Ústav počítačové a řídicí techniky VŠCHT Praha

MIKROPROCESORY

Obr. 1 Celkový přehled

1 Ú	VOD	1
2 Т	EORETICKÁ ČÁST	2
2.1	MIKROPROCESOR MC9S08GT60	2
2.1.1	Obecný popis	2
2.1.2	Jádro HCS08	2
2.1.3	Resety a interrupty	4
2.1.4	Uživatelská paměť	
2.1.5	Zdroje hodinového cvklu	5
2.1.6	Paralelní porty	5
2.1.7	Analogově-digitální převodník	6
2.1.8	Časovač	9
2.1.9	Sériová komunikace	11
2.2	DESKA EVBHCS08	16
2.2.1	Přehledové schéma	16
2.2.2	Zapojení jumperů	17
2.2.3	Komunikace s PC – BDM rozhraní	17
2.2.4	Napájení	17
2.2.5	Tlačítka	17
2.2.6	Signalizační diody	17
2.2.7	A/D převodník - Potenciometr	18
2.2.8	Čidlo vlhkosti	18
2.2.9	Čidlo teploty	19
2.2.10) Sériová linka	19
2.2.11	l Rozšiřující porty	19
2.3	ROZŠIŘUJÍCÍ DESKY	19
2.3.1	Displej	19
2.3.2	Maticová klávesnice	22
2.4	PROGRAMOVÉ VYBAVENÍ	24
2.4.1	CodeWarrior	24
2.4.2	SerialWatcher	25
2.4.3	Terminal	26
3 P	RACOVNÍ ČÁST	27
3.1	OBECNÉ POKYNY K VYPRACOVÁNÍ	27
3.2	VYTVOŘENÍ PRÁZDNÉHO PROJEKTU	27
3.2.1	Zadání	27
3.2.2	Pracovní postup	27
3.3	SÉRIOVÁ KOMUNIKACE RS232	33
3.3.1	Zadání	33
3.3.2	Postup práce	33
3.4	ZOBRAŻENÍ NA DISPLEJ.	34
3.4.1	Zadání	34
3.4.2	Postup práce	34
3.5	ZPRACOVÁNÍ ANALOGOVÉ HODNOTY	36
3.5.1	Zadání	36

OBSAH

3.5.2	Postup práce	
3.6	MĚŘENÍ VLHKOSTI	
3.6.1	Zadání	
3.6.2	Postup práce	
3.7	MĚŘENÍ TEPLOTY	
3.7.1	Zadání	
3.7.2	Postup práce	
<u>л</u> т	ΤΤΕΡΑΤΙΙΡΑ	40
3.7.1 3.7.2 4 L	Zadání Postup práce	

1 ÚVOD

Hlavním cílem vaší práce bude využití mikroprocesoru pro odečítání analogové hodnoty, teploty nebo vlhkosti a její zobrazování na displej nebo odesílání do počítače přes sériovou linku. Každý student nejprve vytvoří prázdný program, který postupně rozšíří o vysílání dat po sériové lince nebo jejich zobrazování na displej. Nakonec bude program rozšířen o odečítání analogové hodnoty, vlhkosti nebo teploty. Přiřazení konkrétních úkolů bude provedeno v předstihu. Zadání volitelných parametrů proběhne až v laboratoři. Vypracování předpokládá základní znalosti práce s mikroprocesory a základy jazyka C. Především se však očekává aktivní práce s teoretickou částí.

2 TEORETICKÁ ČÁST

2.1 MIKROPROCESOR MC9S08GT60

2.1.1 Obecný popis

Mikroprocesor MC9S08GT60 je založen na architektuře typu von Neumann. Základem je jádro HCS08. Paměť se dělí na RAM a FLASH. Obsahuje interní zdroj hodinového signálu, analogově-digitální převodník, časovač, moduly pro sériovou komunikaci a další prvky.

Obr. 2 Schéma MC9S08GT60

2.1.2 Jádro HCS08

Jádro se skládá s centrální procesorové jednotky CPU a kontroléru pro ladění programu BDC. Procesor obsahuje osmibitový akumulátor A, registr příznaků CCR (Obr. 3), šestnáctibitoví

ukazatel zásobníku SP, šestnáctibitový programový čítač PC obsahující adresu následující instrukce a šestnáctibitový indexoví registr HX adresující 64 KB paměti.

Obr. 3 registr příznaků CCR

Obsahuje také soubor adresovacích módů (Tab. I).

Adresování	obsah
Inherentní	pouze čtení konstanty bez adresování
Bezprostřední	cílová adresa (8 bitů)
Bezprostřední	cílová adresa (16 bitů)
Přímé	adresa (8 bitů) buňky s cílovou adresou
Rozšířené	adresa (16 bitů) buňky s cílovou adresou
Indexové	cílová adresa posunuta od aktuální o indexový registr (16 bitů)
Indexové s postinkrementem	cílová adresa posunuta od aktuální o indexový registr (16 bitů) +1
Indexové s offsetem	cílová adresa posunuta od aktuální o indexový registr (16 bitů) a offset (8 bitů)
Indexové s offsetem a postinkremenem	cílová adresa posunuta od aktuální o indexový registr (16 bitů), offset (8 bitů) a +1
Indexové s offsetem	cílová adresa posunuta od aktuální o indexový registr (16 bitů) a offset (16 bitů)
Zásobníkové s offsetem	cílová adresa posunuta od aktuální o hodnotu ze zásobníku (16 bitů) a offset (8 bitů)
Zásobníkové s offsetem	cílová adresa posunuta od aktuální o hodnotu ze zásobníku (16 bitů) a offset (16 bitů)
Relativní adresování	určuje se počáteční i cílová adresa

Tab. I Adresovací metody

Umožňuje přesun dat bez použití akumulátoru, zrychlené násobení a dělení, dva režimy stop a jeden wait. Probuzení je pak možné libovolným přerušením.

2.1.3 Resety a interrupty

Resety a interrupty způsobí přerušení běhu programu. Při resetu se program ihned zastaví a vrátí do startovních podmínek. Zdroje resetů mohou být externí a interní. Mezi externí patří vypnutí napájení a resetovací pin. Interní reset vyvolá watchdog COP, nízké napětí LVI a chybný kód nebo instrukce. Interrupt program dočasně pozastaví a po odbavení interruptu pokračuje od místa přerušení. Zdroje resetů mohou být hardwarové nebo softwarové. Mezi hardwarové patří pin IRQ, přerušení od I/O portů, A/D převodníku, časovače a sériové komunikace. Softwaroví intrrupt je vykonán jako část instrukčního toku a nemůže být na rozdíl od hardwarového maskován.

Vector Priority	Vector Number	Address (High/Low)	Vector Name	Module	Source	Enable	Description			
Lower	26 through 31	\$FFC0/FFC1 through \$FFCA/FFCB		Unused Vector Space (available for user program)						
1	25	\$FFCC/FFCD	Vrti	System control	RTIF	RTIE	Real-time interrupt			
3	24	\$FFCE/FFCF	Viic1	lic	IICIS	IICIE	IIC control			
8	23	\$FFD0/FFD1	Vatd1	ATD	coco	AIEN	AD conversion complete			
8	22	\$FFD2/FFD3	Vkeyboard1	KBI	KBF	KBIE	Keyboard pins			
a).	21	\$FFD4/FFD5	Vsci2tx	SCI2	TDRE TC	TIE TCIE	SCI2 transmit			
	20	\$FFD6/FFD7	Vsci2nx	SCI2	IDLE RDRF	ILIE RIE	SCI2 receive			
0	19	\$FFD&/FFD9	Vsci2err	SCI2	OR NF FE PF	ORIE NFIE FEIE PFIE	SCI2 error			
8	18	\$FFDA/FFDB	Vsci1tx	SCH	TDRE TC	TIE TCIE	SCI1 transmit			
a).	17	\$FFDC/FFDD	Vsci1rx	SCH	IDLE RDRF	ILIE RIE	SCI1 receive			
2	16	\$FFDE/FFDF	Vsciterr	SCII	OR NF FE PF	ORIE NFIE FEIE PFIE	SCI1 error			
	15	\$FFE0/FFE1	Vspi1	SPI	SPIF MODF SPTEF	SPIE SPIE SPTIE	SPI			
0	14	\$FFE2/FFE3	Vtpm2ovf	TPM2	TOF	TOIE	TPM2 overflow			
	13	\$FFE4/FFE5	Vtpm2ch4	TPM2	CH4F	CH4IE	TPM2 channel 4			
	12	\$FFE6/FFE7	Vtpm2ch3	TPM2	CH3F	CH3IE	TPM2 channel 3			
	11	\$FFE8/FFE9	Vtpm2ch2	TPM2	CH2F	CH2IE	TPM2 channel 2			
<u> </u>	10	\$FFEA/FFEB	Vtpm2ch1	TPM2	CH1F	CH1IE	TPM2 channel 1			
8	9	\$FFEC/FFED	Vtpm2ch0	TPM2	CHOF	CHOIE	TPM2 channel 0			
1	8	\$FFEE/FFEF	Vtpm1ovf	TPM1	TOF	TOIE	TPM1 overflow			
8	7	\$FFF0/FFF1	Vtpm1ch2	TPM1	CH2F	CH2IE	TPM1 channel 2			
8	6	\$FFF2/FFF3	Vtpm1ch1	TPM1	CH1F	CH1IE	TPM1 channel 1			
2	5	\$FFF4/FFF5	Vtpm1ch0	TPM1	CHOF	CHOIE	TPM1 channel 0			
	4	\$FFF6/FFF7	Vicg	ICG	ICGIF (LOLS/LOCS)	LOLRE/LOCRE	ICG			
2	3	\$FFF8/FFF9	Vlvd	System control	LVDF	LVDIE	Low-voltage detect			
	2	\$FFFA/FFFB	Virq	IRQ	IRQF	IRQIE	IRQ pin			
2 201 - 4	મ	\$FFFC/FFFD	Vswi	Core	SWI Instruction		Software interrupt			
∳ Higher	0	\$FFFE/FFFF	Vreset	System control	COP LVD RESET pin Illegal opcode		Watchdog timer Low-voltage detect External pin Illegal opcode			

Tab. II Vektory přerušení

2.1.4 Uživatelská paměť

Paměť se dělí na několik částí (Obr. 4)

Obr. 4 Paměť MC9S08GT60

Část Dirrect Page Registers slouží pro uložení registrů nejčastěji používaných částí procesoru. Registry ostatních částí se ukládají do High Page Registers. Pro nejčastěji používaná data se užívá paměť RAM. Do paměti FLASH se ukládá především kód programu. V paměti se nachází zásobník typu LIFO. Princip spočívá ve čtení informací v pořadí opačném k zápisu. Využívá se při přerušení pro obsluhu registrů CPU, ukládání programového čítače při volání podprogramů a umožňuje také ukládání libovolných dat.

2.1.5 Zdroje hodinového cyklu

Modul pro generování hodinového kmitočtu ICG nastavuje frekvenci sběrnice Bus Clock od 32 kHz do 20 MHz. Lze použít tři zdroje hodinového signálu. Vnitřní zdroj, krystal nebo rezonátor.

2.1.6 Paralelní porty

Mikroprocesor obsahuje paralelní porty A, B, C, D, E, F a G po osmi pinech. Využít však lze pouze některé porty a piny. Jednotlivé piny jsou navíc sdíleny s dalšími částmi procesoru. Každému portu přísluší čtyři registry. Datový registr (Obr. 5) obsahuje vlastní zpracovávaná data. Směrový registr (Obr. 6) nastaví příslušné piny portu jako výstupní při logické jedničce nebo vstupní při logické nule. Pullup enable registr (Obr. 7) povoluje při nastavení pinů specifické interní pollup zařízení. Slew rate registr (Obr. 8) umožňuje nastavením pinů aktivovat sledování rychlosti. Všechny registry ve svém označení zahrnují i typ portu.

Obr. 8 Registr PTASE

2.1.7 Analogově-digitální převodník

Přítomen je desetibitový analogový aproximační převodník s osmibitovým multiplexem. Může pracovat v režimu jednorázového nebo kontinuálního měření. Po převodu lze generovat přerušení.

Obr. 9 Analogově-digitální převodník

Před převodem se zvolí vstupní kanál multiplexu a následná konverze je provedena aproximačním bázovým čítačem. Po převodu následuje uložení hodnoty do datového registru. Kontrolní registr ATD1C (Obr. 10) nastavuje parametry převodu.

Obr. 10 Registr ATD1C

Význam jednotlivých bitů je následující

bit	význam
ATDPU	povolení A/D převodníku
DJM	zarovnání bitů v datovém registru doprava (jinak vlevo)
RES8	nastavení formátu výsledku převodu na 8 bitů (jinak 10 bitů)
SGN	převod na znaménkový typ
PRS	
PRS	prescaler (nastavení konverzních
PRS	hodin v převodníku)
PRS	

Tab. III Bity registru ATD1C

Způsob převodu lze nastavit v ATD1SC registru

Obr. 11 Registr ATD1SC

Význam jednotlivých bitů je následující

bit	význam					
CCE	příznakový bit nastaven při dokončení					
CCF	konverze					
ATDIE	povolení interruptu					
ATDCO	povolení kontinuální konverze					
ATDCH 4						
ATDCH 3	výběr vstupního kanálu pro analogový					
ATDCH 2	vstup do převodníku (pro nultý kanál					
ATDCH 1	0b00000, pro první kanál 0b00001)					
ATDCH 0						

Tab. IV Bity registru ATD1SC

Povolení pinů pro práci s A/D převodníkem lze nastavit v ATD1PE registru

	Bit 7	6	5	4	3	2	1	Bit O
Read: Write:	ATDPE7	ATDPE6	ATDPE5	ATDPE4	ATDPE3	ATDPE2	ATDPE1	ATDPEO
Reset	0	0	0	0	0	0	0	0

Obr. 12 Registr ATD1PE

Výsledek převodu se ukládá do ATD1R registru. Tento registr je šestnáctibitový, ale využívá maximálně 10 bitů dle registru ADT1C.

2.1.8 Časovač

Mikroprocesor obsahuje dva časovače. Veškerý popis bude ukázán na prvním časovači TPM1. Nastavení pro druhý časovač TPM2 lze získat substitucí číslice.

Obr. 13 Schéma časovače

Časovač TPM1 má dva kanály a umožňuje tak obsluhovat při jednom nastavení současně dva procesy. Časovač může pracovat ve třech módech. Mód input capture s detekcí sestupné, nástupné nebo jiné hrany vstupního signálu slouží pro zpracování vstupního signálu. Mód output capture umožňuje po uplynutí zadaného časového úseku generovat logickou jedničku nebo nulu nebo invertovat výstupní signál. Poslední mód PWM využívá pulsně šířkovou modulaci signálu. Princip spočívá v generování signálu s konstantní periodou, ale proměnnou délkou pulzu. Časování spočívá v nastavení cílové hodnoty do TPM1MOD a porovnáváním komparátorem s čítačem. Časovač umožňuje generovat přerušení. Pro úpravu hodinové signálu slouží prescaler. K nastavení časovače slouží registr TPM1SC.

Obr. 14 Registr TPM1SC

Význam jednotlivých bitů je následující

bit	význam
тог	příznakový bit nastaven je-li dosažena
TOF	zadaná hodnota časového registru
TOIE	povolení interruptu při TOF
CPWMS	viz Tab. VII
CLKSB	výběr zdroje hodin (pro Bus Clock 0)
CLKSA	výběr zdroje hodin (pro Bus Clock 1)
PRS	
PRS	prescaler
PRS	

Tab. V Bity pro registr TPM1SC

Závislost délky cyklu na nastavení prescaleru při dané BUSCLK v MHz

P02	PS1	PS0	dékla cyklu (ns)
0	0	0	1000/BUSCLK
0	0	1	2000/BUSCLK
0	1	0	4000/BUSCLK
0	1	1	8000/BUSCLK
1	0	0	16000/BUSCLK
1	0	1	32000/BUSCLK
1	1	0	64000/BUSCLK
1	1	1	128000/BUSCLK

Tab. VI Nastavení prescaleru časovače

Cílová hodnota je ukládána do šestnáctibitový časového registru TPM1MOD. Hodnota vzestupného čítače pak do šestnáctibitového registru TPM1CNT. V Případě shody obou hodnot je nastaven příznakový bit TOF. Nastavení pro konkrétní kanál časovače provádí registr TPM1CnSC, kde n odpovídá danému kanálu

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CHnF	CHnIE	MSnB	MSnA	ELSnB	ELSnA	0	0
Reset	0	0	0	0	0	0	0	0

Obr. 15 Regist TPM1CnSC

CPWMS	MSnB	MSnA	ELSnB	ELSnA	Mód	funkce
x	х	Х	0	0		nemá pro časování význam
	0	0	0	1		Zachycení NÁSTUPNÉ hrany
	0	0	1	0	INPUT CAPTURE	Zachycení SESTUPNÉ hrany
	0	0	1	1		Zachycení JAKÉKOLIV hrany
0	0	1	0	0	OUTPUT COMPARE	pouze softwarové porovnání
	0	1	0	1		INVERZE výstupu při porovnání
	0	1	1	0		NULOVÁNÍ výstupu při porovnání
	0	1	1	1		NASTAVENÍ výstupu při porovnání
	1	Х	1	0	Edge-aglined	Nulování výstupu při porovnání
	1	X	X	1	PWM	Nastavení výstupu při porovnání
1	X	X	1	0	Center-	Nulování výstupu při horním porovnání
1	х	Х	X	1	Aglined PWM	Nastavení výstupu při horním porovnání

Bit CHnF se nastaví při interruptu a CHnIE povoluje interrupt pro daný kanál význam nastavení ostatních bitů plyne z Tab. VII

Tab. VII nastaveni režimu časovače

2.1.9 Sériová komunikace

Mikroprocesor obsahuje dva moduly pro sériovou komunikaci SCI1 a SCI2. Veškerá nastavení budou dále uvedena pro první modul. Každý modul umožňuje příjem (Obr. 17) i vysílání (Obr. 16) po sériové lince. Komunikační slovo popisuje Tab. VIII

Obr. 16 Schéma vysílání po sériové lince

Obr. 17 Schéma příjmu po sériové lince

bit	význam
1.	start bit
2.	datový bit 0
3.	datový bit 1
4.	datový bit 2
5.	datový bit 3
6.	datový bit 4
7.	datový bit 5
8.	datový bit 6
9.	datový bit 7
10.	datový bit 8 (volitelně)
11.	paritní bit
12.	stop bit

Tab. VIII struktura přenášeného slova

Přenosová rychlost se vypočte z (1), kde Baud Rate je daná přenosová rychlost v baudech, BUSCLK je hodinová frekvence a BD odpovídá hodnotě registru rychlosti SCI1BD, který je šestnáctibitový a lze v něm nastavit prvních deset bitů při zarovnání zleva.

$$Baud Rate = \frac{BUSCLK}{16 \cdot BD}$$
(1)

Při vysílání jsou data přenášena z datového registru do jedenáctibitového vysílacího registru (Obr. 16). Při příjmu naopak z přijímacího registru do registru datového (Obr. 17). Pro nastavení parametrů komunikace slouží následující tři registry

Obr. 18 Registr SCI1C1

bit	význam
LOOPS	zapíná testovací mód (příjem právě vyslaných dat)
SCISWAI	zmrazení SCI při WAIT módu procesoru
RSRC	Při nastavení jsou v testovacím módu užívány piny RxD1 a TxD1 (jinak řešeno interně)
м	Zapíná délku rámce 9 bitů (jinak 8 bitů)
WAKE	nastavuje wake-up podmínku
ILT	počítá jedničkové bity od start bitu (jinak od stop bitu)
PE	povolení parity
РТ	nastavuje sudou paritu (jinak lichá)

Tab. IX Bity registru SCI1C1

	Bit 7	6	5	4	3	2	1	Bito
Read:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
Write:		10.00000 1		1. Sec. 1		23002	Service and	1.90000013
Reset	0	0	0	0	0	0	0	0

Obr. 19 Registr SCI1C2

bit	význam			
TIE	povolení interruptu vysílání			
TCIE	povolení interruptu dokončení vysílání			
RIE	povolení interruptu příjmu			
ILIE	povolení interruptu pro idle			
TE	povolení vysílání			
RE	povolení příjmu			
RWU	při nastavení je interrupt příjdu podtlačent do detekce wake-up podmínky			
SBK	nastavuje odesláníl logické jedničky po break znaku			

Tab. X Bity registru SCI1C2

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	R8	То	TYDID	0	OPIE	MEIE	ECIC	DEIE
Write:		10	TADAN .		Onie	NEIE	FEIG	FCIE
Reset	0	0	0	0	0	0	0	0

Obr. 20 Registr SCI1C3

bit	význam		
R8	devátý bit příjmu		
Т8	devátý bit vysílání		
TXDIR	Nastvení pinu TxD1 jako výstupu při Single-Wire módu (jinak jako vstup)		
ORIE	Příznak overrun generuje interupt		
NEIE	Příznak noise generuje interupt		
FEIE	Příznak farming error generuje interupt		
PEIE	Příznak chyba parity generuje interrupt		

Tab. XI Bity registru SCI1C3

Pro zjištění informací o přenosu slouží dva stavové registry

Obr. 21 Registr SCI1S1

bit	význam	
TDRE	nastaven při vyprázdnění datového registru (bufferu)	
тс	nastaven při ukončení přenosu	
RDRF	nastaven při plném příjimacím registru	
IDLE	příznak detekce idle	
OR	příznak při detekci overrun (přetečení)	
NF	příznak detekování noise	
FE	příznak framing error (detekována nula na místě stop bitu)	
PF	příznak chyby parity	

Tab. XII Bity registru SCI1S1

Z registru SCI1S2 lze získat pouze bit RAF na nulté pozici, který nastavuje bit RxD1 pro příjem. Jinak je bit RxD1 nastaven pro idle.

2.2 DESKA EVBHCS08

2.2.1 Přehledové schéma

Obr. 22 Schéma desky EvbHCS08

2.2.2 Zapojení jumperů

Obr. 23 Zapojení jumperů

2.2.3 Komunikace s PC – BDM rozhraní

Pro nahrávání a práci s programem slouží konektor, který se ve schématech označuje BDM (Background Debug Mode). Tímto lze přistupovat k programu, provádět úpravy a nahrávat nový program. Připojení k tomuto konektoru vyžaduje speciální převodník. Použít lze například zařízení USB BDM MULTILINK. Na Obr. 1 vidíme reálný pohled na toto zařízení po připojení k základní desce. Při zapojování desky nejprve propojíme převodník s deskou a poté zapojíme tento převodník do počítače. Nakonec přivedeme na desku napájení. Odpojování se provádí opačným postupem.

2.2.4 Napájení

K napájení slouží adaptér se specifickým zakončením pro připojení k desce. Na tomto adaptéru je třeba nastavit požadovanou hodnotu napětí a to 12V. Před připojením desky do elektrické sítě musí být všechny jumpery správně zapojeny (Obr. 23).

2.2.5 Tlačítka

Pro přímé diskrétní zadání slouží na desce dvě tlačítka. První tlačítko plní funkci externího interruptu a označuje se ve schématech TR1. Druhé se ve schématech označuje TR2 a je vyvedeno na nultý kanál druhého časovače (Obr. 22).

2.2.6 Signalizační diody

Pro přímou indikaci lze využít dvě diody. První z nich se ve schématech se označuje D10. Její použití vyžaduje zapojení jumperu Jled1 (Obr. 23). Signál je vyveden jako nultý kanál prvního časovače (Obr. 22). Druhá se ve schématech se označuje D11. Její použití vyžaduje

zapojení jumperu Jled2 (Obr. 23). Signál je vyveden jako první kanál prvního časovače (Obr. 22).

2.2.7 A/D převodník - Potenciometr

Za pomoci potenciometru lze přímo vkládat analogovou hodnotu. Potenciometr je ve schématech značen jako TR1. Jeho výstup je vyveden do nultého A/D převodníku (Obr. 22). Rozsah potenciometru se převede na diskrétní rozsah 0 až 255.

2.2.8 Čidlo vlhkosti

Pro měření vlhkosti je použito čidlo HIH 3610, které může být realizováno v několika provedeních.

Obr. 24 provedení čidla vlhkosti

Ve schématech se označuje Hum. Jeho použití vyžaduje zapojení jumperu Jhum (Obr. 23). Signál z čidla je vyveden do prvního A/D převodníku (Obr. 22). Podrobné technické parametry lze nalézt v dokumentaci [3]. Pro získání hodnoty relativní vlhkosti *RH* se nejprve vypočte vlhkost vztažená na 25°C RH_{25} .

$$RH_{25} = \frac{\frac{U}{U_{vst}} - 0.16}{0.0062} \tag{2}$$

Kde Uvst je vstupní napětí 5V a U napětí vstupní dle

$$U = \frac{3.9 - 0.8}{256} \cdot AD + 0.8 \tag{3}$$

Kde AD je hodnota z A/D převodníku. Pro přepočet na skutečnou teplotu platní

$$RH = \frac{RH_{25}}{1,0546 - 0,00216 \cdot T} \tag{4}$$

Kde RH je relativní vlhkosti při teplotě T. Teplota se zadává ve stupních celsia.

2.2.9 Čidlo teploty

Jako teplotní čidlo je použito SMT 160, které může být realizováno v několika provedeních.

Obr. 25 provedení čidla teploty

Ve schématech se označuje Temp. Jeho použití vyžaduje zapojení jumperu Jsmt (Obr. 23). Signál z čidla je vyveden jako první kanál druhého časovače (Obr. 22). Teplotu lze snímat v rozsahu -45° C až 130°C s přesností 0,7°C. Podrobné technické parametry lze nalézt v dokumentaci [2]. Výpočet teploty *T* ve stupních celsia se provede na základě relativní velikosti pulzu *DC*.

$$T = \frac{DC - 0.320}{0.00470} \tag{5}$$

2.2.10 Sériová linka

Deska umožňuje komunikaci po sériové lince RS232. Konektor je ve schématech značen RS232. Tímto způsobem lze vyčítat data z mikroprocesoru do počítače nebo pracovní stanice. Z počítače lze také do mikroprocesoru zasílat instrukce a tím ovládat probíhající program. Pro funkční komunikaci je třeba na mikroprocesoru i počítači nastavit shodnou rychlost přenosu, délku dat, stop bit, paritu a handshaking.

2.2.11 Rozšiřující porty

Deska nabízí celkem čtyři rozšiřující porty. Jsou to porty A, B, C a D+E. Přes tyto porty lze k základní desce připojit desky rozšiřující. Většina pinů na portech je sdílená.

2.3 ROZŠIŘUJÍCÍ DESKY

2.3.1 Displej

Rozšiřující deska s displejem obsahuje dvouřádkový displej o šestnácti znacích na řádek.

Obr. 26 Schéma displeje

Na Obr. 26 vidíme schéma a na Obr. 1 pak reálný pohled na displej po připojení k základní desce. Význam jednotlivých bitů je následující

bit	význam			
DC	indikace zadávání znaku (jinak			
кэ	zadávaní příkazu)			
RW	povolení čtení			
E	povolení přístupu k bitům D4 až D7			
D4	příjem nultého a čtvrtého bitu znaku			
D5	příjem prvního a pátého bitu znaku			
D6	příjem druhého a šestého bitu znaku			
D7	příjem třetího a sedmého bitu znaku			

Tab. XIII Bity displeje

Znaky lze odesílat ve formátu unsigned char. Zobrazí se pak znak, jehož ascii kód odpovídá přijatému. Bezproblémově jsou zobrazovány znaky od kódu 32 do kódu 127. Kromě znaků lze odesílat na displej i řídící příkazy (viz Tab. XIV)

příkaz	kód
zapnutí displje	0x01
vypnutí displeje	0x08
vymazání displeje	0x01
kurzor na začátek prvního řádku	0x80
kurzor na začátek druhého řádku	0xC0
kurzor neviditelný	0x0C
kurzor podtržítko bliká	0x0D
kurzor plný	0x0E
kurzor plný bliká	0x0F
Inicializace displeje	0x03
	0x03
	0x03
	0x02
	0x28
	0x08
	0x01
	0x06
	0x28
	0x0C
	0x06
	0x0C

Tab. XIV Příkazy pro displej

Prvnímu použití displeje musí předcházet inicializace. Ještě před odesláním série inicializačních příkazů je potřeba nastavit všechny bity mimo RS na jedna a následně naopak všechny mimo RS vynulovat. Bit RS má tedy při těchto zadáních opačnou hodnotu oproti ostatním bitům. Před každým zápisem nebo čtením se pak nejprve nastaví bity definující druh

přístupu. Tedy RS pro určení jedná-li se o znak nebo příkaz a RW pro určení jedná-li se o čtení nebo zápis. Následně se příslušný znak nebo příkaz zapíše ve dvou krocích. Nejprve jsou zapsány horní čtyři bity do bitů D7 až D4 a následně dolní čtyři byty tamtéž. Před každým zápisem do skupiny bitů D7 až D4 je navíc potřeba povolit přístup bitem E a po zapsání přístup opět zakázat.

2.3.2 Maticová klávesnice

Rozšiřující deska s maticovou klávesnicí obsahuje 16 kláves v matici o čtyřech řádkách a čtyřech sloupích.

Obr. 27 Schéma maticové klávesnice

Na Obr. 27 vidíme schéma a na Obr. 1 pak reálný pohled na maticovou klávesnici po připojení k základní desce. Význam jednotlivých bitů je následující

bit	význam
S1	stisknuto tlačítko v prvním sloupci
S2	stisknuto tlačítko ve druhém sloupci
S3	stisknuto tlačítko ve třetím sloupci
S4	stisknuto tlačítko ve čtvrtém sloupci
R1	stisknuto tlačítko v prvním řádku
R2	stisknuto tlačítko ve druhém řádku
R3	stisknuto tlačítko ve třetím řádku
R4	stisknuto tlačítko ve čtvrtém řádku

Tab. XV Bity maticové klávesnice

Každému tlačítku nebo skupině zároveň stisknutých tlačítek odpovídá určitá kombinace bitů dle Tab. XV a lze tak přesně určit stisknutá tlačítka. Velkou výhodou této maticové klávesnice je právě možnost odečtení stisku i více jak jednoho tlačítka současně.

2.4 PROGRAMOVÉ VYBAVENÍ

2.4.1 CodeWarrior

Program CodeWarrior je vývojové prostředí pro aplikace v programovacím jazyce C, C++ nebo Assembleru. Umožňuje vytváření a testování vytvořených programů. Umožňuje také nahrávání a správu aplikací přes v mikroprocesoru přes komunikační převodník. V nastavení programu lze přepínat mezi simulací a reálným napojením k mikroprocesoru.

Obr. 28 Pracovní prostředí programu CodeWarrior

2.4.2 SerialWatcher

Tento program slouží pro zobrazení dat, která byla do počítače zaslána po sériové lince. Lze v něm nastavit parametry komunikace. Konkrétně použitý port, datovou šířku, stop bit, paritu, handshaking, DTR, RTS a rychlost přenosu. V menu Port lze uzavřít (Close) nebo otevřít (Open) zvolený port. Program umožňuje zobrazení přijatých dat v decimálním, hexadecimálním a ASCII tvaru. Typ zobrazení lze nastavit v menu Display.

Obr. 29 Program SerialWatcher

2.4.3 Terminal

Jedná se o pokročilejší program pro sériovou komunikaci. Lze v něm nastavit parametry komunikace. Konkrétně použitý port, datovou šířku, stop bit, paritu, handshaking, a rychlost přenosu a některé další. Dále lze nastavovat formát zobrazovaných dat. Program umožňuje také odesílání dat z počítače.

Obr. 30 Program Terminal

3 PRACOVNÍ ČÁST

3.1 OBECNÉ POKYNY K VYPRACOVÁNÍ

Vypracovávejte zadané části návodu ve zde uvedeném pořadí. Nejsou-li nastavení pro některé registry nebo piny uvedeny, předpokládá se výchozí nastavení. Definujete-li funkci, nezapomeňte ji v kódu také deklarovat nejpozději před prvním použitím. Po dokončení všech zadaných částí demonstrujte funkčnost vašeho programu vyučujícímu a vypracujte protokol. Protokol bude obsahovat zadání vámi vypracovaných částí, nastavení použitých registrů, použité výpočty, výpis kódu programu a závěrečné zhodnocení.

3.2 VYTVOŘENÍ PRÁZDNÉHO PROJEKTU

3.2.1 Zadání

Vytvořte, nahrajte do mikroprocesoru a spusťte program. Program nastavte tak, aby bylo možno pracovat s desetinnými čísli.

- 3.2.2 Pracovní postup
 - Spust'te program CodeWarrior IDE
 - Klikněte na tlačítko Create New Project

Startup	<u>×</u>
1 josto	Create New Project
2 maran	Load Example Project
de noretrace	Load Previous Project
	Run Getting Started Tutorial
	Start Using CodeWarrior
	🔽 Display on Startup

Vyberte typ mikroprocesoru MCS08GT60 a typ připojení P&E Multilink/Cyclone Pro a klikněte na tlačítko Další

Wizard Map	Select the derivative you would like to use:	Choose your default connection:
Device and Connection	HC08 ▲	Connections
roject Parameters	E HCS08	Full Chip Simulation
dd Additional Files	HCS08A Family HCS08D Family	SofTec HCS08
Processor Expert	HCS08E Family HCS08G Family HCS08G Family	HCS08 Serial Monitor HCS08 Open Source BDM
		Connect to P&E BDM Multilink (USB and parallel) or P&E Cyclone Pro (USB, Serial and TCP/IP).

Obr. 32 Volba typu mikroprocesoru a připojení

Zaškrtněte typ jazyka C, zadejte jméno projektu (Project name) a kliknutím na Set... vyberte adresář pro uložení projektu a klikněte na tlačítko Další

Wizard Map	Please choose the set of languages to be	Project name:
Device and Connection	supported initially. You can make multiple selections.	Project_1.mcp
Project Parameters Add Additional Files	Absolute assembly	Location: D:\Project_1\
Processor Expert	I C++	
PC-Lint	C language support will be included in 📃 the project	

Obr. 33 Volba adresáře projektu

V následujících dvou oknech neprovádějte žádné úpravy a vždy pouze klikněte na tlačítko Další

Wizard Map	Add existing	files to the project			
Device and Connection Project Parameters Add Additional Files		t <mark>ha</mark> Dokumenty Tento počítač Místa v síti Odoba Paader 8		Add	
Processor Expert C/C++ Options		Canon Solution Menu CyberLink PowerDVD DAEMON Tools Lite			
PC-Lint		ICQ6 IrfanView Malwarebytes' Anti-Malwa	ire 🔽	Copy files to) project 1.c/main.asm file
	Select files t To copy the	o be added to the new pro added files to the project l wizard generate default m	iject and press ' older, select "C ain.c. and/or ma	'Add'' opy Files to Project'' ain asm files, select ''Create	-

Obr. 34 Přidání existujících souborů do projektu

Wizard Map	Rapid Application Development Options:
Device and Connection	
Project Parameters	None
Add Additional Files	C Device Initialization
Processor Expert	O Processor Expert
C/C++ Options	
PC-Lint	No code is generated, it is necessary to write device initialization code manually. Project contains startup code only.

Obr. 35 Expertní nastavení

Nakonec vyberte volbu pro práci s desetinnými čísly (v obrázku zdůrazněno) a klikněte na Dokončit (nikoliv na Další)

Device and Connection Project Parameters Add Additional Files Processor Expert C/C++ Options PC-Lint	 minimal startup code ANSI startup code Which memory model shall be used? Tiny Small Banked Select the floating point format supported. Select 'None' for best code density. None float is IEEE32, double is IEEE32 		X
--	--	--	---

Zobrazí se okno pro psaní programu, které je zde uvedeno s komentáři popisující základní kód.

Obr. 37 Základní okno pro psaní programu

- Nyní lze program libovolně upravovat
- Pro zkompilování a nahrání programu do paměti mikroprocesoru klikněte na zelenou šipku s broukem (F5)
- > Následuje dotaz na typ připojení. Stiskněte Connect

Connection	n port and Interfa	се Туре			Tente in the house provide the
Interface		C012/CD/1 Mu	Itilials LICP Doct		Add LPT Port
micenace.	1038 HC300/H	CST2/CFVT Mu	IUIIIIIK - OSB FOIC		Refresh List
Port:	USB-ML-12 Re	v C on USB1 (N	ame=PE5016570) (A	utodetected)	
nterface D	etected :	Firmware Versi	on :	Socket Programming Ad	apter Settings
Reset Dela T Delay a	ay alter Reset and b	efore communic	cating to target for	0 milliseco	nds (decimal).
Cyclone Pr	o Power Relay C clone Pro relavs	ontrol (Voltage) Re	+> Power-Out Jack) oulator Output Voltag	e Power Down Delay	, 250 ms
✓ Lise Cu	off target upon s	oftware exit	57 💌	Power Up Delay	250 m
I▼ Use Cy □ Power					

Obr. 38 Typ připojení

Potvrď te vymazání paměti

æ.	Load image contains flash memory data. Erase and	l Program flash?
105	· · · · · · · · · · · · · · · · · · ·	
	Ves	No No

Obr. 39 Vymazaní paměti

- Program spustíte kliknutím na zelenou šipku (F5)
- Pro zastavení programu stiskněte tlačítko s červeným ležatým T (F6)
- Pro reset procesoru stiskněte černou šipku v červeném kruhu (CTRL+R)
- Program lze krokovat pomocí tlačítek s modrými šipkami
- Na Obr. 40 vidíme také řadu oken. Kromě okna s výpisem kódu programu také výpis v Assembleru, vnitřní registry procesoru, paměť, globální a lokální proměnné, okno příkazů a okno procedur

5 Anirce		
D:\Project_1\Sources\main.c	Line 12 Inan	
for(:;) (H		ur 🔶
<pre>// oblast nomitz nekonecne seycky, ktera se provadi PESET_WATCHDGG()::// sesetoveni wetchdopd B)</pre>	atale 1827 B 1862 B 1864 B 1867 S 1869 S 1869 S 1869 S 1869 S 1869 S	2. Oct1800 3. *-3 tahs = 0x188F 3.82T 0,0x00,*+2 tahs = 0x1806 7. ,X 7. ,X
	and i many tree	
	-1 0508	Auto
kain () CLEBP>	PC 168F	
12 Data:1		
B_SR5 <i> volatile SR55TR</i>	0000 00.0 0000 00.0 0000 00.0 0000 00.0 0000 00.0 0000 00.0	A F7 5E 00 00 6C 201
提 Data2		
men	Auto Symb Local FORNERS	
	STOPPIN HALTED	
	STOPPIN BALTED	

Obr. 40 Sledování průběhu programu

- 3.3 SÉRIOVÁ KOMUNIKACE RS232
- 3.3.1 Zadání
 - > Zašlete libovolné číslo z mikroprocesoru do počítače
 - > Zasílejte libovolné číslo z mikroprocesoru do počítače v cyklu
 - > Zasílejte libovolné číslo z mikroprocesoru do počítače v cyklu s časováním
- 3.3.2 Postup práce
 - V hlavním programu proveď te nastavení sériové komunikace bez interruptů
 - Registr SCI1C2 nastavte pro vysílání SCI1C2=0b00001000;
 - Při zadané přenosové rychlosti (*např. 9600 baudů*) a dané BUSCLK (*např.4 MHz*) nastavte registr SCIBD dle (1) SCI1BD=26;
 - Nastavte odeslání zadaného čísla ve formátu unsigned char jeho zápisem do registru SCI1D (*např. 123*) SCI1D=123;
 - Testujte dokončení přenosu prázdnou while smyčkou s podmínkou nenastavení příznaku vyprázdnění bufferu registru SCI1S1 while (SCI1S1_TDRE==0) { }
 - Na počítači spusť te program SerialWatcher a nastavte dle Obr. 29
 - Upravte rychlost přenosu na vámi použitou hodnotu
 - > Ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
 - > Upravte program tak, aby odesílal data v nekonečné smyčce
 - > Znovu ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
 - > V hlavním programu proveď te nastavení prvního časovače
 - Registr TPM1SC a časovací registr TPM1MOD nastavte pro zadanou délku cyklu (*např. 1000 ms*) při dané BUSCLK (*např.4 MHz*). Nastavte také BUSCLK jako zdroj hodinového signálu TPM1SC = 0b00001111;
 TPM1MOD = 31250;
 - Pro nultý kanál nastavte mód OUTPUT COMPARE s funkcí pouze softwarového porovnání v registru TPM1C0SC a povolte interrupt TPM1C0SC = 0b01010000;
 - > Vytvořte interrupt 5 preruseni_casovac1 pro zpracování přerušení od nultého kanálu a vynulujte v něm příznak tohoto přerušení TPM1COSC_CHOF void interrupt 5 preruseni_casovac1(void) { TPM1COSC_CHOF=0; }

- Do interrupt 5 přesuňte obsah nekonečné smyčky mimo ____RESET_WATCHDOG();
- > Opět ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- 3.4 ZOBRAZENÍ NA DISPLEJ
- 3.4.1 Zadání
 - Zobrazte na displej libovolný znak
 - Zobrazte na displej libovolný znak v cyklu
 - > Zobrazte na displej libovolný znak v cyklu s časováním
 - > Zobrazte na displej libovolné číslo v cyklu s časováním

3.4.2 Postup práce

 \triangleright

Proved'te na	ásledující definice	
#define	DISPLEJ	PTAD
#define	DISPLEJ_SMER	PTADD
#define	DISPLEJ_RS	PTAD_PTAD0
#define	DISPLEJ_RnW	PTAD_PTAD1
#define	DISPLEJ_E	PTAD_PTAD2
#define	DISPLEJ_BIT4	PTAD_PTAD4
#define	DISPLEJ_BIT5	PTAD_PTAD5
#define	DISPLEJ_BIT6	PTAD_PTAD6
#define	DISPLEJ BIT7	PTAD PTAD7

Vytvořte funkci cekani, která bude obsahovat dvěstěkrát se opakující for cyklus obsahující pouze reset watchdogu

```
void cekani (void) {
unsigned int k;
for (k=1; k<200; k++) {
___RESET_WATCHDOG();
}
}</pre>
```

- > Vytvořte funkci zapis znak, která bude odesílat ascii kód znaku na displej
 - o Vytvořte prázdnou funkci posli_znak
 se vstupní proměnou znak formátu unsigned char
 void posli_znak(unsigned char znak) {
 }
 - Ve funkci zakažte čtení nulováním bitu DISPLEJ_RnW
 DISPLEJ_RnW=0;
 - Nastavte mód odesílání znaku nulováním bitu DISPLEJ_RS DISPLEJ_RS=1;
 - Povolte přístup k bitům 7 až 4 nastavením bitu DISPLEJ_E
 DISPLEJ_E=1;

- o Odešlete horní čtyři bity na DISPLEJ_BIT7 až DISPLEJ_BIT4
 DISPLEJ_BIT7=(znak&0x80)>>7;
 DISPLEJ_BIT6=(znak&0x40)>>6;
 DISPLEJ_BIT5=(znak&0x20)>>5;
 DISPLEJ_BIT4=(znak&0x10)>>4;
- Zakažte přístup k bitům 7 až 4 nulováním bitu DISPLEJ_E DISPLEJ_E=0;
- Povolte přístup k bitům 7 až 4 nastavením bitu DISPLEJ_E DISPLEJ E=1;
- o Odešlete dolní čtyři bity na DISPLEJ_BIT7 až DISPLEJ_BIT4
 DISPLEJ_BIT7=(znak&0x08)>>3;
 DISPLEJ_BIT6=(znak&0x04)>>2;
 DISPLEJ_BIT5=(znak&0x02)>>1;
 DISPLEJ_BIT4=(znak&0x01);
- Zakažte přístup k bitům 7 až 4 nulováním bitu DISPLEJ_E DISPLEJ_E=0;
- o Na konec funkce umístěte volání funkce cekani
- Vytvořte funkci posli_znak, která bude odesílat příkazy na displej
 - Tuto funkci vytvořte jako funkci zapis_znak. Pouze nastavte mód zadávaní příkazu nulováním bitu DISPLEJ_RS
 DISPLEJ_RS=0;
- V hlavním programu proveď te inicializaci displeje
 - V registru DISPLEJ_SMER nastavte všechny bity na jedna DISPLEJ_SMER=0xFF;
 - Do registru zapište DISPLEJ ~1 a následně ~0 DISPLEJ=~1; DISPLEJ=~0;
 - o Zašlete sérii inicializační příkazů dle Tab. XIII

```
posli_znak(0x03);
posli_znak(0x03);
posli_znak(0x03);
posli_znak(0x02);
posli_znak(0x28);
posli_znak(0x08);
posli_znak(0x06);
posli_znak(0x06);
posli_znak(0x06);
posli_znak(0x06);
posli_znak(0x06);
```

Zapište znak na displej

- o V hlavním programu volejte funkci posli_znak s příkazem vymazání displeje posli znak(0x01);
- Následně volejte funkci posli_znak s příkazem pro nastavení kurzoru na první řádek
 posli znak(0x80);
- Nakonec volejte funkci zapis_znak s ascii kódem libovolného znaku v rozsahu od 32 do 127. Lze zadat také přímo znak (např. 'A') v daném rozsahu ascii tabulky.
 zapis_znak('A');
- o Ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- Postupným voláním funkce zapis_znak zapište zadané slovo o maximálně patnácti písmenech (*např. Ahoj*) zapis_znak('A');
 zapis_znak('A');
 zapis_znak('h');
 zapis_znak('o');
 zapis_znak('o');
- o Ověřte znovu funkčnost vašeho programu po nahrání do mikroprocesoru
- > Upravte program tak, aby zapisování znaků na displej probíhalo v nekonečné smyčce
- > Opět ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- Upravte program tak, aby zapisování znaků na displej probíhalo při zpracování interruptu časovače (viz Postup práce pro sériovou komunikaci RS232)
- > Znovu ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- Vytvořte funkci zobraz_char, která převede zadané číslo formátu unsigned char na tři znaky reprezentující číslice tohoto čísla a ty pak odešle na displej void zobraz_char (unsigned char cislo) { unsigned char stovky, desitky, jednotky; stovky=cislo/100; desitky=(cislo-stovky*100)/10; jednotky=cislo-stovky*100-desitky*10; zapis_znak(stovky+48); zapis_znak(desitky+48); }
- Ve interrupt 5 nahraď te volání funkce zapis_znak za volání funkce zobraz_char se zadaným číslem (*např. 76*) zobraz_char (76);
- Znovu ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- 3.5 ZPRACOVÁNÍ ANALOGOVÉ HODNOTY
- 3.5.1 Zadání

- Odešlete analogovou hodnotu po sériové lince nebo zobrazte na displej v cyklu s časováním (předpokládá se předešlé vypracování alespoň jedné z uvedených úloh)
- 3.5.2 Postup práce
 - > V hlavním programu nastavte parametry A/D převodníku bez interruptů
 - V registru ATD1C nastavte povolení převodníku, zarovnání vlevo, výsledek na 8 bitů, bezznaménkový typ a prescaler dle zadání (*např.0b0010*) ATD1C=0b10100010;
 - Povolte v registru ATDPE pro A/D převodník nultý pin ATD1PE=0b0000001;
 - Hodnotu registru ATD1RH odešlete po sériové lince nebo zobrazte na displej tak, jak jste zpracovávali zadané číslo v příslušné části
 - V interrupt 5 před zpracováním registru ATD1RH nastavte v registru ATD1SC vstupní kanál nula a testujte dokončení přenosu prázdnou while smyčkou s podmínkou nenastavení příznaku dokončení konverze registru ATD1SC ATD1SC=0b00000000; while (ATD1SC_CCF==0) { }
 - > Ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- 3.6 MĚŘENÍ VLHKOSTI
- 3.6.1 Zadání
 - Odešlete hodnotu vlhkosti po sériové lince nebo zobrazte na displej v cyklu s časováním (předpokládá se předešlé vypracování alespoň jedné z uvedených úloh)
- 3.6.2 Postup práce
 - Zaveďte globální proměnné napeti a vlhkost typu float float napeti, vlhkost;
 - Zaveď te globální proměnnou adhodnota typu unsigned char unsigned char adhodnota;
 - V hlavním programu nastavte parametry A/D převodníku bez interruptů
 - V registru ATD1C nastavte povolení převodníku, zarovnání vlevo, výsledek na 8 bitů, bezznaménkový typ a prescaler dle zadání (*např.0b0010*) ATD1C=0b10100010;
 - Povolte v registru ATDPE pro A/D převodník první pin ATD1PE=0b0000010;
 - V interrupt 5 uložte hodnotu registru ATD1RH do proměnné adhodnota adhodnota=ATD1RH;
 - Do proměnné napeti vypočtěte napětí dle (3). napeti=0.0121*adhodnota+0.8;
 - Do proměnné vlhkost vypočtěte vlhkost dle (4). vlhkost=(napeti/0.031)-25.8065;

- > Přepočet vlhkosti na skutečnou provádět nemusíte
- Hodnotu proměnné vlhkost odešlete po sériové lince nebo zobrazte na displej tak, jak jste zpracovávali zadané číslo v příslušné části. Proměnnou je třeba používat s přetypováním na formát unsigned char (unsigned char)vlhkost
- V interrupt 5 před zpracováním registru ATD1RH nastavte v registru ATD1SC vstupní kanál jedna a testujte dokončení přenosu prázdnou while smyčkou s podmínkou nenastavení příznaku dokončení konverze registru ATD1SC ATD1SC=0b00000001; while (ATD1SC_CCF==0) { }
- > Ověřte funkčnost vašeho programu po nahrání do mikroprocesoru
- 3.7 MĚŘENÍ TEPLOTY
- 3.7.1 Zadání
 - Odešlete hodnotu vlhkosti po sériové lince nebo zobrazte na displej v cyklu s časováním (předpokládá se předešlé vypracování alespoň jedné z uvedených úloh)
- 3.7.2 Postup práce
 - Zaved'te globální proměnné pom, perioda a pulz formátu unsigned int unsigned int pom, perioda, pulz;
 - Zaveď te globální proměnnou teplota typu float float teplota;
 - V hlavním programu proveď te nastavení druhého časovače
 - V registr TPM2SC nastavte zdroj hodinového signálu BUSCLK a prescaler zadejte dle zadání (*např. 0b000*) TPM2SC=0b00001000;
 - Pro první kanál nastavte mód INPUT CAPTURE s funkcí zachycení jakékoliv hrany v registru TPM2C1SC a povolte interrupt TPM2C1SC=0b01001100;
 - > Vytvořte interrupt 10 preruseni_casovac2 pro zpracování přerušení od prvního kanálu a vynulujte v něm příznak tohoto přerušení TPM2C1SC_CH1F void interrupt 10 preruseni_casovac2(void) { TPM2C1SC_CH1F=0; }
 - Do interrupt 10 vložte kód pro zjištění periody při vzestupné hraně čtené z pinu PTDD_PTDD4

```
if(PTDD_PTDD4==1)
{
    if (TPM2C1V>a) perioda=TPM2C1V-a;
    a=TPM2C1V;
}
```

Do interrupt 10 vložte kód pro zjištění pulzu při vzestupné hraně čtené z pinu PTDD_PTDD4

```
if(PTDD_PTDD4==1)
{
if (TPM2C1V>a) pulz=TPM2C1V-a;
}
```

V interrupt 5 spočtěte teplotu do proměnné teplota dle (5), přičemž za proměnnou DC dosaď te podíl pulzu a periody. Pulz zadejte z přetypováním na formát float.

```
teplota=(((float)pulz/perioda)-0.32)/0.0047;
```

Hodnotu proměnné teplota odešlete po sériové lince nebo zobrazte na displej tak, jak jste zpracovávali zadané číslo v příslušné části. Proměnnou je třeba používat s přetypováním na formát unsigned char (zanedbává se zde tedy možnost záporné teploty)

(unsigned char)teplota

> Ověřte funkčnost vašeho programu po nahrání do mikroprocesoru

4 LITERATURA

[1] *MC9S08GB/GT* [online]. Freescale semiconductors,12/2004 Available from www: < http://freescale.com>

[2] *SMT 160-30*. SMARTEC B.V.

[3] HIH-3610 Series [online]. Honeywell

Available from www: < www.honeywell.com/sensing>