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Abstract

The presented pack of m-files contains several functions for modeling of noise in astronomical
and multimedia images. For its favorable properties, we exploit the undecimated wavelet
representation. Usually, the noise analysis of the studied imaging system is carried out in
the spatial domain. However, noise in astronomical data is non-Gaussian, and thus the noise
model parameters need to be estimated directly in the wavelet domain. We derive equations
for estimating the sample moments for non-Gaussian noise in the wavelet domain. We
consider that the sample moments in the spatial domain are known from the noise analysis
and that the model parameters are estimated by using the method of moments.

1 Sample moments in the spatial domain

In the paper [1], the noise model parameters are estimated via the method of moments. Hence,
every noise realization n in the spatial domain is described by the sample moments. The rth
central sample moment is given by

Mr =
1

I

I∑
i=1

(ni − n)r, 1 ≤ r (1)

where n is the mean value. The sample moments of the noise are computed for every acquired
video sequence. The choice of moments depends on the used model.

2 Sample moments in the wavelet domain

2.1 Undecimated wavelet transform

For image denoising, the undecimated wavelet transform (UWT) or also the Stationary Wavelet
Transform (SWT) is a better choice than the critically sampled discrete wavelet transform
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(DWT) [7]. The main reason is that the DWT is shift variant [8] which limits its denoising
performance [2]. Wavelet shrinkage methods performed on the DWT coefficients usually cause
unwanted artifacts around the objects such as stars [9].

For the reasons explained above, we choose the undecimated wavelet transform [10] for the
video frame representation. The UWT is computed using a so-called à trous algorithm [11]
which produces the same number of wavelet coefficients at each scale (decomposition level).

We use the following notation for the respective wavelet subbands: γD
(v)
ξ , where ξ in the

subscript denotes the decomposition level and the superscript in the parentheses denotes the
particular detail subband (v-vertical, h-horizontal, or d-diagonal). As we mentioned above, the
noise present in astronomical images is non-Gaussian and thus it is necessary to evaluate the
sample moments in the wavelet domain. This may be achieved by using the moment generating
function. This function of the random variable n (representing the analyzed noise) is closely
related to the characteristic function [4] and is defined by

Mn(u) = E[eun], u ∈ R. (2)

The series expansion of eun suggests that the moment generating function allows to find all
moments of a given distribution [12]. Provided that the random variable n has a continuous
PDF, the Mn(u) is given by

Mn(u) =

∫ ∞

−∞
eunp(n)dn

=

∫ ∞

−∞

(
1 + un+

u2n2

2!
+ . . .

)
p(n)dn

= 1 + um1 +
u2m2

2!
+ . . . ., (3)

where mk is the kth moment.
For producing the relations between the moments in the spatial and the wavelet domain, we

need to describe the wavelet transform process first. The 1-dimensional (1D) UWT corresponds
to convolution filtering of n with the kernel h = [h1, h2 . . . hk] while the down-sampling step is
omitted. Hence, each wavelet coefficient is computed as the weighted sum of the independent
random variables n1, n2 . . . nk (noise pixels) given as

Sk =

k∑
i=1

hini. (4)

The moment generating function MSk
(u) of Sk then runs as

MSk
(u) = Mn1(h1u)Mn2(h2u) . . .Mnk

(hku). (5)

where

Mnk
(hku) =

(
1 + hkum1 +

(hku)
2m2

2!
+

(hku)
3m3

3!
+

(hku)
4m4

4!
. . .

)
. (6)

We are going to demonstrate that it is possible to find the sample moments in the wavelet
domain by using the values of the sample moments from the spatial domain. As mentioned
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above, the moment generating function is closely related with the moments of the distribution.
Therefore, the rth moment may be evaluated using the moment generating function computed
as the rth derivative with respect to the variable u at u = 0 given as

Mr = M (r)
n (0). (7)

Let us consider a zero-mean noise n and its wavelet domain representation N = UWT {n}.
In our method, we exploit the second and the fourth moment for noise description. These
moments are related via the sample kurtosis as demonstrated in [1]. For the sake of simplicity,
we assume a short filter such as the Haar filter with the kernel h = [h1, h2]. The previously
stated assumptions suggest the following moment relations. The second sample moment M2(N)
in the wavelet domain is computed from M2(n) given by

M2(N) = M2(n)

2∑
i=1

h2i . (8)

Similarly the fourth moment M4(N) computed from M4(n) given by

M4(N) = 6(M2(n)h1h2)
2 +M4(n)

2∑
i=1

h4i . (9)

Equations (8) and (9) may be generalized for filters with k coefficients h = [h1, h2 . . . hk] given
as

M2(N) = M2(n)

k∑
i=1

h2i , (10)

M4(N) = 6(M2(n))
2
[
h21h

2
2 + h21h

2
3 + . . .+ h21h

2
k + h22h

2
3 + h22h

2
4 + . . .

]
+M4(n)

k∑
i=1

h4i . (11)

The above equations are demonstrated on the case of the 1D UWT. Nevertheless, the UWT
may be easily extended also to the 2-dimensional space. This transform is separable, and thus
we carry out the convolution in the row direction and then also in the column direction to obtain
the 2D UWT decomposition. The sample moments of the resulting coefficients are evaluated
using the derived equations.

2.2 Simplification of the derived equation for the fourth moment

This proposed equation for the fourth moment in the wavelet domain is a little complex, espe-
cially for longer wavelet transform filters. We found experimentally that equation (11) could be
simplified for certain types of impulsive noise. If we consider the salt and pepper noise for 8-bpp
(bits per pixel) images then the probability of the pixel value flipping to 0 is P (y = 0) = ε/2
and the probability of flipping to 255 is P (y = 255) = ε/2. If the parameter ε approximately
satisfies ε ≤ 0.05 then

6(M2(n))
2
[
h21h

2
2 + h21h

2
3 + . . .+ h21h

2
k + h22h

2
3 + h22h

2
4 + . . .

]
≪ M4(n)

k∑
i=1

h4i . (12)
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As a result, equation (11) can be simplified as

M4(N) = M4(n)
k∑

i=1

h4i . (13)

We tested these findings also on the 16-bpp dark frames [13] which were acquired by the
SBIG ST-8 astronomical camera as described in [1]. Our experiments indicate that these dark
frames may be modelled as white impulsive noise for which the hot pixels do not always reach
the maximum value of the dynamic range. Using this model, (12) is satisfied for all the acquired
dark frames within the whole temperature range (from 268.15 to 293.15 K).

3 Implementation in Matlab programming environment

Proposed equations (PROPOSED METHOD) were implemented in Matlab. The moment-
generating function given by equations (5) and (6) is implemented in the Matlab function
MGFun.m. This function can be modified in accordance with required length of the filter and
required moment order. Matlab function M4Fun.m contains the equation (9) and (11) for the
evaluation of the fourth sample moment of an independent random variable convolved with
kernel.

Demonstration of the proposed algorithm can be found in m-file demoMGF.m. This m-file
demonstrates the utilization of M4Fun.m in the process of estimation of fourth sample moment
in the undecimated wavelet domain. User can choose the real data represented by dark frame
acquired by astronomical camera (exposure time 60 s, temperature 293.15 K) and artificial data
represented by uniformly distributed pseudo-random numbers.
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