
Compact first startup, 1015, 1050
Momentum first startup, 1020, 1025,
1058, 1062
Quantum first startup, 1010, 1046
Startup when using Modbus, 1009
Startup when using Modbus Plus, 1045

Execution Order
Timer Event Sections, 1115

Execution order
Section, 69

execution order
FBD, 222

Execution sequence
LD, 257

Export, 665
Derived Data Type, 672
General Information, 667
PLC Configuration, 705
Section, 669
Variable, 672

export
PLC configuration, 704

Exporting located variables, 537
Expressions

ST, 386
extended memory, 167
33002204

Index
F
Factory Link, 701
FBD, 209

Actual parameters, 217
Animation, 228
Calling a macro, 522
code generation, 227
data flow, 222, 225
Derived Function Blocks, 215
DFB, 215
EFB, 213
Elementary Function, 213
Elementary Function Block, 214
EN, 216
ENO, 216
execution order, 222
FFB, 213
Function, 213
Function Block, 214
Icon bar, 803
link, 216
loop, 225
Online Functions, 228
program creation, 230
Short Cut Keys, 815
Text Object, 218
UDEFB, 216
User-defined Elementary Function, 216
User-defined Elementary Function Block,
216

FFB
Call, 369
call, 359
change, FBD, 221
change, LD, 256
create, FBD, 220
create, LD, 255
FBD, 213
insert, FBD, 220
insert, LD, 255
invocation, 361, 416, 420
LD, 243
position, 220, 255
replace, FBD, 221
replace, LD, 256
33002204
forcing
I/O, 578

Function
FBD, 213

function
LD, 244

Function Block
FBD, 214

function block
LD, 245

Function Block language, 209
Function Blocks for Interrupt Sections, 1129

G
General, 27

PLC Connection, 611
General information

Loading a project, 646
Online functions, 609
Select process information, 640

General information about configuration in
OFFLINE and ONLINE mode, 103
General information about hardware
configuration, 99
general information about the online control
panel, 627
General information about the PLC
configuration, 100
General Information about the Reference
Data Editor, 578
General to the variables editor, 526
Generals

Backplane Expander, 134
Generate

Project symbol, 791
Global data transfer

Peer Cop, 923
global derived data type, 553
global DFB, 462
Global DFBs

Defining the Path, 1095
INI File, 1095
Reading, 1097
Storing, 1096

global macro, 506
1171

Index
Global Variables in DFBs, 474

H
hardware

performance, 755
Head setup, 81
Help, 793
Help Files

Defining the Path, 1095
How to use the Ethernet / I/O Scanner

Ethernet / I/O Scanner, 148

I
I/O

forcing, 578
I/O Event Section

Handling, 1105
I/O Event Sections, 1125

Priority, 1126
Runtime Error, 1127

I/O map, 80, 119
Icon bar, 801, 802, 803, 804, 805
Icons, 799, 801, 802, 803, 804, 805, 806,
807, 809
icons, 808, 809
Icons_Project Browser, 809
Identifier, 297
IEC

Momentum first startup, 1020, 1058,
1078

IEC conformity, 827
IEC Hot Standby data, 113
IEC section

Animation, 657
IL, 315

Animation, 376, 379
Block call up, 360
Code generation, 374
Creating a program, 380
Instruction, 318, 319
List of Symbols, 806
Modifier, 323
Online functionen, 379
Online functions, 375, 376
1172
Operands, 321
Operators, 325, 332
Short Cut Keys, 812
syntax check, 372
Tag, 328

IL Command
Comments, 331
Compare, 352, 353, 355
Declaration, 330

IL command
call function block, 361
Compare, 350, 351, 354
DFB invocation, 361
invert, 343
Reset, 336
Set, 335
VAR...END_VAR, 330

IL operation
addition, 344
Boolean AND, 337
Boolean exclusive OR, 341
Boolean OR, 339
call DFB, 359
call function block, 359
jump to label, 356
Load, 333
multiplication, 346
Store, 334
subtraction, 345

IL-Befehl
Function call, 369

IL-operation
division, 348

Import, 665
General Information, 667
Multiple Address Assignment, 702
PLC Configuration, 705
Section, 673, 679, 690, 691, 692
Structured variables, 698
Variables, 694, 698, 701

import
PLC configuration, 704
section, 674, 686
variables, 695

import INTERBUS configuration, 939
importing Profibus DP configuration, 911
33002204

Index
INC
Include File, 555

Include File
Extended Data Type Definition, 555

INI File
Event Viewer Settings, 1102
General Information, 1102
Project Name Definition, 1094
Project Specific, 1089
Register Address Format Settings, 1094
Security Settings, 1099
Setting for Online Processing, 1098
Settings for the Address Format, 1099
Settings for Warning Messages, 1099
Variable Storage Settings, 1094

INI file
general, 1092
LD section settings, 1098
print settings, 1093
representation of internal data, 1097
Settings for the Tools menu, 1100

INI Files, 1089
CONCEPT.INI, 1091
Projectname.INI, 1101

INI-File
Exclusion of the global/local DFBs from
Online-Backup, 1095
Reading global DFBs, 1095
Settings for the Online-Backup, 1103
Settings for the RDE, 1100

INI-file
Path for global DFBs, 1095
Path for Help files, 1095
Saving the global DFBs during upload,
1095

initial step, 271
insert

FFB, FBD, 220
FFB, LD, 255

Install loadables, 80
installing the EXEC file, 1085
installing the Modbus Plus driver

Windows 98/2000/NT, 996
Installing the SA85/PC185

Modbus Plus Preferences, 994
Windows NT, 994
33002204
Installing the SA85/PCI85
Modbus Plus Preferences, 990
Windows 98/2000/XP, 990

Instruction
IL, 318, 319

Instruction list, 315
Instructions

ST, 400
INTERBUS controller, 888
INTERBUS export settings in CMD, 934
Interface Settings in Windows 98/2000/XP

Modbus Preferences, 1004
Interface settings in Windows NT

Modbus Presettings, 1006
Interrupt Processing, 1105

General, 1107
Interrupt Sections

Disable, 70
EFBs, 1129
Examples for Setting Parameters, 1119
Execution Order, 1115
I/O Event Sections, 1125
Operating System, 1116
Priority, 1126
Runtime Error, 1127
Scan Rate for Timer Event Sections,
1111
Timer Event Sections, 1110, 1112

invocation
DFB, 361, 416
FFB, 361, 416, 420

Invoke
Project, 791

J
Jump

SFC, 281

K
Key combinations, 799, 810, 811, 812, 815,
819, 825
key words

data type editor, 560
derived data type, 560
1173

Index
Keys, 799, 810, 811, 812, 815, 819, 825

L
Ladder Diagram, 233
Ladder Logic 984, 429
LD, 233

actual parameters, 251
animation, 260
Calling a macro, 522
Closer, 238
code generation, 259
Coil - negated, 241
Coil – negative edge, 241
Coil – positive edge, 241
Coil - reset, 242
Coil - set, 242
Coils, 240
Contacts, 238, 239
Data flow, 257
derived function block, 246
EFB, 243
elementary function, 244
elementary function block, 245
EN, 249
ENO, 249
Execution sequence, 257
FFB, 243
function, 244
function block, 245
Icon bar, 805
link, 250
loops, 257
online functions, 260
Opener, 238
program creation, 262
Shortcut keys, 819
Text object, 253
UDEFB, 247
user-defined elementary function, 247
user-defined elementary function block,
247

Learn monitoring times
SFC, 311

Libraries, 35
1174
Limitations
LL984, 432

link
FBD, 216
LD, 250

List of Symbols, 806, 807
List of symbols, 799
List of Tools, 806, 807
List of tools, 799
Literals, 64
LL984, 429

Close Column, 440
Combination mode, 455
Dialog interaction, 435
Direct programming, 455
DX Zoom, 442
Edit, 434, 439
Editing Networks, 440
Equation network, 446, 447
Equation network, Syntax and
Semantics, 451
List of Symbols, 807
Momentum first startup, 1025, 1041,
1062, 1081
Navigation, 434
Online Restriction, 435
Online Search, 443
Open Column, 440
Open Row, 440
Programming modes, 455
Reference Offset, 438
Reference Zoom, 441
References, 436
Replace References, 443
Requirements, 434
Section, 431
Segement, 431
Select, 439
Short Cut Keys, 825
Subroutines, 444
Trace, 443
Undo, 439
Variables, 436

LL984 Processing
speed optimized, 631
33002204

Index
LL984 section
Animation, 658

Load reference data, 590
Loadables

CPU 424 02, 169
CPU X13 0X, 169

loadables, 114
Atrium, 204
compact, 188
CPU 434 12, 177
CPU 534 14, 177

Loading, 647
Loading a project, 645

General information, 646
loading firmware, 1085
local derived data type, 553
local DFB, 462
local macro, 506
Located variables

Changing signal states in RDE, 582
Log Encoding, 42
LOG File, 661
Logging

LOG File, 661
Logging Write Access to the PLC, 661
loop

FBD, 225
loops

LD, 257

M
Macro, 501, 504

Calling up from SFC, 519
Calls from FBD, 522
Calls from LD, 522
Create, 513
Delete, 722
Documentation, 709
Exchange marking, 508

macro
context sensitive help, 511
global, 506
local, 506

Macros
Convert, 967
33002204
maximum supervision time, 271
MBX Driver

Driver for connection between
ModConnect Host interface adapters and
32 bit applications with Windows 98/
2000/NT, 998

Memory, 153
Optimize, 157
PLC-Independent Memory Optimization,
157
Structure, 155

Memory and optimization
Atrium, 201
Compact, 185
Momentum, 195
Quantum, 160, 174

Memory partitions, 79
Memory statistics, 643
Menu commands, 787
minimum configuration, 79
minimum supervision time, 272
MMS-Ethernet

specify coupling modules, 124
Modbus

Compact first startup, 1015, 1035
Momentum first startup, 1020, 1025,
1038, 1041
Quantum first startup, 1010, 1032
Startup with DOS Loader, 1031
Startup with the EXECLoader, 1009

Modbus communication, 81
Modbus network link, 615
Modbus Plus

Atrium first startup, 1054, 1075
Compact first startup, 1050, 1072
Momentum first startup, 1058, 1062,
1078, 1081
Quantum first startup, 1046, 1068
Remote MBX Driver, 999
Startup with DOS Loader, 1067
Startup with the EXECLoader, 1045
Virtual MBX Driver, 997
Write Restriction, 150

Modbus Plus Bridge, 622
Modbus Plus Network Connection, 616
Modbus Plus network node, 125
1175

Index
Modbus Plus Preferences
Installing the SA85/PC185, 994
Installing the SA85/PCI85, 990

Modbus Plus preferences
installing the Modbus Plus driver in
Windows 98/2000/NT, 996

Modbus Plus presettings
Establishing the hardware connection,
1002
Startup, 989

Modbus Plus Routing Path
Automatic Connection, 1132, 1135

Modbus Preferences
Interface Settings in Windows 98/2000/
XP, 1004

Modbus Presettings
Interface Settings in Windows NT, 1006
Transfer problems, 1008

Modbus presettings
Establishing the hardware connection,
1007
Startup, 1003

ModConnect, 971
MODIFIED, 611
Modifier

IL, 323
Modsoft

Convertion, 979
Function compatibility, 988
References, 985

Momentum
Memory optimization, 195

Momentum example
Ethernet bus system, 951
Remote I/O bus, 942

Momentum first startup
DOS Loader, 1038, 1041, 1078, 1081
EXECLoader, 1020, 1025, 1058, 1062
Modbus, 1020, 1025, 1038, 1041
Modbus Plus, 1058, 1062, 1078, 1081

MSTR-Read-Operation, 151
1176
N
Names

Datatype editor, 564
Derived datatype, 564

Navigation
LL984, 434

Network Configuration
TCP/IP, 953

Network Connection
Modbus Plus, 616

network link
Modbus, 615
TCP/IP, 624

NOM/NOE
Disable Write Access, 150

NOT EQUAL, 611

O
Objects

SFC, 270
objects

insert, LD, 255
offline functions in the configurator, 104
Online, 725, 727

INI File, 1098
SFC, 305

Online Control Panel, 632, 636
online control panel

general information, 627
online diagnosis, 659
online diagnostics, 659
Online functionen

IL, 379
Online Functions

FBD, 228
Online functions, 41

General information, 609
IL, 375
IL/ST, 376
ST, 425

online functions
LD, 260
SFC, 306, 308

online functions in the configurator, 104
33002204

Index
Online help, 793
ONLINE Operation

Presettings, 614
Online Restriction

LL984, 435
Online Search

LL984, 443
Online-Backup

INI-Settings, 1103
Online-Funktionen, 607
Open

Project, 791
Open Column

LL984, 440
Open Row

LL984, 440
Opener

LD, 238
Operands

IL, 321
ST, 387

Operating System
Timer Event Sections, 1116

Operators
IL, 325, 332
ST, 391

operators
ST, 388

Optimize
PLC Memory, 157
PLC-Independent Memory Optimization,
157

Optional Configuration, 122

P
page breaks for sections, 713
Parallel branch, 286
Parallel connection, 287
Parameterize ASCII interface, 129
Parameterize interfaces

ASCII interface, 129
Modbus interface, 129

Parameterize Modbus interface, 129
Parameters for Automatic Connection, 791
Password Protection, 738, 740, 748, 749
33002204
Password protection, 737
Path for global DFBs

Settings in the INI-File, 1095
Path for Help files

Settings in the INI-File, 1095
Peer Cop, 125, 919
Peer Cop communication, 82
performance

hardware, 755
PLC family, 755

Phase
Timer Event Sections, 1112

PLC
Simulating, 723
Status, 784

PLC Configuration
Export, 705
Import, 705

PLC configuration, 78, 79, 97
export, 704
General information, 100
icons, 808
import, 704

PLC Connection
General, 611

PLC family
performance, 755

PLC Hardware Package Contents in
Concept S, M and XL, 32
PLC Memory, 153

Optimize, 157
PLC-Independent Memory Optimization,
157
Structure, 155

PLC Memory and optimization
Atrium, 201
Compact, 185
Momentum, 195
Quantum, 160

PLC memory and optimization
Quantum, 174

PLC memory mapping, 113
PLC selection, 108
PLC State, 625
PLC state, 641
PLC Status, 611
1177

Index
position
FFB, FBD, 220
FFB, LD, 255

precondition for unconditional configuration,
107
Presettings for Modbus

Startup, 1003
Presettings for Modbus Plus

Startup, 989
Presettings for ONLINE operation, 614
print

settings in the INI file, 1093
printing sections, 713
Priority

I/O Event Sections, 1126
proceed in the following way with the
configuration, 101
Process

Actions, 294
Step properties, 292

process
transition, 300

Processing
Program, 58
Project, 58

PROFIBUS
specify coupling modules, 124

Profibus DP controller, 903
Profibus DP export settings in SyCon, 904
Program

Create, 75
Processing, 58
Status, 784
Structure, 57, 58

Program creating
ST, 426

program creation
FBD, 230
LD, 262

Programming, 33
Programming languages, 37
Programming modes

LL984, 455
Programs, 64
1178
Project
Archiving, 720
Call, 791
Create, 75
Delete, 722
Documentation, 709
Invoke, 791
Open, 791
Processing, 58
Protect, 750
Structure, 57, 58

Project Browser, 539
Keyboard operation, 545
Mouse operation, 545
Toolbar, 809

Project Name Definition
INI File Settings, 1094

Project Symbol
Create, 791

Project symbol
Generate, 791

Projectname.INI, 1089, 1101
Event Viewer Settings, 1102
General Information, 1102

Projects
Convert, 967

Projektname.INI
Settings for the Online-Backup, 1103

Protect
DFB, 750
Project, 750

Q
Quantum

Memory optimization, 160, 174
Quantum example

INTERBUS control, 887
Profibus DP controller, 902
Quantum-Peer Cop, 918
Remote control with DIO, 878
Remote control with RIO, 857
Remote control with RIO (series 800),
865
SY/MAX controller, 893
33002204

Index
Quantum first startup
DOS Loader, 1032, 1068
EXECLoader, 1010, 1046
Modbus, 1010, 1032
Modbus Plus, 1046, 1068

Quantum Security Parameters, 150

R
Range Monitoring

ARRAY, 573
RDE, 577

converting RDE templates, 580
Cyclical Setting of Variables, 583
General, 578
Settings in the INI-File, 1100

RDE editor
toolbar, 809

reactivate flash save, 635
Reading the global DFBs

Settings in the INI-File, 1095
Reference Data Editor

Cyclical Setting of Variables, 583
General, 578

Reference data editor, 577
Changing signal states of a Located
variable, 582
Replacing variable names, 589

reference data editor
converting RDE templates, 580

Reference Offset
LL984, 438

Reference Zoom
LL984, 441

References
LL984, 436

Register Address Format
INI File Settings, 1094

Remote controller with DIO, 883
Remote controller with RIO, 863
Remote controller with RIO (series 800), 871
Remote MBX Driver

Modbus Plus, 999
33002204
replace
coil, LD, 256
contact, LD, 256
FFB, FBD, 221
FFB, LD, 256

Replace References
LL984, 443

Replacing variable names
Reference data editor, 589

Requirements
LL984, 434

RTU extension
Compact configuration, 143
Configure, 143

Runtime Error
I/O Event Sections, 1127

S
Save To Flash, 632
Saving the global DFBs during Upload

Settings in the INI-File, 1095
Scan

Constant, 628
Scan Rate

Timer Event Sections, 1111
scan times

single, 629
Search and Replace

Variable names and addresses, 530
searching and pasting

variable names and addresses, 534
searching and pasting variable names and
addresses, 534
Section, 68

Animation, 656
Disable, 70
Execution order, 69
Export, 669
Import, 673, 679, 690, 691, 692
import, 674
LL984, 431
Status, 784

section
import, 686

Secure Application, 42
1179

Index
Security, 737, 738, 740, 748, 749, 750
Segement

LL984, 431
Segment manager, 117
Select

LL984, 439
Select process information

General information, 640
Status and memory, 639

Selecting process information
Status and memory, 639

separators
data type editor, 565
derived data type, 565

Set/Change PLC Password, 636
Setting up and controlling the PLC, 626
setup and control PLC

general information, 627
SFC

’SFCSTEP_STATE’ variable, 273
’SFCSTEP_TIMES’ variable, 272
Action, 274
Action variable, 274
Actions, 294
alternative branch, 283
Alternative connection, 285
animation, 306, 308
Calling up macros, 519
Edit, 289
edit, 288
Icon bar, 804
Identifier, 297
initial step, 271
Jump, 281
Learn monitoring times, 311
Link, 280
maximum supervision time, 271
minimum supervision time, 272
Objects, 270
Online, 305
online functions, 306, 308
Parallel branch, 286
Parallel connection, 287
Short Cut Keys, 815
Step, 271
step delay time, 271
1180
step duration, 271
Step properties, 292
string, 308
Text object, 287
transition, 276, 300
Transition diagnosis, 314
Transition section, 278
Transition variable, 279
waiting step, 271

Short Cut Keys, 811, 812, 815, 825
Short cut keys, 799, 810
Shortcut keys, 819
Simple sequences, 280
Simulate

SPS, 725, 727
Simulation, 723, 725, 727
single sweeps, 629
special options, 131
Specific data transfer

Peer Cop, 925
Speed optimized LL984- Processing, 631
SPS

Simulate, 725, 727
ST, 383

Animation, 376
Assign instructions, 399
Block call up, 415
Code generation, 424
Expressions, 386
Instructions, 400
List of Symbols, 806
Online functions, 376, 425
Operands, 387
Operators, 391
operators, 388
Program creation, 426
Short Cut Keys, 812
syntax check, 423
33002204

Index
ST Command
, 396, 396
&, 397
=, 395
AND, 397
Boolean AND, 397
Boolean OR, 397
ELSE, 406
ELSIF...THEN, 407
Equal to, 395
Less than, 396
Less than or equal to, 396
Not equal to, 396
OR, 397
XOR, 398

ST command
-, 392, 395
(), 392
*, 393
**, 392
+, 394
>, 395
>=, 395
Addition, 394
Assignment, 401
Call function block, 416
CASE...OF...END_CASE, 408
Complement formation, 393
Declaration, 403
Division, 394
Empty instruction, 414
EXIT, 414
Exponentiation, 392
FOR...TO...BY...DO...END_FOR, 409
FUNCNAME, 392
function invocation, 420
Greater than, 395
Greater than/Equal to, 395
IF...THEN...END_IF, 405
MOD, 394
Modulo, 394
Multiplication, 393
Negation, 392
NOT, 393
REPEAT...UNTIL...END_REPEAT, 413
33002204
Subtraction, 395
Use of parentheses, 392
VAR...END_VAR, 403
WHILE...DO...END_WHILE, 412

ST commandl
/, 394

ST Comment
Comment, 414

Start behavior
Variable, 65

Start behavior of digital outputs, 67
Startup

Presettings for Modbus, 1003
Presettings for Modbus Plus, 989

Startup with DOS Loader
Modbus, 1031
Modbus Plus, 1067

Startup with the EXECLoader
Modbus, 1009
Modbus Plus, 1045

State of the PLC, 625
Status, 611
Status bar, 784
ST-Command

Boolean Exclusive OR, 398
step, 271

alias designations, 302
step delay time, 271
step duration, 271
Step properties

Process, 292
string

control, 308
Structure

PLC Memory, 155
Program, 57, 58
Project, 57, 58

Structured text, 383
Structured variables

Import, 698
Subroutines

LL984, 444
Symax-Ethernet

specify coupling modules, 124
Symbols, 799, 806, 807
1181

Index
Syntax
Data type editor, 557
Derived Data Type, 557

syntax check
IL, 372
ST, 423

T
Tag

IL, 328
TCP/IP

Network Configuration, 953
TCP/IP network link, 624
TCP/IP-Ethernet

specify coupling modules, 124
Text Object

FBD, 218
Text object

LD, 253
SFC, 287

Timer Event Section
Handling, 1105

Timer Event Sections, 1110
Define Scan Rate, 1111
Defining the Phase, 1112
Examples for Parameterization, 1119
Execution Order, 1115
Operating System, 1116

Tool bar, 801, 802, 803, 804, 805
Toolbar, 809
toolbar, 809
Tools, 44

Settings in the INI file, 1100
Trace

LL984, 443
Transfer problems

Modbus Presettings, 1008
transition, 276

alias designations, 302
declare, 300
process, 300

Transition diagnosis, 314
Transition section, 278
Transition variable, 279
1182
U
UDEFB

FBD, 216
LD, 247

Unconditional Configuration, 106
unconditional configuration

precondition, 107
Unconditional locking of a section, 586
Undo

LL984, 439
Upload PLC, 652
Uploading the PLC, 652
User-defined Elementary Function

FBD, 216
user-defined elementary function

LD, 247
User-defined Elementary Function Block

FBD, 216
user-defined elementary function Block

LD, 247
Utility program, 44

V
Variable

Export, 672
Start behavior, 65

Variable Editor
Declaration, 527

Variable editor
Exporting located variables, 537
Search and Replace, 530

variable editor
searching and pasting, 534

Variable Storage
INI File Settings, 1094

Variables, 64
ASCII message editor, 596
Import, 694, 698, 701
LL984, 436

variables
import, 695

Variables editor, 525
Variables-Editor

General, 526
33002204

Index
VARINOUT variables, 466
Various PLC settings, 83
View Tool, 661
Virtual MBX Driver

Modbus Plus, 997

W
waiting step, 271
Warm restart, 65
Window, 781
Window elements, 784
window types, 782
Windows, 779

Check box, 790
Command buttons, 790
Dialog boxes, 789
Lists, 790
Menu commands, 787
Option buttons, 790
Status bar, 784
Text boxes, 790
Window, 781
Window elements, 784

windows
window types, 782
33002204
1183

Index
1184
 33002204

	Table of Contents
	Safety Information
	About the Book
	General description of Concept
	General description of Concept
	Programming

	New Performance Attributes of Concept 2.6 in Comparison with Concept 2.5
	Project structure
	Creating a Project
	PLC configuration
	General information about hardware configuration
	Configuration in OFFLINE and ONLINE mode
	Unconditional Configuration
	Optional configuration
	Backplane Expander Config
	Configuration of various network systems
	Quantum Security Settings in the Configurator

	Main structure of PLC Memory and optimization of memory
	Main structure of the PLC Memory
	General Information on Memory Optimization
	Memory Optimization for Quantum CPU X13 0X and 424 02
	Memory Optimization for Quantum CPU 434 12(A) and 534 14(A/B)
	Memory optimization for Compact CPUs
	Memory optimization for Momentum CPUs
	Memory optimization for Atrium CPUs

	Function Block language FBD
	General information about FBD Function Block
	FBD Function Block objects
	Working with the FBD Function Block language
	Code generation with the FBD Function Block language
	Online functions of the FBD Function Block language
	Creating a program with the FBD Function Block language

	Ladder Diagram LD
	General information about Ladder Diagram LD
	Objects in Ladder Diagram LD
	Working with the LD Ladder Diagram
	Code generation with LD Ladder Diagram
	Online functions with the LD Ladder Diagram
	Creating a program withLD Ladder Diagram

	Sequence language SFC
	General information about SFC sequence language
	SFC sequence language elements
	Working with the SFC Sequence Language
	Online functions of the SFC sequence language

	Instruction list IL
	General information about the IL instruction list
	Instructions
	IL instruction list operators
	Call up of functions, Function Blocks (EFBs) and Derived Function Blocks (DFBs)
	Syntax check and Code generation
	Online functions of the IL instruction list
	Creating a program with the IL instruction list

	Structured text ST
	General information about structured Text ST
	Expressions
	Operators of the programming language of structured ST text
	Assign instructions
	Call up of functions, Function Blocks (EFBs) and Derived Function Blocks (DFBs)
	Syntax check and code generation
	Online functions of the ST programming language
	Creating a program with the structured ST text

	Ladder Logic 984
	General about Ladder Logic 984
	Working with Ladder Logic 984
	Subroutines
	Equation Network Editor
	LL984 Programming Modes

	DFBs (Derived Function Blocks)
	DFBs (Derived Function Blocks)
	Programming and calling up a DFB

	Macros
	Macro
	Programming and calling up a macro

	Variables editor
	Project Browser
	Derived data types
	General information on Derived Data Types
	Syntax of the data type editor
	Derived data types using memory
	Calling derived data types

	Reference data editor
	ASCII Message Editor
	ASCII Editor Dialog
	User Interface of ASCII Message Editor
	How to Continue after Getting a Warning
	ASCII Editor in Offline/Combination/Direct Modes

	Online functions
	General information about online functions
	Connect to PLC
	Setting up and controlling the PLC
	Selecting Process information (status and memory)
	Loading a project
	Section animation
	Online Diagnosis
	Logging Write Access to the PLC

	Import/Export
	General Information about Import/Export
	Exporting sections
	Exporting variables and derived data types
	Section import
	Variables import
	Import/Export of PLC Configuration

	Documentation and Archiving
	Documentation of projects, DFBs and macros
	Managing projects, DFBs and macros

	Simulating a PLC
	Simulating a PLC (16-bit simulator)
	Simulating a PLC (32-bit simulator)

	Concept Security
	Appendices
	Tables of PLC-dependent Performance Attributes
	Windows interface
	Window
	Menu commands
	Dialog boxes
	Generating a project symbol
	Online help

	List of symbols and short cut keys
	Icon bar
	Short cut keys

	IEC conformity
	What is the IEC 1131-3 standard?
	IEC standards tables
	Expansions of IEC 1131-3
	Text language syntax

	Configuration examples
	Quantum Example - Remote Control with RIO
	Quantum Example - Remote control with RIO (series 800)
	Quantum Example - Remote Control with DIO
	Quantum Example – INTERBUS Control
	Quantum Example - SY/MAX Controller
	Quantum Example - Profibus DP Controller
	Quantum-Example - Peer Cop
	Compact Example
	Atrium Example – INTERBUS Controller
	Momentum Example - Remote I/O Bus
	Momentum Example - Ethernet Bus System

	Convert Projects/DFBs/Macros
	Concept ModConnect
	Introduction
	Integration of Third Party Modules
	Use of third party module in Concept

	Convertion of Modsoft Programs
	Modsoft and 984 References
	Presettings when using Modbus Plus for startup
	Presettings when using Modbus for startup
	Startup when using Modbus with the EXECLoader
	Startup when using Modbus with DOS Loader
	Startup when using Modbus Plus with the EXECLoader
	Startup when using Modbus Plus with DOS Loader
	EXEC files
	INI Files
	Settings in the CONCEPT.INI File
	Settings in the Projectname.INI File

	Interrupt Processing
	General information about interrupt sections
	Interrupt section: Timer event section
	Interrupt section: I/O event section
	Modules for interrupt sections

	Automatic Connection to the PLC
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

