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Abstract: Software introduces the application of self-organizing maps (SOM) to biomedical data analysis. 
The SOM algorithm was implemented in MATLAB environment with various optional parameters enabling 
the adjustment of model according to user's requirements. For easier application of SOM the graphical user 
interface was developed. 
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Software description 

The software for biomedical data analysis using self-organizing map (SOM) has been developed, see Figure 1. 

 

 
Figure 1. The software for biomedical data analysis using SOM 
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1 Basic settings  
Firstly, the user has to set the structure of network, i.e. determine the location of the file with input data and 
define the size of the output layer of SOM, see Figure 2. 

 

 
Figure 2. The basic settings of SOM 

 

2 Learning  

Secondly, the user has to set the parameters of the learning process including the number of epochs, see 
Figure 3. 

 

 
Figure 3. The selection of the number of epochs 

 

2.1 Learning parameter 

The learning parameter (learning rate, step length) is reduced during the iteration process. It decays from the 
initial value to the final value, which can be reached already during learning process, not only at the end of 
learning. There are several common forms of the decay function. The learning parameter should be in the 
interval <0.01, 1>.  

Figure 4 shows options regarding the learning parameter. 

The initial and final values of learning parameter have to be set. The initial value should be close to 1, the final 
value should be small, but not smaller than 0.1. Simultaneously, a point in the learning process in which the 
learning parameter reaches the final value has to be determined. It is represented as a number between 0 and 
1. 

The learning rate decay has to be set as well, for more information see Figure 5. 

 

 
Figure 4. The settings of learning parameter 
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Figure 5. Learning rate decay function (dependence of the learning parameter on the number of iterations):  

a) No decay, b) Linear decay, c) Gaussian decay, d) Exponential decay 

 

2.2 Neighbourhood 

In SOM learning not only the winner but also the neighbouring neurons adjust their weights. It produces 
topology preservation. There several ways to define a neighbourhood (see Figure 6). All neighbour weight 
vectors are shifted towards the presented input vector, however, the winning neuron update is the most 
pronounced and the farther away the neighbouring neuron is, the less its weight is updated. The 
neighbourhood strength function determines how the weight adjustment decays with distance from the 
winner. The neighbourhood size function determines how the size of neighbourhood decays with increasing 
number of iterations.   

 

 
Figure 6. Types of neighbourhood: a) Linear arrangements, b) Square arrangements, c) Hexagonal arrangements 

 

Figure 7 shows options regarding the neighbourhood. 

The initial and final values of the neighbourhood size have to be set. The initial value can be up to the size of 
the output layer, the final must not be less than 1. That point in the learning process has to be determined, in 
which the neighbourhood size reaches the final value, i.e. number between 0 and 1. 

The neighbourhood size decay has to be set as well, for more information see Figure 8. 
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Figure 7. The settings of neighbourhood 

 
 

 
 

Figure 8. Neighbourhood size decay function (dependence of the neighbourhood size on the number of iterations) and neighbourhood 
strength decay function (dependence of the neighbourhood strength on the distance from the winner) 

 

2.3 Weights 

SOM is trained in recursive mode, i.e. the weights of the winning neurons are updated after each insertion of 
an input vector. The user has to choose the type of the weights initialization, see Figure 9, 10. 

 

 
Figure 9. The Setting of weights 
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Figure 10. Weight vectors initialization: a) Random small numbers, b) Vectors near the center of gravity of inputs, c) Randomly chosen 

some input vectors as initial weight vectors. 

 

2.4 Distance Measures  

The learning in SOM is competitive. The nearest neuron to the presented input pattern becomes a winner. It is 
allowed to adjust its weight vector and weight vectors of its neighbourhood by moving weight vectors closer to 
that input vector. Then the winner neuron represents the input pattern. There are many measures of the 
closeness of a weight vector to an input vector, which the user can select (see Figure 11). 

 

 
Figure 11. The Setting of distance measure 

 

3 Results of SOM 

The training criterion is the mean distance between all the inputs and their respective winning neuron weights. 
The weights corresponding to the smallest mean distance are the result of SOM. They represent the cluster 
centers.  

Pressing the button ‘Run SOM’, the SOM starts to run, see Figure 12. 

 
Figure 11. The ‘Run SOM’ button 

4 Acknowledgements 

The work was supported by the specific university research MSMT No. 21/2012 and grant MSM No. 
6046137306. 

 


